JPH02103014A - Zoom lens having optical system for correcting camera-shake - Google Patents

Zoom lens having optical system for correcting camera-shake

Info

Publication number
JPH02103014A
JPH02103014A JP25810388A JP25810388A JPH02103014A JP H02103014 A JPH02103014 A JP H02103014A JP 25810388 A JP25810388 A JP 25810388A JP 25810388 A JP25810388 A JP 25810388A JP H02103014 A JPH02103014 A JP H02103014A
Authority
JP
Japan
Prior art keywords
optical system
lens
focal length
refractive power
lens group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25810388A
Other languages
Japanese (ja)
Inventor
Ayako Kojima
小島 亜矢子
Naoshi Okada
尚士 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP25810388A priority Critical patent/JPH02103014A/en
Publication of JPH02103014A publication Critical patent/JPH02103014A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE:To decreases the eccentric aberrations generated at the time of correcting a camera-shake by providing the optical system for correcting the camera-shake to a part of the optical system and satisfying specific conditions. CONSTITUTION:The zoom lens system is constituted successively from an object side, of a 1st lens group I having a positive refractive power, a 2nd lens group II having a positive refractive power, and a 3rd lens group III having a negative refractive power and the optical system for correcting the camera-shake is provided in the 2nd lens group II. The lens groups are so constituted as to satisfy the conditional equations where PHIS is the combined refractive power of the entire system in the shortest focal length state, phiFL, phiFM, phiFS are designated as the combined refractive powers from the lens on the extreme object side in the longest, intermediate, shortest focal length states up to the lens group contg. the optical system for correcting the camera-shake, and phiRL, phiRM, phiRS are designated as the combined refractive powers from the lens on the extreme object side in the longest, intermediate, shortest focal length states up to the lens group contg. the optical system for correcting the camera-shake.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、カメラの手持ち撮影時の振動により発生する
撮影画像のブレを補正する手ブレ補正光学系を有したズ
ームレンズに関しζさらに詳しくは、部のレンズ群を光
軸と垂直な方向へ移動させることにより撮影画像のブレ
を補正するズームレンズに関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a zoom lens having a camera shake correction optical system that corrects blurring of photographed images caused by vibrations during hand-held shooting of a camera. The present invention relates to a zoom lens that corrects blur in a photographed image by moving the lens group of the parts in a direction perpendicular to the optical axis.

(従来の技術) 従来の写真撮影の失敗の原因は、その殆どがピンボケと
手ブレであった。ところが、近年のカメラではその殆ど
にオートフォーカス機構が採用されるようになり、また
、オートフォーカス機構によるピント精度が向上するに
従って、ピンボケによる写真撮影の失敗はほぼ解消され
た。一方、カメラに標準装備されるレンズは、単焦点レ
ンズからズームレンズへと変ってきている。まだ、ズー
ムレンズにおいては一般に高倍率化、望遠化が図られて
お秒、その結果写真掬影時における手ブレの影響が一段
と顕著になり、現在の写真撮影の失敗の原因の殆どは手
ブレであると言ってもよい。
(Prior Art) Most failures in conventional photography are due to out-of-focus and camera shake. However, in recent years, most cameras have come to employ an autofocus mechanism, and as the focusing accuracy of the autofocus mechanism has improved, failures in taking photographs due to out of focus have almost been eliminated. On the other hand, the lenses that come standard with cameras are changing from single focus lenses to zoom lenses. However, zoom lenses are generally designed to have higher magnification and telephoto lenses, and as a result, the effects of camera shake when taking photos have become even more noticeable, and most of the current failures in photography are due to camera shake. It can be said that it is.

これに対し、結像光学系中の一部のレンズ群を光軸と垂
直方向に移動させることにより撮影画像のブレを補正す
るレンズが例えば特開昭63−115126号公報、特
開昭63−133119号公報等で提案されている(以
後、光軸に対して垂直方向に移動させられるレンズ群を
手ブレ補正光学系という)。
On the other hand, lenses that correct the blurring of photographed images by moving some lens groups in the imaging optical system in a direction perpendicular to the optical axis are disclosed in, for example, JP-A-63-115126 and JP-A-63-1999. This has been proposed in Japanese Patent No. 133119 (hereinafter, a lens group that can be moved in a direction perpendicular to the optical axis will be referred to as a camera shake correction optical system).

