JP7096065B2 - Optical system and image pickup device - Google Patents

Optical system and image pickup device Download PDF

Info

Publication number
JP7096065B2
JP7096065B2 JP2018095286A JP2018095286A JP7096065B2 JP 7096065 B2 JP7096065 B2 JP 7096065B2 JP 2018095286 A JP2018095286 A JP 2018095286A JP 2018095286 A JP2018095286 A JP 2018095286A JP 7096065 B2 JP7096065 B2 JP 7096065B2
Authority
JP
Japan
Prior art keywords
optical system
lens group
conditional expression
image
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018095286A
Other languages
Japanese (ja)
Other versions
JP2019200339A (en
Inventor
俊秀 林
圭介 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamron Co Ltd
Original Assignee
Tamron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamron Co Ltd filed Critical Tamron Co Ltd
Priority to JP2018095286A priority Critical patent/JP7096065B2/en
Priority to CN201811534416.6A priority patent/CN110501810B/en
Publication of JP2019200339A publication Critical patent/JP2019200339A/en
Priority to JP2022101093A priority patent/JP7431282B2/en
Application granted granted Critical
Publication of JP7096065B2 publication Critical patent/JP7096065B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Description

本発明は、光学系及び撮像装置に関する。さらに詳しくは、本発明は、撮像素子用の結像レンズ等として好適に使用できる光学系及びそれを備えた撮像装置に関するものである。 The present invention relates to an optical system and an image pickup apparatus. More specifically, the present invention relates to an optical system that can be suitably used as an image pickup lens or the like for an image pickup element, and an image pickup apparatus provided with the optical system.

近年、CCDやC-MOS等の撮像センサーの高性能化に伴い、その光学系として軽量、コンパクトかつ高解像な光学系及びそれを備えた撮像装置が求められている。 In recent years, as the performance of image pickup sensors such as CCD and C-MOS has improved, a lightweight, compact and high-resolution optical system and an image pickup device equipped with the optical system have been required as the optical system.

動画撮影は、合焦状態を維持するためにフォーカスレンズを合焦位置の光軸前後方向に常に微小量動かす、ウォブリングと言われる作動を伴う。該ウォブリングは、常にフォーカスレンズを動かしているため、フォーカスレンズの移動による像倍率の変化が大きい場合には、画像が常に揺らいでいるように見えてしまい、非常に不自然となる。従って、動画対応のレンズに関しては、ウォブリング時の倍率変化を小さく抑えることが重要な項目の一つとなっている。 Movie shooting involves an operation called wobbling, in which the focus lens is constantly moved by a small amount in the anteroposterior direction of the optical axis of the in-focus position in order to maintain the in-focus state. Since the wobbling constantly moves the focus lens, when the change in the image magnification due to the movement of the focus lens is large, the image always seems to be shaking, which is very unnatural. Therefore, it is one of the important items to keep the change in magnification during wobbling small for a lens compatible with moving images.

また、動画撮影時には、被写体の動作に合わせてカメラの向きを変えたり、撮影者の移動が必要になったりする場合が多いため、像ぶれが発生しやすくなる。このため、動画撮影用の撮像レンズには、防振補正を担う防振レンズ群が備えられていることが好ましい。防振レンズ群を備える場合においても、効果的な防振補正を行うため、防振レンズ群を高速に駆動することを可能にすべく、防振レンズ群は、極力口径を小さくかつ軽量にすることが求められる。 Further, when shooting a moving image, it is often necessary to change the direction of the camera or move the photographer according to the movement of the subject, so that image blurring is likely to occur. Therefore, it is preferable that the image pickup lens for moving image shooting is provided with a vibration-proof lens group that is responsible for vibration-proof correction. Even when the anti-vibration lens group is provided, in order to perform effective anti-vibration correction, the anti-vibration lens group should be as small and lightweight as possible so that the anti-vibration lens group can be driven at high speed. Is required.

さらに、従来、光学像を受光して電気的な画像信号に変換する撮像センサーにおいては、オンチップマイクロレンズ等で入射光の効率的な取り込みをするための入射角度の制限があった。そのため、撮像レンズの射出瞳をある一定以上大きくして撮像センサーへの入射光束のテレセントリック性を確保することが望まれていた。しかしながら、近年の撮像センサーでは、開口効率の向上やオンチップマイクロレンズの入射角度に関する設計自由度に大きな進歩があり、撮影レンズに求められる射出瞳の制限も少なくなってきた。 Further, conventionally, in an image pickup sensor that receives an optical image and converts it into an electric image signal, there is a limitation of an incident angle in order to efficiently capture incident light with an on-chip microlens or the like. Therefore, it has been desired to enlarge the exit pupil of the image pickup lens by a certain amount or more to ensure the telecentricity of the incident light flux to the image pickup sensor. However, in recent years, the imaging sensor has made great progress in improving the aperture efficiency and designing the degree of freedom regarding the incident angle of the on-chip microlens, and the limitation of the exit pupil required for the photographing lens has been reduced.

このため、従来の撮影レンズでは、光学系後方に正レンズを配置して、テレセントリック性を確保していたが、近年ではその必要がなくなってきた。その結果、撮像レンズの光学系の後方に負レンズを配置して撮像センサーに対する光束の斜入射があっても、オンチップマイクロレンズとの瞳のミスマッチ等による周辺減光すなわちシェーディングが目立ちにくくなってきた。
このように、必ずしも撮像センサーの入射光束のテレセントリック性の確保を必要としない現状においては、撮像センサーに対する光束の斜入射の許容の拡大が撮影レンズの小型化に有利になっている。
For this reason, in the conventional shooting lens, a positive lens is arranged behind the optical system to ensure telecentricity, but in recent years, this is no longer necessary. As a result, even if a negative lens is placed behind the optical system of the image pickup lens and the luminous flux is obliquely incident on the image pickup sensor, peripheral dimming, that is, shading due to a mismatch of the pupil with the on-chip microlens becomes less noticeable. rice field.
As described above, in the present situation where it is not always necessary to ensure the telecentricity of the incident light flux of the image pickup sensor, the expansion of the allowable oblique incident of the light beam to the image pickup sensor is advantageous for the miniaturization of the photographing lens.

一方、F2.8以下の明るいレンズを良好に収差補正する場合、主に球面収差及び軸上色収差を補正するために各レンズ群でのレンズ枚数を増やす必要性がでてくる。又、コンパクトで高性能な光学系を設計するためには、各レンズ群のパワーを最適にする必要がでてくる。 On the other hand, when a bright lens having an F2.8 or less is satisfactorily corrected for aberration, it becomes necessary to increase the number of lenses in each lens group mainly for correcting spherical aberration and axial chromatic aberration. Further, in order to design a compact and high-performance optical system, it is necessary to optimize the power of each lens group.

先行技術の結像光学系として、フォーカスレンズ群を動画時のウォブリングに適した絞りより像側に配置しかつ最終レンズ群(最も像側のレンズ群)を負群とする、レンズ系の小型化に有利な光学系が提案されている(例えば、特許文献1参照)。
しかし、この光学系は、全系の焦点距離に対する第1レンズ群のパワーが強く、球面収差や軸上色収差等の収差補正が難しい光学系となっている。また、防振レンズ群を備えていない。
As a prior art imaging optical system, the focus lens group is placed on the image side of the aperture suitable for wobbling during moving images, and the final lens group (the lens group on the image side) is the negative group, resulting in miniaturization of the lens system. An optical system that is advantageous to the above has been proposed (see, for example, Patent Document 1).
However, this optical system has a strong power of the first lens group with respect to the focal length of the entire system, and it is difficult to correct aberrations such as spherical aberration and axial chromatic aberration. Moreover, it does not have a vibration-proof lens group.

先行技術の他の結像光学系として、フォーカスレンズ群を動画時のウォブリングに適した絞りより像側に配置し、かつ最終レンズ群(最も像側のレンズ群)を負群としてレンズの小型化に有利な光学系が提案されている(例えば、特許文献2参照)。
しかし、この光学系は、全系の焦点距離に対する第1レンズ群のパワーが弱く、光学全長が長くなっている。
As another imaging optical system of the prior art, the focus lens group is placed on the image side of the aperture suitable for wobbling during moving images, and the final lens group (the lens group on the image side) is set as the negative group to reduce the size of the lens. An optical system that is advantageous to the above has been proposed (see, for example, Patent Document 2).
However, in this optical system, the power of the first lens group with respect to the focal length of the entire system is weak, and the total optical length is long.

先行技術の他の結像光学系として、フォーカスレンズ群を動画時のウォブリングに適した絞りより像側に配置した光学系が提案されている(例えば、特許文献3参照)。
しかし、最終レンズ群すなわち最も像側のレンズ群のパワーが弱く、第3レンズ群のレンズ径を小さくするのが難しい光学系となっている。
As another imaging optical system of the prior art, an optical system in which a focus lens group is arranged on the image side of an aperture suitable for wobbling during moving images has been proposed (see, for example, Patent Document 3).
However, the power of the final lens group, that is, the lens group on the image side is weak, and it is difficult to reduce the lens diameter of the third lens group in the optical system.

特開2014-145954号Japanese Unexamined Patent Publication No. 2014-145954 特開2016-161644号JP 2016-161644 特開2014-142604号Japanese Unexamined Patent Publication No. 2014-142604

本発明は、上述した問題に鑑みてなされたものであって、軽量、コンパクトかつ高解像な光学系及びそれを備えた撮像装置を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a lightweight, compact and high-resolution optical system and an image pickup apparatus including the same.