また、これらの手ブレ補正光学系を移動させる機構とし
ては、例えば特開昭62−47011号公報等に示され
ているような加速度センサー アクチュエーター等が用
いられる。
Furthermore, as a mechanism for moving these camera shake correction optical systems, an acceleration sensor actuator or the like as disclosed in, for example, Japanese Patent Laid-Open No. 62-47011 is used.

(発明が解決しようとする課題) しかしながら、上記従来例に記載されているレンズは全
て単焦点レンズであり、ズームレンズに手ブレ補正光学
系を適用したものについては全く述べられていなかった
。ズームレンズに手ブレ補正光学系を用いるには、ズー
ム全域で手ブレ補正光学系の偏心による収差の劣化を少
なくしなければならないが、従来例に記載されているレ
ンズをズームレンズに適用してもズーム全域にわたって
収差の劣化を最少限にすることが困難である。
(Problems to be Solved by the Invention) However, all the lenses described in the above-mentioned conventional examples are single-focus lenses, and there is no mention of a zoom lens to which a camera shake correction optical system is applied. In order to use an image stabilization optical system in a zoom lens, it is necessary to reduce the deterioration of aberrations due to eccentricity of the image stabilization optical system over the entire zoom range. However, it is difficult to minimize the deterioration of aberrations over the entire zoom range.

従って、本発明の目的は、ズーム全域にわたって、手ブ
レ補正光学系の移動により発生する偏心収差が少ないズ
ームレンズを提供することにある。
Therefore, an object of the present invention is to provide a zoom lens in which decentering aberrations caused by movement of the camera shake correction optical system are reduced over the entire zoom range.

(課題を解決するための手段) 上記目的を達成するために本発明に係る手ブレ補正光学
系を有したズームレンズは、以下の条件式を満足するこ
とを特徴とする。
(Means for Solving the Problems) In order to achieve the above object, a zoom lens having a camera shake correction optical system according to the present invention is characterized in that it satisfies the following conditional expression.

(1)  0<lψFL/φSl<1.43(2)  
0<lψFM/Φ、1〈1.43(3)  0<lψF
S/ΦSl<1.43(4)  O<lψRL/Φ、l
<2.0(5)  Owlへ、/ΦS1<2.0(6)
  0<lψRM/Φ、l<2.0(7)lへLl〉1
ψR51 但し、Φ、は最短焦点距離状態(以下、S状態という)
における全系の合成屈折力、ψFL、ψFM、ψ、。
(1) 0<lψFL/φSl<1.43(2)
0<lψFM/Φ, 1<1.43(3) 0<lψF
S/ΦSl<1.43(4) O<lψRL/Φ, l
<2.0(5) to Owl, /ΦS1<2.0(6)
0<lψRM/Φ, l<2.0 (7) l to Ll>1
ψR51 However, Φ is the shortest focal length state (hereinafter referred to as the S state)
The composite refractive power of the entire system, ψFL, ψFM, ψ,.

はそれぞれ最長焦点距離状態(以下、L状態という)、
中間焦点距離状態(以下、M状態という)、S状態にお
ける最も物体側のレンズから手ブレ補正光学系直前のレ
ンズまでの合成屈折力、ψRL。
are the longest focal length state (hereinafter referred to as L state), respectively.
Combined refractive power, ψRL, from the lens closest to the object side to the lens immediately before the image stabilization optical system in the intermediate focal length state (hereinafter referred to as the M state) and the S state.

ψRM、ψR8はそれぞれL状態、M状態、S状態にお
ける最も物体側のレンズから手ブレ補正光学系を含むレ
ンズ群までの合成屈折力であり、中間焦点距離は最長焦
点距離をFL、最短焦点距離をF。
ψRM and ψR8 are the composite refractive powers from the lens closest to the object to the lens group including the image stabilization optical system in the L state, M state, and S state, respectively, and the intermediate focal length is the longest focal length FL and the shortest focal length F.

とするとfT7鄭で定義される。Then, it is defined as fT7 Zheng.

以下各条件について説明する。Each condition will be explained below.

条件式(1)〜(6)は、手ブレ補正光学系の移動に伴
う偏心収差の発生を抑えるだめの条件である。
Conditional expressions (1) to (6) are conditions for suppressing the occurrence of decentering aberrations due to movement of the camera shake correction optical system.