本発明は
物体側から順に配置された、正の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群とから成り、フォーカシング時に前記第2レンズ群が光軸に沿って移動し、第1レンズ群に凸レンズが2枚以上含まれ、第2レンズ群は2枚以上のレンズで構成され、以下の条件式を満足することを特徴とする光学系。
1.90 ≦ f1 / f ≦ 3.60 ・・・・・・(1)
0.50 ≦ |f3| / f ≦ 2.60 ・・・・・・(2)
ただし、f1:第1レンズ群の焦点距離、f3:第3レンズ群の焦点距離、f:当該光学系の焦点距離
である。
The present invention comprises a first lens group having a positive refractive power, a second lens group having a positive refractive power, and a third lens group having a negative refractive power arranged in order from the object side, and focusing. Occasionally, the second lens group moves along the optical axis, the first lens group includes two or more convex lenses, and the second lens group is composed of two or more lenses, satisfying the following conditional expression. An optical system characterized by.
1.90 ≤ f1 / f ≤ 3.60 ・ ・ ・ ・ ・ ・ (1)
0.50 ≤ | f3 | / f ≤ 2.60 ・ ・ ・ ・ ・ ・ (2)
However, f1: the focal length of the first lens group, f3: the focal length of the third lens group, and f: the focal length of the optical system.

本発明はまた、前記光学系と、該光学系によって形成された像を光電変換する撮像系とを有することを特徴とする撮像装置
である。
The present invention is also an image pickup apparatus comprising the optical system and an image pickup system that photoelectrically converts an image formed by the optical system.

本発明によれば、軽量、コンパクトかつ高解像な光学系及びそれを備えた撮像装置を提供することができる。 According to the present invention, it is possible to provide a lightweight, compact and high-resolution optical system and an image pickup apparatus including the same.

本発明の第1実施例の光学系の無限遠合焦状態の光学配置図である。It is an optical layout drawing of the optical system of the 1st Embodiment of this invention in the infinity focusing state. 本発明の第1実施例の光学系の0.39m合焦状態の光学配置図である。It is an optical layout figure of the optical system of the 1st Example of this invention in the focused state of 0.39m. 本発明の第1実施例の光学系の無限遠合焦状態の球面収差、非点収差、歪曲収差の縦収差図である。It is a longitudinal aberration diagram of spherical aberration, astigmatism, and distortion in the infinity-focused state of the optical system of the first embodiment of the present invention. 本発明の第1実施例の光学系の0.39m合焦状態の球面収差、非点収差、歪曲収差の縦収差図である。It is a longitudinal aberration diagram of spherical aberration, astigmatism, and distortion of the optical system of the first embodiment of the present invention in a focused state of 0.39 m. 本発明の第1実施例の光学系の無限遠合焦状態で像ブレ無し状態の横収差図である。It is a lateral aberration diagram of the optical system of 1st Embodiment of this invention in the state of infinity focusing state, and the state without image blur. 本発明の第1実施例の光学系の無限遠合焦状態で+0.3°像ブレの補正状態の横収差図である。It is a lateral aberration diagram of the correction state of + 0.3 ° image blur in the infinity focusing state of the optical system of 1st Embodiment of this invention. 本発明の第1実施例の光学系の無限遠合焦状態の-0.3°像ブレの補正状態の横収差図である。It is a lateral aberration diagram of the correction state of −0.3 ° image blur in the infinity focusing state of the optical system of 1st Embodiment of this invention. 本発明の第2実施例の光学系の無限遠合焦状態の光学配置図である。It is an optical layout drawing of the optical system of the 2nd Embodiment of this invention in the infinity focusing state. 本発明の第2実施例の光学系の0.60m合焦状態の光学配置図である。It is an optical layout figure of the optical system of the 2nd Example of this invention in the focused state of 0.60m. 本発明の第2実施例の光学系の無限遠合焦状態の球面収差、非点収差、歪曲収差の縦収差図である。It is a longitudinal aberration diagram of spherical aberration, astigmatism, and distortion in the infinity-focused state of the optical system of the second embodiment of the present invention. 本発明の第2実施例の光学系の0.60m合焦状態の球面収差、非点収差、歪曲収差の縦収差図である。FIG. 3 is a longitudinal aberration diagram of spherical aberration, astigmatism, and distortion in a 0.60 m focused state of the optical system of the second embodiment of the present invention. 本発明の第2実施例の光学系の無限遠合焦状態で像ブレ無し状態の横収差図である。It is a lateral aberration diagram of the optical system of the 2nd Embodiment of this invention in the state of infinity focusing state, and the state without image blur. 本発明の第2実施例の光学系の無限遠合焦状態で+0.3°像ブレの補正状態の横収差図である。It is a lateral aberration diagram of the correction state of + 0.3 ° image blur in the infinity focusing state of the optical system of the 2nd Embodiment of this invention. 本発明の第2実施例の光学系の無限遠合焦状態の-0.3°像ブレの補正状態の横収差図である。It is a lateral aberration diagram of the correction state of −0.3 ° image blur in the infinity focusing state of the optical system of the 2nd Embodiment of this invention. 本発明の第3実施例の光学系の無限遠合焦状態の光学配置図である。It is an optical layout drawing of the optical system of the 3rd Embodiment of this invention in the infinity focusing state. 本発明の第3実施例の光学系の0.90m合焦状態の光学配置図である。It is an optical layout drawing of the optical system of the 3rd Example of this invention in the focused state of 0.90m. 本発明の第3実施例の光学系の無限遠合焦状態の球面収差、非点収差、歪曲収差の縦収差図である。It is a longitudinal aberration diagram of spherical aberration, astigmatism, and distortion in the infinity-focused state of the optical system of the third embodiment of the present invention. 本発明の第3実施例の光学系の0.90m合焦状態の球面収差、非点収差、歪曲収差の縦収差図である。FIG. 3 is a longitudinal aberration diagram of spherical aberration, astigmatism, and distortion in a 0.90 m focused state of the optical system of the third embodiment of the present invention. 本発明の第3実施例の光学系の無限遠合焦状態で像ブレ無し状態の横収差図である。It is a lateral aberration diagram of the optical system of the 3rd Embodiment of this invention in the state of infinity focusing state, and the state without image blur. 本発明の第3実施例の光学系の無限遠合焦状態で+0.3°像ブレの補正状態の横収差図である。It is a lateral aberration diagram of the correction state of + 0.3 ° image blur in the infinity focusing state of the optical system of the 3rd Embodiment of this invention. 本発明の第3実施例の光学系の無限遠合焦状態の-0.3°像ブレの補正状態の横収差図である。It is a lateral aberration diagram of the correction state of −0.3 ° image blur in the infinity focusing state of the optical system of the 3rd Embodiment of this invention. 本発明の第4実施例の光学系の無限遠合焦状態の光学配置図である。It is an optical layout drawing of the optical system of the 4th Embodiment of this invention in the infinity focusing state. 本発明の第4実施例の光学系の0.25m合焦状態の光学配置図である。It is an optical layout drawing of the optical system of the 4th Example of this invention in the 0.25m focusing state. 本発明の第4実施例の光学系の無限遠合焦状態の球面収差、非点収差、歪曲収差の縦収差図である。It is a longitudinal aberration diagram of the spherical aberration, astigmatism, and distortion of the optical system of the 4th Embodiment of this invention in the infinity focusing state. 本発明の第4実施例の光学系の0.25m合焦状態の球面収差、非点収差、歪曲収差の縦収差図である。FIG. 3 is a longitudinal aberration diagram of spherical aberration, astigmatism, and distortion in a 0.25 m focused state of the optical system of the fourth embodiment of the present invention. 本発明の第4実施例の光学系の無限遠合焦状態で像ブレ無し状態の横収差図である。It is a lateral aberration diagram of the optical system of 4th Embodiment of this invention in the state of infinity focusing state, and the state without image blur. 本発明の第4実施例の光学系の無限遠合焦状態で+0.3°像ブレの補正状態の横収差図である。It is a lateral aberration diagram of the correction state of + 0.3 ° image blur in the infinity focusing state of the optical system of 4th Embodiment of this invention. 本発明の第4実施例の光学系の無限遠合焦状態の-0.3°像ブレの補正状態の横収差図である。It is a lateral aberration diagram of the correction state of −0.3 ° image blur in the infinity focusing state of the optical system of 4th Embodiment of this invention. 本発明の第5実施例の光学系の無限遠合焦状態の光学配置図である。It is an optical layout drawing of the optical system of the 5th Embodiment of this invention in the infinity focusing state. 本発明の第5実施例の光学系の1.00m合焦状態の光学配置図である。It is an optical layout drawing of the optical system of the 5th Example of this invention in the 1.00m in-focus state. 本発明の第5実施例の光学系の無限遠合焦状態の球面収差、非点収差、歪曲収差の縦収差図である。It is a longitudinal aberration diagram of spherical aberration, astigmatism, and distortion of the optical system of the fifth embodiment of the present invention in the infinity focusing state. 本発明の第5実施例の光学系の1.00m合焦状態の球面収差、非点収差、歪曲収差の縦収差図である。It is a longitudinal aberration diagram of spherical aberration, astigmatism, and distortion of the optical system of the fifth embodiment of the present invention in the focused state of 1.00 m. 本発明の第5実施例の光学系の無限遠合焦状態で像ブレ無し状態の横収差図である。It is a lateral aberration diagram of the optical system of the 5th Embodiment of this invention in the state of infinity focusing state, and the state without image blur. 本発明の第5実施例の光学系の無限遠合焦状態で+0.3°像ブレの補正状態の横収差図である。It is a lateral aberration diagram of the correction state of + 0.3 ° image blur in the infinity focusing state of the optical system of the 5th Embodiment of this invention. 本発明の第5実施例の光学系の無限遠合焦状態の-0.3°像ブレの補正状態の横収差図である。It is a lateral aberration diagram of the correction state of −0.3 ° image blur in the infinity focusing state of the optical system of the 5th Embodiment of this invention. 本発明の実施例の撮像装置の構成説明である。It is a configuration description of the image pickup apparatus of the Example of this invention.