このうち条件(1)〜(3)は、それぞnL状態、S状
態、M状態における手ブレ補正光学系より物体側に位置
するレンズ群の合成屈折力をS状態における全系の合成
屈折力との関係において規定したものであり、同時に手
ブレ補正光学系に入射する軸上光線の入射角αに対応し
たものである。条件(1)の値がOに近づくにつれ入射
角αは小さくなる。
Among these, conditions (1) to (3) are the composite refractive power of the lens group located on the object side of the camera shake correction optical system in the nL state, S state, and M state, respectively, and the composite refractive power of the entire system in the S state. , and corresponds to the incident angle α of the axial ray that simultaneously enters the camera shake correction optical system. As the value of condition (1) approaches O, the incident angle α becomes smaller.

また、条件(4)〜(6)は、それぞれL状態、S状態
、M状態における手ブレ補正光学系を含めて手ブレ補正
光学系から最も物体側のレンズまでの合成屈折力を、S
状態における全系の合成屈折力との関係において規定し
たものであり、同時に、手ブレ補正光学系から射出する
軸上光線の射出角βに対応したものである。条件(2)
の値が0に近づくにつれ射出角βは小さくなる。
In addition, conditions (4) to (6) mean that the composite refractive power from the image stabilization optical system to the lens closest to the object, including the image stabilization optical system in the L state, S state, and M state, is S
It is defined in relation to the composite refractive power of the entire system in the state, and at the same time corresponds to the exit angle β of the axial ray exiting from the camera shake correction optical system. Condition (2)
As the value of .beta. approaches 0, the exit angle .beta. becomes smaller.

上記条件(1)〜(6)を満たすことにより、L状態、
S状態、M状態にわたって入射角αと射出角βが小さく
維持され、手ブレ補正光学系の移動に伴う収差変動、特
に軸上コマ収差、非点収差の変動を小さくすることがで
きる。上記条件(1)〜(6)の上限を越ると、入射角
αあるいは射出角βが非常に大きくなり偏心による収差
変動を小さく抑える仁とが困難になる。
By satisfying the above conditions (1) to (6), the L state,
The incident angle α and the exit angle β are kept small over the S state and the M state, and it is possible to reduce aberration fluctuations, especially fluctuations in axial coma aberration and astigmatism due to movement of the camera shake correction optical system. When the upper limits of the above conditions (1) to (6) are exceeded, the incident angle α or the exit angle β becomes extremely large, making it difficult to suppress aberration fluctuations due to eccentricity to a small level.

条件(7)は、手ブレ補正光学系から射出する軸上光線
の射出角βの、L状態とS状態における関係を規定した
ものである。手ブレによる撮影画像のブレ量は、焦点距
離が長くなるに従って大きくなるので、ズームレンズに
おいては、S状態からし状態になるにつれて手ブレの影
響が無視できなくなる。従って、撮影画像のブレ量を補
正するために手ブレ補正光学系に必要な移動量はL状態
に近づく程大きくなり、偏心収差の発生も犬きくなって
しまう。そこで、手ブレ補正光学系の移動量が最大とな
るL状態での射出角をS状態での射出角より小さくする
ことにより、手ブレ補正光学系の移動による収差変動は
、手ブレ補正光学系の同じ移動量に対してはS状態より
もし状態の方が少なくなる。
Condition (7) defines the relationship between the exit angle β of the axial ray exiting from the camera shake correction optical system in the L state and the S state. The amount of blur in a photographed image due to camera shake increases as the focal length becomes longer, so in a zoom lens, the influence of camera shake becomes impossible to ignore as the zoom lens changes from the S state to the dark state. Therefore, the amount of movement necessary for the camera shake correction optical system to correct the amount of blur in a photographed image increases as it approaches the L state, and the occurrence of eccentric aberration becomes more severe. Therefore, by making the exit angle in the L state, where the amount of movement of the camera shake correction optical system is maximum, smaller than the exit angle in the S state, aberration fluctuations due to movement of the camera shake correction optical system can be reduced. For the same amount of movement, the amount in the Hiroshi state is smaller than that in the S state.

つまり、補正すべき撮影画像のブレ量が大きい■、状態
において、手ブレ補正光学系の偏心に対する誤差感度(
収差変動量/撮影画像の像高移動量)をS状態における
値より小さくすることにより、ズーム全域にわたって偏
心による収差劣下の少ないズームレンズを構成すること
ができる。
In other words, in the state ■ where the amount of blur in the captured image to be corrected is large, the error sensitivity to eccentricity of the image stabilization optical system (
By making the amount of aberration variation/the amount of image height movement of a photographed image smaller than the value in the S state, a zoom lens with less deterioration in aberrations due to eccentricity over the entire zoom range can be constructed.

上記ズームレンズを具体的に構成するに当っては、物体
側より順に正の屈折力を有する第1レンズ群(1)と、
正の屈折力を有する第2レンズ群(It)と、負の屈折
力を有する第3レンズ群価を備え、上記第2レンズ群(
II)中に手ブレ補正光学系を有するとともに、以下の
条件を満足することが望ましい。
In specifically configuring the above zoom lens, in order from the object side, a first lens group (1) having a positive refractive power;
The second lens group (It) includes a second lens group (It) having a positive refractive power and a third lens group having a negative refractive power,
II) It is desirable to have a camera shake correction optical system in the camera and to satisfy the following conditions.

(8)  0.1<F 2/FL<0.6(9)  o
、2<lfc/FLl<x、。
(8) 0.1<F2/FL<0.6(9) o
, 2<lfc/FLl<x,.

(I))  0.1 < lψ、。/ψRo1〈3゜(
11)  ol< lψp/<pRl < 3.0但し
、F2は第2レンズ群(II)の合成焦点距離、fcは
手ブレ補正光学系の焦点距離、ψ、。は手ブレ補正光学
系の最も物体側の面の屈折力、釉。は手ブレ補正光学系
の最も像側の面の屈折力、ψFは手ブレ補正光学系の物
体側に隣接するレンズの像側の面の屈折力、ψ2は手ブ
レ補正光学系の像側に隣接するレンズの物体側の面の屈
折力である。
(I)) 0.1 < lψ,. /ψRo1〈3゜(
11) ol<lψp/<pRl<3.0, where F2 is the composite focal length of the second lens group (II), and fc is the focal length of the image stabilization optical system, ψ. is the refractive power and glaze of the surface closest to the object side of the image stabilization optical system. is the refractive power of the image-side surface of the image stabilization optical system, ψF is the refractive power of the image-side surface of the lens adjacent to the object side of the image stabilization optical system, and ψ2 is the refractive power of the image-side surface of the image stabilization optical system. This is the refractive power of the object-side surface of the adjacent lens.

手ブレ補正光学系の移動制御を容易にするためには、手
ブレ補正光学系をできるだけ小型軽量化することが望ま
しい。一般にレンズ系においては、前群(第1レンズ群
(1))及び後群(第3レンズ群(IID)の外径が大
きくなり、また重量も重くなる傾向にあるため、手ブレ
補正光学系を前群及び後群に構成するのは好しくない。
In order to facilitate movement control of the camera shake correction optical system, it is desirable to make the camera shake correction optical system as small and lightweight as possible. In general, in lens systems, the front group (first lens group (1)) and rear group (third lens group (IID)) tend to have larger outer diameters and become heavier, so image stabilization optical systems It is not preferable to configure the front group and the rear group.

従って、手ブレ補正光学系は、比較的外径が小さく重量
も軽く構成されている第2レンズ群(U)に設けるのが
望ましい。
Therefore, it is desirable to provide the camera shake correction optical system in the second lens group (U), which has a relatively small outer diameter and is light in weight.

また、条件(8)は、L状態における全系の焦点距離に
対して第2レンズ群(II)の合成焦点距離を規定する
式である。条件(8)の下限を越えて第2レンズ群(I
I)の屈折力(焦点距離の逆数)が強くなり過ぎると、
手ブレ補正光学系の偏心による収差変動を小さく抑える
ことが困難となる。逆に、条件(8)の上限を越えて第
2レンズ群(It)の屈折力が弱くなり過ぎると、レン
ズの全長が長くなり好しくない。
Furthermore, condition (8) is an expression that defines the composite focal length of the second lens group (II) with respect to the focal length of the entire system in the L state. If the lower limit of condition (8) is exceeded, the second lens group (I
If the refractive power (reciprocal of focal length) of I) becomes too strong,
It becomes difficult to keep aberration fluctuations due to eccentricity of the camera shake correction optical system small. Conversely, if the upper limit of condition (8) is exceeded and the refractive power of the second lens group (It) becomes too weak, the total length of the lens becomes long, which is undesirable.