以下に、本発明の実施の形態について説明する。ただし、以下に説明する当該光学系及びそれを備えた撮像装置の一態様であって、本件発明に係る光学系及び撮像装置は以下の態様に限定されるものではない。 Hereinafter, embodiments of the present invention will be described. However, the optical system and the image pickup apparatus according to the present invention are one aspect of the optical system and the image pickup apparatus provided with the optical system described below, and the present invention is not limited to the following aspects.

[光学系]
本発明の実施の形態の光学系の構成は、物体側から順に配置された、正の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群とから成り、フォーカシング時に第2レンズ群が光軸に沿って移動し、第1レンズ群に凸レンズが2枚以上含まれ、第2レンズ群は2枚以上のレンズで構成され、所定の条件式を満足する。
[Optical system]
The configuration of the optical system according to the embodiment of the present invention comprises a first lens group having a positive refractive power, a second lens group having a positive refractive power, and a negative refractive power arranged in order from the object side. It consists of a third lens group, the second lens group moves along the optical axis during focusing, the first lens group contains two or more convex lenses, and the second lens group consists of two or more lenses. , Satisfies a given conditional expression.

当該光学系においては、フォーカスレンズ群(第2レンズ群)の結像側に負レンズ群(第3レンズ群)を設けることによって容易に像倍率を高めることができる。その結果、小さな繰り出し量で至近物体への合焦が可能となり、かつ光学系第1面から結像位置までの距離、すなわち光学全長を短く(コンパクトに)することが可能となる。 In the optical system, the image magnification can be easily increased by providing a negative lens group (third lens group) on the image forming side of the focus lens group (second lens group). As a result, it is possible to focus on a close object with a small amount of extension, and it is possible to shorten (compactly) the distance from the first surface of the optical system to the image formation position, that is, the total optical length.

当該光学系においてはまた、第3レンズ群が負の屈折力を有するため、第3レンズ群の有効径を小さくすることが可能となり、光学系を軽量化することができる。
さらに、第1レンズ群に凸レンズを2枚以上使用して正のパワーを分散させることにより、球面収差を良好に補正することが可能となる。さらにまた、第2レンズ群を2枚以上のレンズから構成することにより、フォーカシング時の球面収差及び色収差の変動を抑制することが可能となる。
なお、フォーカスレンズ群は特に限定されるものではないが、凸レンズと凹レンズがそれぞれ1枚以上、又は凸レンズが2枚以上によって構成されることが望ましい。
In the optical system, since the third lens group has a negative refractive power, the effective diameter of the third lens group can be reduced, and the weight of the optical system can be reduced.
Further, by using two or more convex lenses in the first lens group to disperse the positive power, spherical aberration can be satisfactorily corrected. Furthermore, by forming the second lens group from two or more lenses, it is possible to suppress fluctuations in spherical aberration and chromatic aberration during focusing.
The focus lens group is not particularly limited, but it is desirable that the focus lens group is composed of one or more convex lenses and one or more concave lenses, or two or more convex lenses.

当該光学系では、上述した構成を採用するとともに、次に説明する条件式や構成を少なくとも1つ又はいずれか2つ以上を組み合わせて満足することが好ましい。 In the optical system, it is preferable to adopt the above-mentioned configuration and to be satisfied with at least one or a combination of two or more of the conditional expressions and configurations described below.

当該光学系では、次の条件式を満たすことが好ましい。
1.90 ≦ f1 / f ≦ 3.60 ・・・・・・(1)
ただし、f1:第1レンズ群の焦点距離、f:当該光学系の無限遠合焦時の焦点距離
条件式(1)は、光学全長を短縮しかつ第3レンズ群を小型化した状態で、高性能な光学系を設計可能とするための条件である。
条件式(1)の下限を下回った場合、第1レンズ群のパワーが強くなり過ぎて、球面収差の補正が難しくなり、高性能な光学系の設計が困難になる。条件式(1)の上限を上回った場合、第1レンズ群のパワーが弱くなり過ぎて、全長が長くなってしまう。
The optical system preferably satisfies the following conditional expression.
1.90 ≤ f1 / f ≤ 3.60 ・ ・ ・ ・ ・ ・ (1)
However, f1: focal length of the first lens group, f: focal length at infinity focusing of the optical system Conditional expression (1) is based on the condition that the total optical length is shortened and the third lens group is miniaturized. This is a condition that enables the design of high-performance optical systems.
If it falls below the lower limit of the conditional expression (1), the power of the first lens group becomes too strong, it becomes difficult to correct spherical aberration, and it becomes difficult to design a high-performance optical system. If the upper limit of the conditional expression (1) is exceeded, the power of the first lens group becomes too weak and the total length becomes long.

条件式(1)は、好ましくは1.90 ≦ f1 / f ≦ 3.45の範囲となる。この場合はより高性能でコンパクトな光学系が設計可能となる。
条件式(1)は、さらに好ましくは、1.90 ≦ f1 / f ≦ 3.30の範囲となる。この場合はさらに高性能でコンパクトな光学系が設計可能となる。このとき、上述した範囲の上限又は下限のいずれか一方を満足していても、好ましい効果が期待できる。
The conditional expression (1) preferably has a range of 1.90 ≤ f1 / f ≤ 3.45. In this case, a higher performance and more compact optical system can be designed.
The conditional expression (1) is more preferably in the range of 1.90 ≤ f1 / f ≤ 3.30. In this case, a higher performance and more compact optical system can be designed. At this time, even if either the upper limit or the lower limit of the above-mentioned range is satisfied, a preferable effect can be expected.

当該光学系では、次の条件式を満たすことが好ましい。
0.50 ≦ |f3| / f ≦ 2.60 ・・・・・・(2)
ただし、f3:第3レンズ群の焦点距離、f:当該光学系の焦点距離
条件式(2)は、当該光学系を軽量化しかつ第3レンズ群を小型化した状態で、高性能な光学系を設計可能とするための条件である。
The optical system preferably satisfies the following conditional expression.
0.50 ≤ | f3 | / f ≤ 2.60 ・ ・ ・ ・ ・ ・ (2)
However, f3: focal length of the third lens group, f: focal length of the optical system The conditional equation (2) is a high-performance optical system in a state where the optical system is lightweight and the third lens group is miniaturized. It is a condition to make it possible to design.

条件式(2)の下限を下回った場合、第3レンズ群のパワーが強くなり過ぎて、像面湾曲の補正が困難になる。条件式(2)の上限を上回った場合、第3レンズ群のパワーが弱くなり過ぎて、第3レンズ群の有効径が大きくなってしまう。 If it falls below the lower limit of the conditional expression (2), the power of the third lens group becomes too strong, and it becomes difficult to correct the curvature of field. If the upper limit of the conditional expression (2) is exceeded, the power of the third lens group becomes too weak and the effective diameter of the third lens group becomes large.

条件式(2)は、好ましくは0.70 ≦ |f3| / f ≦ 2.50の範囲となる。この場合はより高性能でコンパクトな光学系が設計可能となる。
条件式(2)は、さらに好ましくは、0.80 ≦ |f3| / f ≦ 2.40の範囲となる。この場合はさらに高性能でコンパクトな光学系が設計可能となる。このとき、上述した範囲の上限又は下限のいずれか一方を満足していても、好ましい効果が期待できる。
The conditional expression (2) preferably has a range of 0.70 ≤ | f3 | / f ≤ 2.50. In this case, a higher performance and more compact optical system can be designed.
The conditional expression (2) is more preferably in the range of 0.80 ≤ | f3 | / f ≤ 2.40. In this case, a higher performance and more compact optical system can be designed. At this time, even if either the upper limit or the lower limit of the above-mentioned range is satisfied, a preferable effect can be expected.

当該光学系の構成及び、条件式(1)、条件式(2)を満足することによって、軽量、コンパクトかつ高解像な光学系を構成することができる。 By satisfying the configuration of the optical system and the conditional equations (1) and (2), a lightweight, compact and high-resolution optical system can be configured.

当該光学系では、以下の条件式(3)を満足することが好ましい。
0.10 ≦ f2 / f1 ≦ 0.55 ・・・・・・(3)
ただし、f1:第1レンズ群の焦点距離、f2:第2レンズ群の焦点距離
In the optical system, it is preferable that the following conditional expression (3) is satisfied.
0.10 ≤ f2 / f1 ≤ 0.55 ・ ・ ・ ・ ・ ・ (3)
However, f1: focal length of the first lens group, f2: focal length of the second lens group

条件式(3)を満足することで、高い光学性能を実現しつつ光学全長を短くすることが可能となる。
条件式(3)の下限を下回った場合、第2レンズ群のパワーが強くなり過ぎて、球面収差の補正が難しくなり、高性能な光学系の設計が困難になる。
条件式(3)の上限を上回った場合、第2レンズ群のパワーが弱くなり過ぎて倍率が小さくなるため、フォーカシング時の繰り出し量が大きくなり、光学全長が長くなってしまう。
By satisfying the conditional expression (3), it is possible to shorten the optical overall length while realizing high optical performance.
If it falls below the lower limit of the conditional expression (3), the power of the second lens group becomes too strong, it becomes difficult to correct spherical aberration, and it becomes difficult to design a high-performance optical system.
When the upper limit of the conditional expression (3) is exceeded, the power of the second lens group becomes too weak and the magnification becomes small, so that the amount of feeding during focusing becomes large and the total optical length becomes long.