条件(9)id、L状態における全系の焦点距離に対し
て手ブレ補正光学系の焦点距離を規定したものである。
Condition (9) id, which defines the focal length of the camera shake correction optical system with respect to the focal length of the entire system in the L state.

条件(8)と同様に、条件(9)の下限を越えて手ブレ
補正光学系の屈折力が強くなり過ぎると、この手ブレ補
正光学系の偏心による収差変動が極めて太きくなり、レ
ンズ全体の光学的性能が低下する。逆に、条件(9)の
上限を越えて手ブレ補正光学系の屈折力が弱くなると、
偏心による収差変動は小さくなるものの、撮影画像のブ
レを補正するためには、手ブレ補正光学系をかなりの量
移動させなければならず実用的ではない。
Similarly to condition (8), if the lower limit of condition (9) is exceeded and the refractive power of the image stabilization optical system becomes too strong, aberration fluctuations due to eccentricity of the image stabilization optical system will become extremely large, causing damage to the entire lens. The optical performance of Conversely, if the upper limit of condition (9) is exceeded and the refractive power of the image stabilization optical system becomes weak,
Although aberration fluctuations due to eccentricity are reduced, the camera shake correction optical system must be moved by a considerable amount in order to correct blur in a photographed image, which is not practical.

さらに条件(to) 、 (11)は、ともに条件(9
)が満足されるもとで、それぞれ手ブレ補正光学系及び
手ブレ補正光学系に隣接するレンズ面の屈折力を規定す
るものである。
Furthermore, conditions (to) and (11) are both condition (9)
) is satisfied, the refractive powers of the camera shake correction optical system and the lens surface adjacent to the camera shake correction optical system are defined, respectively.

条件(10)の下限を越えて、手ブレ補正光学系の最も
像側の面の屈折力が最も物体側の面の屈折力に対して強
くなり過ぎると、手ブレ補正光学系の偏心による軸上コ
マ収差の発生が大きくなり好しくない。逆に、条件(1
0)の上限を越えて、最も物体側の面の屈折力が強くな
り過ぎると、偏心による非点収差の変動が大きくなりこ
れも好しくない。
If the lower limit of condition (10) is exceeded and the refractive power of the surface closest to the image side of the image stabilization optical system becomes too strong relative to the refractive power of the surface closest to the object side, the axis due to eccentricity of the image stabilization optical system This is not preferable because upper coma aberration increases. On the contrary, if the condition (1
If the upper limit of 0) is exceeded and the refractive power of the surface closest to the object side becomes too strong, fluctuations in astigmatism due to eccentricity will increase, which is also undesirable.

まだ、条件(11)の上限を越えて、手ブレ補正光学系
の物体側に隣接するレンズの像側の面の屈折力が強くな
り過ぎると、軸上コマ収差の変動を小さく抑えることが
困難となる。逆に、条件(11)の下限を越えて、手ブ
レ補正光学系の像側に隣接するレンズの物体側の屈折力
が強くなり過ぎると、軸上コマ収差の変動を小さくする
ことはできるものの、非点収差、特にL状態での非点収
差の変動が補正しきれない程大きくなる。
However, if the upper limit of condition (11) is exceeded and the refractive power of the image-side surface of the lens adjacent to the object side of the image stabilization optical system becomes too strong, it will be difficult to suppress fluctuations in axial coma aberration. becomes. Conversely, if the lower limit of condition (11) is exceeded and the refractive power on the object side of the lens adjacent to the image side of the image stabilization optical system becomes too strong, although it is possible to reduce fluctuations in axial coma aberration, , astigmatism, especially fluctuations in astigmatism in the L state, become so large that they cannot be corrected.

(実施例) 以下、本発明を適用したズームレンズの無限遠物体合焦
時における構成を第1表に示す。本実施例において、r
iは物体側から第1番目のレンズ面を示し、(黄)印は
そのレンズ面が非球面であることを示す。尚、非球面形
状は以下の式により規定される、 但し、Xは光軸からの高さYにおけるレンズ面の球面か
らの変位量、COは非球面の基準となる球面の曲率、A
iは非球面係数である。
(Example) Table 1 below shows the configuration of a zoom lens to which the present invention is applied when focusing on an object at infinity. In this example, r
i indicates the first lens surface from the object side, and the (yellow) mark indicates that the lens surface is aspheric. The shape of the aspherical surface is defined by the following formula, where X is the amount of displacement of the lens surface from the spherical surface at the height Y from the optical axis, CO is the curvature of the spherical surface that is the reference for the aspherical surface, and A
i is an aspheric coefficient.

第1表 f = 36.2〜60.0〜100.0F pt、 
= 3.7〜4.9〜58曲率半径 軸上面間隔 屈折率(Nd)  アツベ数(νd) Σd=55.518〜54.576〜55.890非球
面係数 rho”  A4−0.19170XIO−3A6=−
0,10626X10−5 As= 0.19784xlO−7 A10=−0,29564X10−9 At2=−0,70944xlO−” rla”  A4= 0.65175X10−’A6=
−〇、64039X10−’ A8= 0.21347刈0−7 A10=−0,21771X10−9 A12= 0.86887xlO−12上記構成のスー
ムレンズのS状態及びL状態における断面図を第1図、
第2図に示す。また、この実施例の収差図を第3図乃至
第8図に示す。このうち第3図、第5図、第7図は、そ
れぞれ焦点距離f = 36.2目、60目、100叫
時における手ブレ補正光学系の偏心前のがウス面(Y′
)上の横収差であり、第4図、第6図、第8図は、同様
にf=362鰭、 60mm、  100調時において
、手ブレ補正光学系を1.0叫平行偏心させた場合のが
ウス面上の横収差を示している。
Table 1 f = 36.2~60.0~100.0F pt,
= 3.7~4.9~58 Radius of curvature Axial spacing Refractive index (Nd) Atsube number (νd) Σd=55.518~54.576~55.890 Aspheric coefficient rho" A4-0.19170XIO-3A6 =-
0,10626X10-5 As= 0.19784xlO-7 A10=-0,29564X10-9 At2=-0,70944xlO-"rla" A4= 0.65175X10-'A6=
-〇, 64039X10-' A8 = 0.21347 mowing 0-7 A10 = -0, 21771X10-9 A12 = 0.86887xlO-12 Fig. 1 shows cross-sectional views of the zoom lens with the above configuration in the S state and the L state.
Shown in Figure 2. Further, aberration diagrams of this example are shown in FIGS. 3 to 8. Of these, Figs. 3, 5, and 7 show the optical plane (Y'
), and Figures 4, 6, and 8 similarly show the case where the image stabilization optical system is parallel decentered by 1.0 at f=362 fin, 60 mm, and 100 adjustment. shows the lateral aberration on the U-plane.

尚、本実施例の各条件式に関する値を第2表に示す。Note that Table 2 shows values regarding each conditional expression of this embodiment.

第2表Table 2

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例のS状態におけるレンズ断面図
、第2図は本発明の実施例のL状態におけるレンズ断面
図、第3図乃至第8図は本発明の実施例の収差図である
。 出願人  ミノルタカメラ株式会社 千 ン一 ン
FIG. 1 is a cross-sectional view of the lens in the S state of the embodiment of the present invention, FIG. 2 is a cross-sectional view of the lens in the L state of the embodiment of the present invention, and FIGS. 3 to 8 are aberration diagrams of the embodiment of the present invention. It is. Applicant: Minolta Camera Co., Ltd.

Claims (1)