条件式(3)は、好ましくは0.13 ≦ f2 / f1 ≦ 0.52の範囲となる。この場合はより高性能でコンパクトな光学系が設計可能となる。
条件式(3)は、さらに好ましくは、0.14 ≦ f2 / f1 ≦ 0.48の範囲となる。この場合はさらに高性能でコンパクトな光学系が設計可能となる。このとき、上述した範囲の上限又は下限のいずれか一方を満足していても、好ましい効果が期待できる。
The conditional expression (3) preferably has a range of 0.13 ≤ f2 / f1 ≤ 0.52. In this case, a higher performance and more compact optical system can be designed.
The conditional expression (3) is more preferably in the range of 0.14 ≤ f2 / f1 ≤ 0.48. In this case, a higher performance and more compact optical system can be designed. At this time, even if either the upper limit or the lower limit of the above-mentioned range is satisfied, a preferable effect can be expected.

当該光学系において、以下の条件式(4)を満足することが好ましい。
0.20 ≦ |f3| / f1 ≦ 10.00 ・・・・・・(4)
ただし、f1:第1レンズ群の焦点距離、f3:第3レンズ群の焦点距離
It is preferable that the following conditional expression (4) is satisfied in the optical system.
0.20 ≤ | f3 | / f1 ≤ 10.00 ・ ・ ・ ・ ・ ・ (4)
However, f1: focal length of the first lens group, f3: focal length of the third lens group

条件式(4)を満足することで、高い光学性能を実現しつつ第3レンズ群の有効径を小さくすることが可能となる。 By satisfying the conditional expression (4), it is possible to reduce the effective diameter of the third lens group while realizing high optical performance.

条件式(4)の下限を下回った場合、第3レンズ群のパワーが強くなり過ぎて、像面湾曲の補正が難しくなり、高性能な光学系の設計が困難になる。
条件式(4)請求式の上限を上回った場合、第3レンズ群のパワーが弱くなり過ぎて、第3レンズ群の有効径が大きくなってしまう。
If it falls below the lower limit of the conditional expression (4), the power of the third lens group becomes too strong, it becomes difficult to correct the curvature of field, and it becomes difficult to design a high-performance optical system.
If the upper limit of the conditional expression (4) is exceeded, the power of the third lens group becomes too weak and the effective diameter of the third lens group becomes large.

条件式(4)は、好ましくは0.25 ≦ |f3| / f1 ≦ 5.10の範囲となる。この場合はより高性能でコンパクトな光学系が設計可能となる。
条件式(4)は、さらに好ましくは、0.27 ≦ |f3| / f1 ≦ 3.00の範囲となる。この場合はさらに高性能でコンパクトな光学系が設計可能となる。
条件式(4)は、さらに好ましくは、0.30 ≦ |f3| / f1 ≦ 2.00の範囲となる。この場合はさらに高性能でコンパクトな光学系が設計可能となる。このとき、上述した範囲の上限又は下限のいずれか一方を満足していても、好ましい効果が期待できる。
The conditional expression (4) preferably has a range of 0.25 ≤ | f3 | / f1 ≤ 5.10. In this case, a higher performance and more compact optical system can be designed.
The conditional expression (4) is more preferably in the range of 0.27 ≤ | f3 | / f1 ≤ 3.00. In this case, a higher performance and more compact optical system can be designed.
The conditional expression (4) is more preferably in the range of 0.30 ≤ | f3 | / f1 ≤ 2.00. In this case, a higher performance and more compact optical system can be designed. At this time, even if either the upper limit or the lower limit of the above-mentioned range is satisfied, a preferable effect can be expected.

当該光学系において、以下の条件式(5)を満足することが好ましい。
1.10 ≦ |f3| / f2 ≦ 12.00 ・・・・・・(5)
ただし、f2:第2レンズ群の焦点距離、f3:第3レンズ群の焦点距離
It is preferable that the following conditional expression (5) is satisfied in the optical system.
1.10 ≤ | f3 | / f2 ≤ 12.00 ・ ・ ・ ・ ・ ・ (5)
However, f2: focal length of the second lens group, f3: focal length of the third lens group

条件式(5)を満たした場合、高い光学性能を実現しつつ第3レンズ群の有効径を小さくすることが可能となる。 When the conditional expression (5) is satisfied, it is possible to reduce the effective diameter of the third lens group while realizing high optical performance.

条件式(5)の下限を下回った場合、第3レンズ群のパワーが強くなり過ぎて、像面湾曲の補正が難しくなり、高性能な光学系の設計が困難になる。
条件式(5)の上限を上回った場合、第3レンズ群のパワーが弱くなり過ぎて、第3レンズ群の有効径が大きくなってしまう。
If it falls below the lower limit of the conditional expression (5), the power of the third lens group becomes too strong, it becomes difficult to correct the curvature of field, and it becomes difficult to design a high-performance optical system.
If the upper limit of the conditional expression (5) is exceeded, the power of the third lens group becomes too weak and the effective diameter of the third lens group becomes large.

条件式(5)は、好ましくは1.20 ≦ |f3| / f2 ≦ 7.30の範囲となる。この場合はより高性能でコンパクトな光学系が設計可能となる。
条件式(5)は、より好ましくは1.30 ≦ |f3| / f2 ≦ 6.00の範囲となる。この場合はより高性能でコンパクトな光学系が設計可能となる。
条件式(5)は、さらに好ましくは、1.40 ≦ |f3| / f2 ≦ 4.80の範囲となる。この場合はさらに高性能でコンパクトな光学系が設計可能となる。このとき、上述した範囲の上限又は下限のいずれか一方を満足していても、好ましい効果が期待できる。
The conditional expression (5) preferably has a range of 1.20 ≤ | f3 | / f2 ≤ 7.30. In this case, a higher performance and more compact optical system can be designed.
The conditional expression (5) more preferably has a range of 1.30 ≤ | f3 | / f2 ≤ 6.00. In this case, a higher performance and more compact optical system can be designed.
The conditional expression (5) is more preferably in the range of 1.40 ≤ | f3 | / f2 ≤ 4.80. In this case, a higher performance and more compact optical system can be designed. At this time, even if either the upper limit or the lower limit of the above-mentioned range is satisfied, a preferable effect can be expected.

当該光学系において、以下の条件式を満足することが好ましい。
0.65 ≦ oal / f ≦ 3.00 ・・・・・・(6)
ただし、oal:第1レンズ群の最物体側面頂点から結像位置までの距離、f:当該光学系の焦点距離
It is preferable that the following conditional expression is satisfied in the optical system.
0.65 ≤ oal / f ≤ 3.00 ・ ・ ・ ・ ・ ・ (6)
However, oal: the distance from the apex of the outermost object of the first lens group to the image formation position, f: the focal length of the optical system.

条件式(6)を満たした場合、高い光学性能を実現しつつ光学全長を短縮化できる。 When the conditional expression (6) is satisfied, the total optical length can be shortened while achieving high optical performance.

条件式(6)の下限を下回った場合、各レンズ群のパワーが強くなり過ぎて、球面収差及び像面湾曲の補正が難しく、高性能な光学系の設計が困難となる。
条件式(6)の上限を上回った場合、各レンズ群のパワーが弱くなり過ぎて、光学全長が長くなってしまう。
If it falls below the lower limit of the conditional expression (6), the power of each lens group becomes too strong, it is difficult to correct spherical aberration and curvature of field, and it is difficult to design a high-performance optical system.
If the upper limit of the conditional expression (6) is exceeded, the power of each lens group becomes too weak and the total optical length becomes long.

条件式(6)は、好ましくは0.74 ≦ oal / f ≦ 2.80の範囲となる。この場合はより高性能でコンパクトな光学系が設計可能となる。
条件式(6)は、さらに好ましくは、0.84 ≦ oal / f ≦ 2.55の範囲となる。この場合はさらに高性能でコンパクトな光学系が設計可能となる。
The conditional expression (6) preferably has a range of 0.74 ≤ oal / f ≤ 2.80. In this case, a higher performance and more compact optical system can be designed.
The conditional expression (6) is more preferably in the range of 0.84 ≤ oal / f ≤ 2.55. In this case, a higher performance and more compact optical system can be designed.

当該光学系において、開口絞りを有し、以下の条件式を満足することが好ましい。
0.25 ≦ oal_s / oal_i ≦ 0.80 ・・・・(7)
ただし、oal_s: 第1レンズ群の最物体側面頂点から開口絞りまでの距離、oal_i:開口絞りから結像位置までの距離
It is preferable that the optical system has an aperture stop and satisfies the following conditional expression.
0.25 ≤ oal_s / oal_i ≤ 0.80 ・ ・ ・ ・ (7)
However, oal_s: the distance from the apex of the outermost object of the first lens group to the aperture stop, oal_i: the distance from the aperture stop to the image formation position.