【特許請求の範囲】 (1)結像光学系中の一部のレンズ群を光軸の垂直方向
へ移動させることにより手ブレ等による画像のブレを補
正する手ブレ補正光学系を有し、かつ、以下の条件を満
足することを特徴とする手ブレ補正光学系を有したズー
ムレンズ: 0<|ψ_F_L/Φ_S|<1.43 0<|ψ_F_M/Φ_S|<1.43 0<|ψ_F_S/Φ_S|<1.43 0<|ψ_R_L/Φ_S|<2.0 0<|ψ_R_S/Φ_S|<2.0 0<|ψ_R_M/Φ_S|<2.0 |ψ_R_L|>|ψ_R_S| 但し、Φ_Sは最短焦点距離状態における全系の合成屈
折力、ψ_F_L,ψ_F_M,ψ_F_Sはそれぞれ
最長焦点距離状態、中間焦点距離状態、最短焦点距離状
態における最も物体側のレンズから手ブレ補正光学系直
前のレンズまでの合成屈折力、ψ_R_L,ψ_R_M
,ψ_R_Sはそれぞれ最長焦点距離状態、中間焦点距
離状態、最短焦点距離状態における最も物体側のレンズ
から手ブレ補正光学系を含むレンズ群までの合成屈折力
であり、中間焦点距離は最長焦点距離をF_L、最短焦
点距離をF_Sとすると√(f_L・f_S)で定義さ
れる。 (2)前記ズームレンズは、物体側より順に正の屈折力
を有する第1レンズ群、正の屈折力を有する第2レンズ
群、負の屈折力を有する第3レンズ群を備え、上記第2
レンズ群中に手ブレ補正光学系を有するとともに、ズー
ミングに際しては少なくとも第1レンズ群と第2レンズ
群の軸上間隔が変化し、以下の条件を満足することを特
徴とする請求項(1)記載の手ブレ補正光学系を有した
ズームレンズ: 0.1<F_2/F_L<0.6 但し、F_2は第2レンズ群の合成焦点距離である。 (3)前記条件に加えてさらに以下の条件を満足するこ
とを特徴とする請求項(2)記載の手ブレ補正光学系を
有したズームレンズ: 0.2<|f_C/F_L|<1.0 0.1<|ψ_F_C/ψ_R_C|<300.1<|
ψ_F/ψ_R|<3.0 但し、f_Cは手ブレ補正光学系の焦点距離、ψ_F_
Cは手ブレ補正光学系の最も物体側の面の屈折力、ψ_
F_Rは手ブレ補正光学系の最も像側の面の屈折力、ψ
_Fは手ブレ補正光学系の物体側に隣接するレンズの像
側の面の屈折力、ψ_Rは手ブレ補正光学系の像側に隣
接するレンズの物体側の面の屈折力である。
[Scope of Claims] (1) A camera shake correction optical system that corrects image blur caused by camera shake by moving some lens groups in the imaging optical system in a direction perpendicular to the optical axis; A zoom lens having a camera shake correction optical system that satisfies the following conditions: 0<|ψ_F_L/Φ_S|<1.43 0<|ψ_F_M/Φ_S|<1.43 0<|ψ_F_S / Φ_s | <ψ1.43 0 <| ψ_R_L / φ_s | <2.0 0 <| ψ_r_s / φ_s | <2.0 0 < is the composite refractive power of the entire system in the shortest focal length state, and ψ_F_L, ψ_F_M, and ψ_F_S are the lens closest to the object side to the lens immediately before the image stabilization optical system in the longest focal length state, intermediate focal length state, and shortest focal length state, respectively. composite refractive power, ψ_R_L, ψ_R_M
, ψ_R_S are the composite refractive powers from the lens closest to the object to the lens group including the image stabilization optical system in the longest focal length state, intermediate focal length state, and shortest focal length state, respectively, and the intermediate focal length is the maximum focal length When F_L and the shortest focal length are F_S, it is defined as √(f_L·f_S). (2) The zoom lens includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a positive refractive power, and a third lens group having a negative refractive power;
Claim (1) characterized in that the lens group includes a camera shake correction optical system, the axial distance between at least the first lens group and the second lens group changes during zooming, and the following conditions are satisfied: A zoom lens having the camera shake correction optical system described above: 0.1<F_2/F_L<0.6 where F_2 is the composite focal length of the second lens group. (3) A zoom lens having a camera shake correction optical system according to claim (2), which satisfies the following conditions in addition to the above conditions: 0.2<|f_C/F_L|<1. 0 0.1<|ψ_F_C/ψ_R_C|<300.1<|
ψ_F/ψ_R | <3.0 However, f_C is the focal length of the image stabilization optical system, ψ_F_
C is the refractive power of the surface closest to the object side of the image stabilization optical system, ψ_
F_R is the refractive power of the image-side surface of the image stabilization optical system, ψ
_F is the refractive power of the image side surface of the lens adjacent to the object side of the camera shake correction optical system, and ψ_R is the refractive power of the object side surface of the lens adjacent to the image side of the camera shake correction optical system.
JP25810388A 1988-10-12 1988-10-12 Zoom lens having optical system for correcting camera-shake Pending JPH02103014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25810388A JPH02103014A (en) 1988-10-12 1988-10-12 Zoom lens having optical system for correcting camera-shake

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25810388A JPH02103014A (en) 1988-10-12 1988-10-12 Zoom lens having optical system for correcting camera-shake

Publications (1)

Publication Number Publication Date
JPH02103014A true JPH02103014A (en) 1990-04-16

Family

ID=17315541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25810388A Pending JPH02103014A (en) 1988-10-12 1988-10-12 Zoom lens having optical system for correcting camera-shake

Country Status (1)

Country Link
JP (1) JPH02103014A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02135408A (en) * 1988-11-17 1990-05-24 Asahi Optical Co Ltd Vibration compensation type telephoto lens
JPH02287507A (en) * 1989-04-28 1990-11-27 Asahi Optical Co Ltd High variable magnification zoom lens for compact camera covering wide angle
JPH05264903A (en) * 1991-03-04 1993-10-15 Olympus Optical Co Ltd Wide-angle zoom lens
EP0655638A1 (en) * 1993-11-29 1995-05-31 Nikon Corporation Lens capable of short distance photographing with vibration reduction functionm
JPH08179215A (en) * 1994-12-22 1996-07-12 Canon Inc Zoom lens
US5831768A (en) * 1994-10-06 1998-11-03 Nikon Corporation Zoom lens capable of shifting an image
US6204968B1 (en) 1994-09-14 2001-03-20 Minolta Co., Ltd. Zoom lens system having a camera shake compensating function
US9380708B2 (en) 2009-04-22 2016-06-28 Atotech Deutschland Gmbh Method, holding means, apparatus and system for transporting a flat material to be treated and loading or unloading apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02135408A (en) * 1988-11-17 1990-05-24 Asahi Optical Co Ltd Vibration compensation type telephoto lens
JPH02287507A (en) * 1989-04-28 1990-11-27 Asahi Optical Co Ltd High variable magnification zoom lens for compact camera covering wide angle
JPH05264903A (en) * 1991-03-04 1993-10-15 Olympus Optical Co Ltd Wide-angle zoom lens
EP0655638A1 (en) * 1993-11-29 1995-05-31 Nikon Corporation Lens capable of short distance photographing with vibration reduction functionm
EP0881516A1 (en) * 1993-11-29 1998-12-02 Nikon Corporation Lens capable of short distance photographing with vibration reduction function
US6204968B1 (en) 1994-09-14 2001-03-20 Minolta Co., Ltd. Zoom lens system having a camera shake compensating function
US5831768A (en) * 1994-10-06 1998-11-03 Nikon Corporation Zoom lens capable of shifting an image
JPH08179215A (en) * 1994-12-22 1996-07-12 Canon Inc Zoom lens
US9380708B2 (en) 2009-04-22 2016-06-28 Atotech Deutschland Gmbh Method, holding means, apparatus and system for transporting a flat material to be treated and loading or unloading apparatus

Similar Documents

Publication Publication Date Title
JP3584107B2 (en) Zoom lens
JP5521496B2 (en) Variable magnification optical system, optical device
JP2778232B2 (en) Wide-angle zoom lens
JP3363571B2 (en) Rear focus zoom lens and imaging system
JP5071380B2 (en) Imaging device, imaging method, and high zoom lens
JP2628633B2 (en) Compact zoom lens
JP3035830B2 (en) Zoom lens
JP2836142B2 (en) Zoom lens
JPH06201988A (en) Large aperture ratio internal focusing telephoto lens
JP2000330016A (en) Zoom lens
JPH0527172A (en) Zoom lens
JP4383078B2 (en) Telephoto lens and telephoto lens device
JP4245780B2 (en) Zoom imaging optical system
JP4624744B2 (en) Wide angle zoom lens
JP4447706B2 (en) Variable magnification optical system having anti-vibration function and optical apparatus including the same
JP4639425B2 (en) Variable focal length lens system
JPH10161024A (en) Zoom lens having camera shake correcting function
JP5839062B2 (en) Zoom lens, optical device
JP3610160B2 (en) Photo lens
JPH09218346A (en) Optical system
JPH02103014A (en) Zoom lens having optical system for correcting camera-shake
JP4274764B2 (en) Zoom lens and camera using the same
JP2010002790A (en) Imaging lens, optical device provided therewith, and image blur correction method
JP4817551B2 (en) Zoom lens
JPH09218349A (en) Photographing lens