条件式(7)を満たした場合、高い光学性能を実現しつつ第1レンズ群と第3レンズ群の有効径をバランス良く配置することが可能となる。 When the conditional expression (7) is satisfied, it is possible to arrange the effective diameters of the first lens group and the third lens group in a well-balanced manner while realizing high optical performance.

条件式(7)の下限を下回った場合、物体側に開口絞りが寄り過ぎるため、第3レンズ群の有効径が大きくなり過ぎてしまう。又、周辺像高の光線をマウント部の光束通過径内に収めるのが難しくなる。
条件式(7)の上限を上回った場合、像側に開口絞りが寄り過ぎるため第1レンズ群の有効径が大きくなり過ぎてしまう。
If it falls below the lower limit of the conditional expression (7), the aperture diaphragm is too close to the object side, and the effective diameter of the third lens group becomes too large. In addition, it becomes difficult to keep the light beam of the peripheral image height within the light flux passing diameter of the mount portion.
If the upper limit of the conditional expression (7) is exceeded, the effective diameter of the first lens group becomes too large because the aperture diaphragm is too close to the image side.

条件式(7)は、好ましくは0.28 ≦ oal_s / oal_i ≦ 0.73の範囲となる。この場合はより高性能な性能を実現しつつ第1レンズ群と第3レンズ群の有効径がバランス良く配置可能となる。
条件式(7)は、さらに好ましくは、0.32 ≦ oal_s / oal_i ≦ 0.67の範囲となる。この場合はさらに高い性能を実現しつつ第1レンズ群と第3レンズ群の有効径がバランス良く配置可能となる。このとき、上述した範囲の上限又は下限のいずれか一方を満足していても、好ましい効果が期待できる。
The conditional expression (7) preferably has a range of 0.28 ≤ oal_s / oal_i ≤ 0.73. In this case, the effective diameters of the first lens group and the third lens group can be arranged in a well-balanced manner while achieving higher performance.
The conditional expression (7) is more preferably in the range of 0.32 ≤ oal_s / oal_i ≤ 0.67. In this case, the effective diameters of the first lens group and the third lens group can be arranged in a well-balanced manner while achieving higher performance. At this time, even if either the upper limit or the lower limit of the above-mentioned range is satisfied, a preferable effect can be expected.

なお、開口絞りは条件式(7)を満足する位置に配置されていれば、各レンズ群内、又は各レンズ群間の何れに配置されていてもよい。より好ましくは、第1レンズ群内または第1レンズ群と第2レンズ群の間に配置されることで、ウォブリングの駆動により好ましい。ここでいう開口絞りは、当該光学系のFナンバーを規定する開口絞りを指す。 The aperture diaphragm may be arranged in each lens group or between each lens group as long as it is arranged at a position satisfying the conditional expression (7). More preferably, it is arranged in the first lens group or between the first lens group and the second lens group, which is more preferable for driving the wobbling. The aperture diaphragm referred to here refers to an aperture diaphragm that defines the F number of the optical system.

当該光学系において、以下の条件式を満足することが好ましい。
0.60 ≦ (1-β22) ×β32 ≦ 2.50 ・・・・(8)
ただし、β2:無限遠合焦時の第2レンズ群の横倍率、β3:無限遠合焦時の第3レンズ群の横倍率
It is preferable that the following conditional expression is satisfied in the optical system.
0.60 ≤ (1-β2 2 ) × β3 2 ≤ 2.50 ・ ・ ・ ・ (8)
However, β2: lateral magnification of the second lens group at infinity focusing, β3: lateral magnification of the third lens group at infinity focusing

条件式(8)を満たした場合、高い光学性能を実現しつつ光学全長の短縮化が可能となる。 When the conditional expression (8) is satisfied, the total optical length can be shortened while achieving high optical performance.

条件式(8)の下限を下回った場合、物体距離に変化に伴うフォーカスレンズ群の繰り出し量が大きくなり、光学全長を短縮化することが困難になる。
条件式(8)の上限を上回った場合、フォーカス群及び第3レンズ群のパワーが大きくなるため、球面収差及び像面湾曲の補正が難しくなる。
When it is less than the lower limit of the conditional expression (8), the amount of extension of the focus lens group due to the change in the object distance becomes large, and it becomes difficult to shorten the optical total length.
When the upper limit of the conditional expression (8) is exceeded, the power of the focus group and the third lens group becomes large, so that it becomes difficult to correct the spherical aberration and the curvature of field.

条件式(8)は、好ましくは1.00 ≦ (1-β22) ×β32 ≦ 2.00の範囲となる。この場合はより高性能でコンパクトな光学系が設計可能となる。
条件式(8)は、さらに好ましくは、1.10 ≦ (1-β22) ×β32 ≦ 1.80の範囲となる。この場合はさらに高性能でコンパクトな光学系が設計可能となる。このとき、上述した範囲の上限又は下限のいずれか一方を満足していても、好ましい効果が期待できる。
The conditional expression (8) preferably has a range of 1.00 ≤ (1-β2 2 ) × β3 2 ≤ 2.00. In this case, a higher performance and more compact optical system can be designed.
The conditional expression (8) is more preferably in the range of 1.10 ≤ (1-β2 2 ) × β3 2 ≤ 1.80. In this case, a higher performance and more compact optical system can be designed. At this time, even if either the upper limit or the lower limit of the above-mentioned range is satisfied, a preferable effect can be expected.

当該光学系第1レンズ群が物体側から順に正のレンズ部分群と負のレンズ部分群を有し、防振補正時に負のレンズ部分群を防振群として光軸に対して垂直に移動させることを特徴とする。 The first lens group of the optical system has a positive lens subgroup and a negative lens subgroup in order from the object side, and at the time of vibration isolation correction, the negative lens subgroup is moved perpendicular to the optical axis as the vibration isolation group. It is characterized by that.

当該光学系において、当該光学系の物体側に防振群を配置することにより、像倍率を高めやすくなり、少ない移動量で防振補正を行うことが可能となり、鏡筒径の小径化が可能となる。又、正のレンズ部分群の像側に配置された負のレンズ部分群を防振群とすることにより、光束が正のレンズ部分群で収束されるため、防振群のレンズ径を小さくすることが可能となる。 By arranging the anti-vibration group on the object side of the optical system in the optical system, it becomes easy to increase the image magnification, it is possible to perform anti-vibration correction with a small amount of movement, and it is possible to reduce the diameter of the lens barrel. It becomes. Further, by setting the negative lens subgroup arranged on the image side of the positive lens subgroup as the anti-vibration group, the light beam is converged by the positive lens subgroup, so that the lens diameter of the anti-vibration group is reduced. It becomes possible.

当該光学系において、第1レンズ群に配置された負のレンズ部分群を防振群として光軸に対して垂直に移動させる場合、以下の条件式を満足することが好ましい。
0.35 ≦ |(1-βvc) ×βr | ≦ 2.00 ・・(9)
ただし、βvc:防振群の無限遠合焦時の横倍率、βr :防振群より像側に配置された全てのレンズの無限遠合焦時の合成横倍率
In the optical system, when the negative lens subgroup arranged in the first lens group is moved perpendicularly to the optical axis as a vibration isolation group, it is preferable to satisfy the following conditional expression.
0.35 ≤ | (1-βvc) × βr | ≤ 2.00 ・ ・ (9)
However, βvc: lateral magnification of the anti-vibration group at infinity focus, βr: synthetic lateral magnification of all lenses placed on the image side of the anti-vibration group at infinity focus.

条件式(9)を満たした場合、防振時の高い光学性能を実現しつつレンズ径を小さくすることが可能となる。 When the conditional expression (9) is satisfied, it is possible to reduce the lens diameter while realizing high optical performance at the time of vibration isolation.

条件式(9)の下限を下回った場合、あるブレ補正角度に対する補正レンズのシフト補正量(移動量)が大きくなり、制御するアクチュエーターが大きくなるため、コンパクトな製品を作りづらくなる。
条件式(9)の上限を上回った場合、防振群のパワーが大きくなるため、球面収差及び像面湾曲の補正が困難になる。
If it falls below the lower limit of the conditional expression (9), the shift correction amount (movement amount) of the correction lens for a certain blur correction angle becomes large, and the actuator to be controlled becomes large, which makes it difficult to make a compact product.
If the upper limit of the conditional expression (9) is exceeded, the power of the vibration isolation group becomes large, and it becomes difficult to correct spherical aberration and curvature of field.

条件式(9)は、好ましくは0.40 ≦ |(1-βvc) ×βr | ≦ 1.45の範囲となる。この場合はより高性能でコンパクトな光学系が設計可能となる。
条件式(9)は、さらに好ましくは、0.45 ≦ |(1-βvc) ×βr | ≦ 1.35の範囲となる。この場合はさらに高性能でコンパクトな光学系が設計可能となる。このとき、上述した範囲の上限又は下限のいずれか一方を満足していても、好ましい効果が期待できる。
The conditional expression (9) preferably has a range of 0.40 ≤ | (1-βvc) × βr | ≤ 1.45. In this case, a higher performance and more compact optical system can be designed.
The conditional expression (9) is more preferably in the range of 0.45 ≤ | (1-βvc) × βr | ≤ 1.35. In this case, a higher performance and more compact optical system can be designed. At this time, even if either the upper limit or the lower limit of the above-mentioned range is satisfied, a preferable effect can be expected.

当該光学系において、第1レンズ群に配置された負のレンズ部分群を防振群として光軸に対して垂直に移動させる場合、以下の条件式を満足することが好ましい。
0.10 ≦ | fvc | / f ≦ 1.30 ・・・・・(10)
ただし、fvc:防振群の焦点距離、f:当該光学系の焦点距離
In the optical system, when the negative lens subgroup arranged in the first lens group is moved perpendicularly to the optical axis as a vibration isolation group, it is preferable to satisfy the following conditional expression.
0.10 ≤ | fvc | / f ≤ 1.30 ・ ・ ・ ・ ・ (10)
However, fvc: focal length of the vibration-proof group, f: focal length of the optical system.

条件式(10)を満たした場合、防振時においても高い光学性能を実現しつつレンズ径を小さくすることが可能となる。 When the conditional expression (10) is satisfied, it is possible to reduce the lens diameter while achieving high optical performance even at the time of vibration isolation.

条件式(10)の下限を下回った場合、ある補正角度に対するシフト補正量が大きくなるため、制御するアクチュエーターが大きくなり、コンパクトな製品を作りづらくなる。 条件式(10)の上限を上回った場合、防振群のパワーが大きくなるため、収差補正が難しくなる。 When the value falls below the lower limit of the conditional expression (10), the shift correction amount for a certain correction angle becomes large, so that the actuator to be controlled becomes large and it becomes difficult to make a compact product. If the upper limit of the conditional expression (10) is exceeded, the power of the vibration isolation group becomes large, and it becomes difficult to correct the aberration.

条件式(10)は、好ましくは0.14 ≦ |fvc| / f ≦ 1.20の範囲となる。この場合はより高性能でコンパクトな光学系が設計可能となる。
条件式(10)は、さらに好ましくは、0.15 ≦ |fvc| / f ≦ 1.10 の範囲となる。この場合はさらに高性能でコンパクトな光学系が設計可能となる。このとき、上述した範囲の上限又は下限のいずれか一方を満足していても、好ましい効果が期待できる。
The conditional expression (10) preferably has a range of 0.14 ≤ | fvc | / f ≤ 1.20. In this case, a higher performance and more compact optical system can be designed.
The conditional expression (10) is more preferably in the range of 0.15 ≤ | fvc | / f ≤ 1.10. In this case, a higher performance and more compact optical system can be designed. At this time, even if either the upper limit or the lower limit of the above-mentioned range is satisfied, a preferable effect can be expected.

当該光学系において、以下の条件式を満足することが好ましい。
Nd_max ≧ 1.80 ・・・・・・(11)
ただし、Nd_max:光学系の中で最も屈折率の高い硝材の屈折率
It is preferable that the following conditional expression is satisfied in the optical system.
Nd_max ≧ 1.80 ・ ・ ・ ・ ・ ・ (11)
However, Nd_max: Refractive index of the glass material with the highest refractive index in the optical system

条件式(11)を満たした場合、高性能を実現しつつ光学全長を短くすることが可能となる。 When the conditional expression (11) is satisfied, it is possible to shorten the optical overall length while achieving high performance.

条件式(11)の下限を下回った場合、レンズの曲率が大きくなり過ぎてしまい、球面収差の補正が難しくなる。 If it falls below the lower limit of the conditional expression (11), the curvature of the lens becomes too large, and it becomes difficult to correct the spherical aberration.

条件式(11)は、好ましくはNd_max ≧ 1.83の範囲となる。この場合はより高性能をだしつつ光学全長を短くすることが可能となる。
条件式(11)は、さらに好ましくは、Nd_max ≧ 1.85の範囲となる。この場合はさらに高い性能をだしつつ光学全長を短くすることが可能となる。このとき、条件式(11)の値は大きいほど好ましいが、上限を設定する場合は、10.00以下であることが好ましく、5.00以下であることがより好ましく、2.50以下であることがさらにより好ましい。
The conditional expression (11) preferably has a range of Nd_max ≧ 1.83. In this case, it is possible to shorten the total optical length while achieving higher performance.
The conditional expression (11) is more preferably in the range of Nd_max ≧ 1.85. In this case, it is possible to shorten the total optical length while achieving higher performance. At this time, the larger the value of the conditional expression (11) is, the more preferable it is, but when setting the upper limit, it is preferably 10.00 or less, more preferably 5.00 or less, and 2.50 or less. Is even more preferable.

[撮像装置]
次に、本発明に係る撮像装置について説明する。本発明に係る撮像装置は、上記本発明に係る光学系と、光学系によって形成された像を光電変換する撮像素子とを有することを特徴とする撮像装置である。
[Image pickup device]
Next, the image pickup apparatus according to the present invention will be described. The image pickup apparatus according to the present invention is an image pickup apparatus comprising the optical system according to the present invention and an image pickup element that photoelectrically converts an image formed by the optical system.

本発明に係る撮像装置においては、軽量、コンパクトかつ高解像な光学系を備えた撮像装置を構成することができる。 In the image pickup apparatus according to the present invention, an image pickup apparatus provided with a lightweight, compact and high-resolution optical system can be configured.

[数値実施例]
次に、実施例に示して本発明を具体的に説明する。ただし、本件発明は以下の実施例に限定されるものではない。各レンズ断面図において、図面に向かって左方が物体側、右方が像面側である。
[Numerical Example]
Next, the present invention will be specifically described with reference to Examples. However, the present invention is not limited to the following examples. In each lens cross-sectional view, the left side is the object side and the right side is the image plane side when facing the drawing.

以下に示す数値実施例において、No.は物体側から順次付される面番号であり、Rはその面の曲率半径を示し、Dは間隔または厚さを示し、Ndはd線に対する屈折率を示し、ABVはd線に対するアッベ数を示し、ASPHは当該レンズ面が非球面であることを示し、STOPは開口絞りを示す。各表中の長さの単位は全て「mm」であり半画角の単位は「°」である。
全体諸元において、Fは焦点距離を示し、FnoはFナンバーを示し、Wは半画角を示し、D(n)は可変間隔であるn番目の面の間隔を示す。D(0)は被写体から第1面までの間隔を表す。「INF」は無限遠合焦状態を表す。
非球面は、面番号の横に「ASPH」と記載され、非球面形状を以下の式1で定義した非球面係数表す。ただし、式1において「Z」は光軸方向の基準面からの変位量、「r」は近軸曲率半径、「h」は光軸方向に垂直な方向の光軸からの高さ、「k」は円錐係数、「An」はn次の非球面係数とする。

Figure 0007096065000001
In the numerical examples shown below, No. Is the surface number sequentially assigned from the object side, R indicates the radius of curvature of the surface, D indicates the interval or thickness, Nd indicates the refractive index with respect to the d line, and ABV indicates the Abbe number with respect to the d line. ASPH indicates that the lens surface is aspherical, and STOP indicates an aperture stop. The unit of length in each table is "mm", and the unit of half angle of view is "°".
In the overall specifications, F indicates the focal length, Fno indicates the F number, W indicates the half angle of view, and D (n) indicates the interval of the nth plane which is a variable interval. D (0) represents the distance from the subject to the first surface. "INF" represents the infinity in-focus state.
The aspherical surface is described as "ASPH" next to the surface number, and the aspherical surface shape is represented by the aspherical surface coefficient defined by the following equation 1. However, in Equation 1, "Z" is the amount of displacement from the reference plane in the optical axis direction, "r" is the radius of curvature of the paraxial axis, "h" is the height from the optical axis in the direction perpendicular to the optical axis direction, and "k". Is a conical coefficient, and "A n " is an nth-order paraxial coefficient.
Figure 0007096065000001

これらの表に関する事項は他の実施例で示す各表においても同様であるため、他の実施例では説明を省略する。 Since the matters relating to these tables are the same in each table shown in the other examples, the description thereof will be omitted in the other examples.

(第1実施例)
第1実施例の光学系は、図1に示すように、物体側から、正の屈折力を持つ第1レンズ群LG1と、開口絞りStと、正の屈折力を持つ第2レンズ群LG2と、負の屈折力を持つ第3レンズ群LG3とから成る。Imは結像面である。フォーカシングは、第2レンズ群LG2を光軸Oに沿って移動させて行う。像ブレ補正は、第1レンズ群LG1内の結像側の防振群LV1を光軸Oと直交する方向へ移動させて行う。
(First Example)
As shown in FIG. 1, the optical system of the first embodiment includes a first lens group LG1 having a positive refractive power, an aperture aperture St, and a second lens group LG2 having a positive refractive power from the object side. It consists of a third lens group LG3 having a negative refractive power. Im is the image plane. Focusing is performed by moving the second lens group LG2 along the optical axis O. Image stabilization is performed by moving the vibration isolation group LV1 on the image forming side in the first lens group LG1 in a direction orthogonal to the optical axis O.

図1A、図1Bは、それぞれ第1実施例の光学系の無限遠合焦時と近距離合焦時の断面図である。図2A、図2Bは、それぞれ第1実施例の無限遠合焦時と近距離合焦時の球面収差(mm)、非点収差(mm)及び歪曲収差(%)を示す図である。
球面収差図において、縦軸は像高をとり、実線はd線(587.5618nm)、破線はC線(656.2725nm)、長破線はF線(486.1327nm)を表す。非点収差図において、縦軸は像高をとり、実線がサジタル方向(X)、四点鎖線がメリジオナル方向(Y)を表す。歪曲収差図において、縦軸は像高をとる。図3は無限遠合焦時の横収差図を示す図であり、図4は+0.3°像ブレの補正状態の横収差図を示す図であり、図5は-0.3°像ブレの補正状態の横収差図を示す図である。各横収差図において、上から各像高(半画角)毎に、左側にメリジオナル方向(Y-FAN)の横収差、右側にサジタル方向(X-FAN)の横収差を表す。これらの横収差図において、実線はd線(587.5618nm)、破線はC線(656.2725nm)、長破線はF線(486.1327nm)を表す。
各収差図に関する事項は、他の実施例においても同様であるため、説明を省略する。
1A and 1B are cross-sectional views of the optical system of the first embodiment at infinity and short-distance focusing, respectively. 2A and 2B are diagrams showing spherical aberration (mm), astigmatism (mm), and distortion (%) at infinity focusing and short-distance focusing, respectively, according to the first embodiment.
In the spherical aberration diagram, the vertical axis represents the image height, the solid line represents the d line (587.5618 nm), the broken line represents the C line (656.2725 nm), and the long dashed line represents the F line (486.1327 nm). In the astigmatism diagram, the vertical axis represents the image height, the solid line represents the sagittal direction (X), and the four-dot chain line represents the meridional direction (Y). In the distortion diagram, the vertical axis is the image height. FIG. 3 is a diagram showing a lateral aberration diagram at infinity focusing, FIG. 4 is a diagram showing a lateral aberration diagram in a corrected state of + 0.3 ° image blur, and FIG. 5 is a diagram showing a −0.3 ° image blur. It is a figure which shows the lateral aberration diagram of the correction state of. In each lateral aberration diagram, the lateral aberration in the meridional direction (Y-FAN) is shown on the left side and the lateral aberration in the sagittal direction (X-FAN) is shown on the right side for each image height (half angle of view) from the top. In these transverse aberration diagrams, the solid line represents the d line (587.5618 nm), the broken line represents the C line (656.2725 nm), and the long dashed line represents the F line (486.1327 nm).
Since the matters relating to each aberration diagram are the same in the other embodiments, the description thereof will be omitted.

第1実施例の光学系の面データ等は以下の通りである。
No. R D Nd ABV
1 -34.7115 1.5000 1.68893 31.16
2 33.3986 0.6613
3 36.2462 7.3715 1.88100 40.14
4 -46.2813 0.1500
5 42.7312 3.7265 1.88100 40.14
6 503.8964 3.8441
7 -266.7179 1.0000 1.70154 41.15
8 48.3949 5.8247
9STOP 0.0000 D(9)
10 -18.2954 0.9000 1.75520 27.53
11 -99.2281 0.1778
12 71.7786 4.2000 1.74400 44.90
13 -32.1501 6.2121
14ASPH 1600.0000 3.4000 1.85135 40.10
15ASPH -41.8560 D(15)
16 -80.3856 1.1000 1.74077 27.76
17 114.9663 14.8193
18 0.0000 2.5000 1.51680 64.20
19 0.0000 1.0000
The surface data and the like of the optical system of the first embodiment are as follows.
No. RD Nd ABV
1 -34.7115 1.5000 1.68893 31.16
2 33.3986 0.6613
3 36.2462 7.3715 1.88100 40.14
4-46.2813 0.1500
5 42.7312 3.7265 1.88100 40.14
6 503.8964 3.8441
7 -266.7179 1.0000 1.70154 41.15
8 48.3949 5.8247
9STOP 0.0000 D (9)
10 -18.2954 0.9000 1.75520 27.53
11 -99.2281 0.1778
12 71.7786 4.2000 1.74400 44.90
13 -32.1501 6.2121
14ASPH 1600.0000 3.4000 1.85135 40.10
15ASPH -41.8560 D (15)
16 -80.3856 1.1000 1.74077 27.76
17 114.9663 14.8193
18 0.0000 2.5000 1.51680 64.20
19 0.0000 1.0000

第1実施例の光学系の全体諸元は以下の通りである。
F 49.9833 48.4311 45.6545 43.5921
Fno 2.6093 2.6122 2.6766 2.7802
W 23.1943 23.1920 23.0731 22.8720
D(0) INF 1483.6742 486.8159 309.7141
D(9) 11.6925 10.5037 8.2339 6.4152
D(15) 12.5659 13.7547 16.0244 17.8434
The overall specifications of the optical system of the first embodiment are as follows.
F 49.9833 48.4311 45.6545 43.5921
Fno 2.6093 2.6122 2.6766 2.7802
W 23.1943 23.1920 23.0731 22.8720
D (0) INF 1483.6742 486.8159 309.7141
D (9) 11.6925 10.5037 8.2339 6.4152
D (15) 12.5659 13.7547 16.0244 17.8434

第1実施例の光学系の式1の非球面係数は以下の通りである。
No. K A4 A6 A8 A10
14 1.00000E-00 4.50903E-06 6.30256E-09 3.83559E-10 -2.47519E-13
15 -2.57828E-01 1.55747E-05 1.05908E-08 3.57693E-10 1.14641E-13
The aspherical coefficient of Equation 1 of the optical system of the first embodiment is as follows.
No. K A4 A6 A8 A10
14 1.00000E-00 4.50903E-06 6.30256E-09 3.83559E-10 -2.47519E-13
15 -2.57828E-01 1.55747E-05 1.05908E-08 3.57693E-10 1.14641E-13

(第2実施例)
第2実施例の光学系は、図6に示すように、物体側から、正の屈折力を持つ第1レンズ群LG1と、開口絞りStと、正の屈折力を持つ第2レンズ群LG2と、負の屈折力を持つ第3レンズ群LG3とから成る。Imは結像面である。フォーカシングは、第2レンズ群LG2を光軸Oに沿って移動させて行う。像ブレ補正は、第1レンズ群LG1内の結像側の像ブレ補正レンズ群LV1を光軸Oと直交する方向へ移動させて行う。
(Second Example)
As shown in FIG. 6, the optical system of the second embodiment includes a first lens group LG1 having a positive refractive power, an aperture aperture St, and a second lens group LG2 having a positive refractive power from the object side. It consists of a third lens group LG3 having a negative refractive power. Im is the image plane. Focusing is performed by moving the second lens group LG2 along the optical axis O. Image stabilization is performed by moving the image stabilization lens group LV1 on the image forming side in the first lens group LG1 in a direction orthogonal to the optical axis O.

第2実施例の光学系の面データ等は以下の通りである。
No. R D Nd ABV
1 33.0733 4.8465 1.59349 67.00
2 1189.5502 0.1500
3 16.5026 3.5321 1.88100 40.14
4 20.8595 0.1500
5 17.2248 1.3000 1.80518 25.46
6 11.7987 6.9293
7 -381.7220 0.9223 1.91082 35.25
8 40.8638 5.3291
9STOP 0.0000 D(9)
10 -20.9712 1.0000 1.78472 25.72
11 -29.8336 1.8548
12 47.9400 4.2000 1.51742 52.15
13 -59.1048 10.9248
14ASPH 88.7585 3.4000 1.76802 49.24
15ASPH -92.8899 D(15)
16 -664.8878 1.1000 1.49700 81.61
17 51.5709 27.4032
18 0.0000 2.5000 1.51680 64.20
19 0.0000 1.0000
The surface data and the like of the optical system of the second embodiment are as follows.
No. RD Nd ABV
1 33.0733 4.8465 1.59349 67.00
2 1189.5502 0.1500
3 16.5026 3.5321 1.88100 40.14
4 20.8595 0.1500
5 17.2248 1.3000 1.80518 25.46
6 11.7987 6.9293
7 -381.7220 0.9223 1.91082 35.25
8 40.8638 5.3291
9STOP 0.0000 D (9)
10 -20.9712 1.0000 1.78472 25.72
11 -29.8336 1.8548
12 47.9400 4.2000 1.51742 52.15
13 -59.1048 10.9248
14ASPH 88.7585 3.4000 1.76802 49.24
15ASPH -92.8899 D (15)
16 -664.8878 1.1000 1.49700 81.61
17 51.5709 27.4032
18 0.0000 2.5000 1.51680 64.20
19 0.0000 1.0000

第2実施例の光学系の全体諸元は以下の通りである。
F 78.8596 76.4902 72.2186 69.1983
Fno 2.8545 2.8742 2.9429 3.0388
W 15.1336 14.9873 14.5638 14.1307
D(0) INF 2348.0930 778.6814 511.4999
D(9) 10.0606 8.4564 5.3642 3.0044
D(15) 1.8975 3.5017 6.5939 8.9537
The overall specifications of the optical system of the second embodiment are as follows.
F 78.8596 76.4902 72.2186 69.1983
Fno 2.8545 2.8742 2.9429 3.0388
W 15.1336 14.9873 14.5638 14.1307
D (0) INF 2348.0930 778.6814 511.4999
D (9) 10.0606 8.4564 5.3642 3.0044
D (15) 1.8975 3.5017 6.5939 8.9537

第2実施例の光学系の式1の非球面係数は以下の通りである。
No. K A4 A6 A8 A10
14 -8.17614E-01 -2.90135E-06 -4.00456E-08 2.79803E-10 -7.57204E-13
15 8.54276E-01 2.90687E-06 -4.68117E-08 3.16854E-10 -8.02063E-13
The aspherical coefficient of Equation 1 of the optical system of the second embodiment is as follows.
No. K A4 A6 A8 A10
14 -8.17614E-01 -2.90135E-06 -4.00456E-08 2.79803E-10 -7.57204E-13
15 8.54276E-01 2.90687E-06 -4.68117E-08 3.16854E-10 -8.02063E-13

(第3実施例)
第3実施例の光学系は、図11に示すように、物体側から、正の屈折力を持つ第1レンズ群LG1と、開口絞りStと、正の屈折力を持つ第2レンズ群LG2と、負の屈折力を持つ第3レンズ群LG3とから成る。Imは結像面である。フォーカシングは、第2レンズ群LG2を光軸Oに沿って移動させて行う。像ブレ補正は、第1レンズ群LG1内の結像側の像ブレ補正レンズ群LV1を光軸Oと直交する方向へ移動させて行う。
(Third Example)
As shown in FIG. 11, the optical system of the third embodiment includes a first lens group LG1 having a positive refractive power, an aperture aperture St, and a second lens group LG2 having a positive refractive power from the object side. It consists of a third lens group LG3 having a negative refractive power. Im is the image plane. Focusing is performed by moving the second lens group LG2 along the optical axis O. Image stabilization is performed by moving the image stabilization lens group LV1 on the image forming side in the first lens group LG1 in a direction orthogonal to the optical axis O.

第3実施例の光学系の面データ等は以下の通りである。
No. R D Nd ABV
1 46.5358 5.1918 1.59349 67.00
2 298.9893 0.1500
3 28.0057 5.4676 1.49700 81.61
4 66.8530 0.5157
5 18.1380 5.8881 1.49700 81.61
6 36.9029 0.1500
7 33.9899 1.3000 1.80610 40.73
8 13.6309 7.3516
9 6354.3596 0.9000 1.88100 40.14
10 47.2342 4.2031
11STOP 0.0000 D(11)
12 -30.3125 0.9000 1.88100 40.14
13 -79.7987 0.1500
14 39.0595 2.8535 1.56732 42.84
15 -82.0634 13.7342
16ASPH 40.0863 3.2632 1.76802 49.24
17ASPH 490.9565 D(17)
18 -211.0633 1.1000 1.51680 64.20
19 63.9612 27.6809
20 0.0000 2.5000 1.51680 64.20
21 0.0000 1.0000
The surface data and the like of the optical system of the third embodiment are as follows.
No. RD Nd ABV
1 46.5358 5.1918 1.59349 67.00
2 298.9893 0.1500
3 28.0057 5.4676 1.49700 81.61
4 66.8530 0.5157
5 18.1380 5.8881 1.49700 81.61
6 36.9029 0.1500
7 33.9899 1.3000 1.80610 40.73
8 13.6309 7.3516
9 6354.3596 0.9000 1.88100 40.14
10 47.2342 4.2031
11STOP 0.0000 D (11)
12 -30.3125 0.9000 1.88100 40.14
13 -79.7987 0.1500
14 39.0595 2.8535 1.56732 42.84
15 -82.0634 13.7342
16ASPH 40.0863 3.2632 1.76802 49.24
17ASPH 490.9565 D (17)
18 -211.0633 1.1000 1.51680 64.20
19 63.9612 27.6809
20 0.0000 2.5000 1.51680 64.20
21 0.0000 1.0000

第3実施例の光学系の全体諸元は以下の通りである。
F 104.9887 100.3831 92.5082 89.5415
Fno 2.8961 2.9117 3.0806 3.1799
W 11.4568 11.3623 11.0127 10.8236
D(0) INF 3111.5594 1027.0536 801.9998
D(11) 11.2941 9.0177 4.7538 3.0088
D(17) 2.4062 4.6826 8.9465 10.6916
The overall specifications of the optical system of the third embodiment are as follows.
F 104.9887 100.3831 92.5082 89.5415
Fno 2.8961 2.9117 3.0806 3.1799
W 11.4568 11.3623 11.0127 10.8236
D (0) INF 3111.5594 1027.0536 801.9998
D (11) 11.2941 9.0177 4.7538 3.0088 3.0088
D (17) 2.4062 4.6826 8.9465 10.6916

第3実施例の光学系の式1の非球面係数は以下の通りである。
No. K A4 A6 A8 A10
16 -9.80022E-01 2.58047E-06 1.18213E-08 0.00000E+00 0.00000E+00
17 1.00000E+00 9.02788E-06 1.30612E-08 0.00000E+00 0.00000E+00
The aspherical coefficient of Equation 1 of the optical system of the third embodiment is as follows.
No. K A4 A6 A8 A10
16 -9.80022E-01 2.58047E-06 1.18213E-08 0.00000E + 00 0.00000E + 00
17 1.00000E + 00 9.02788E-06 1.30612E-08 0.00000E + 00 0.00000E + 00

(第4実施例)
第4実施例の光学系は、図16に示すように、物体側から、正の屈折力を持つ第1レンズ群LG1と、開口絞りStと、正の屈折力を持つ第2レンズ群LG2と、負の屈折力を持つ第3レンズ群LG3とから成る。Imは結像面である。フォーカシングは、第2レンズ群LG2を光軸Oに沿って移動させて行う。像ブレ補正は、第1レンズ群LG1内の結像側の像ブレ補正レンズ群LV1を光軸Oと直交する方向へ移動させて行う。
(Fourth Example)
As shown in FIG. 16, the optical system of the fourth embodiment includes a first lens group LG1 having a positive refractive power, an aperture aperture St, and a second lens group LG2 having a positive refractive power from the object side. It consists of a third lens group LG3 having a negative refractive power. Im is the image plane. Focusing is performed by moving the second lens group LG2 along the optical axis O. Image stabilization is performed by moving the image stabilization lens group LV1 on the image forming side in the first lens group LG1 in a direction orthogonal to the optical axis O.

第4実施例の光学系の面データ等は以下の通りである。
No. R D Nd ABV
1 -69.6131 1.5000 1.74077 27.76
2 30.9246 3.6162
3 86.5874 7.3571 2.00100 29.13
4 -46.7656 0.3816
5 -43.9890 1.1000 1.71736 29.50
6 487.7806 0.1500
7 34.4213 8.5437 1.88100 40.14
8 -82.7348 2.0614
9 -517.2436 1.0000 1.64769 33.84
10 56.6506 6.0383
11STOP 0.0000 D(11)
12 25.6502 3.5520 1.88100 40.14
13 -89.7741 0.9000 1.69895 30.05
14 23.0880 4.3959
15 -18.7742 0.9000 1.84666 23.78
16 -94.2681 0.1500
17 79.6630 4.2000 1.88100 40.14
18 -39.5481 4.1917
19ASPH -428.2672 3.4000 1.88202 37.22
20ASPH -33.2715 D(20)
21 -92.0700 1.1000 1.75520 27.53
22 184.4087 14.8000
23 0.0000 2.5000 1.51680 64.20
24 0.0000 1.0000
The surface data and the like of the optical system of the fourth embodiment are as follows.
No. RD Nd ABV
1 -69.6131 1.5000 1.74077 27.76
2 30.9246 3.6162
3 86.5874 7.3571 2.00100 29.13
4 -46.7656 0.3816
5 -43.9890 1.1000 1.71736 29.50
6 487.7806 0.1500
7 34.4213 8.5437 1.88100 40.14
8-82.7348 2.0614
9 -517.2436 1.0000 1.64769 33.84
10 56.6506 6.0383
11STOP 0.0000 D (11)
12 25.6502 3.5520 1.88100 40.14
13 -89.7741 0.9000 1.69895 30.05
14 23.0880 4.3959
15 -18.7742 0.9000 1.84666 23.78
16 -94.2681 0.1500
17 79.6630 4.2000 1.88100 40.14
18 -39.5481 4.1917
19ASPH -428.2672 3.4000 1.88202 37.22
20ASPH -33.2715 D (20)
21 -92.0700 1.1000 1.75520 27.53
22 184.4087 14.8000
23 0.0000 2.5000 1.51680 64.20
24 0.0000 1.0000

第4実施例の光学系の全体諸元は以下の通りである。
F 36.0396 35.2675 33.8444 31.9661
Fno 1.8823 1.8813 1.9199 2.0372
W 30.7315 30.7624 30.7261 30.4572
D(0) INF 1063.2179 344.0472 166.2197
D(11) 8.1774 7.2624 5.4988 3.0019
D(20) 2.7645 3.6795 5.4431 7.9403
The overall specifications of the optical system of the fourth embodiment are as follows.
F 36.0396 35.2675 33.8444 31.9661
Fno 1.8823 1.8813 1.9199 2.0372
W 30.7315 30.7624 30.7261 30.4572
D (0) INF 1063.2179 344.0472 166.2197
D (11) 8.1774 7.2624 5.4988 3.0019
D (20) 2.7645 3.6795 5.4431 7.9403

第4実施例の光学系の式1の非球面係数は以下の通りである。
No. K A4 A6 A8 A10
19 -1.00000E-00 -8.35012E-06 -7.80434E-08 7.98061E-10 -6.01616E-13
20 1.65791E-01 1.43150E-05 -7.67519E-08 7.12453E-10 -5.70846E-14
The aspherical coefficient of Equation 1 of the optical system of the fourth embodiment is as follows.
No. K A4 A6 A8 A10
19 -1.00000E-00 -8.35012E-06 -7.80434E-08 7.98061E-10 -6.01616E-13
20 1.65791E-01 1.43150E-05 -7.67519E-08 7.12453E-10 -5.70846E-14

(第5実施例)
第5実施例の光学系は、図21に示すように、物体側から、正の屈折力を持つ第1レンズ群LG1と、開口絞りStと、正の屈折力を持つ第2レンズ群LG2と、負の屈折力を持つ第3レンズ群LG3とから成る。Imは結像面である。フォーカシングは、第2レンズ群LG2を光軸Oに沿って移動させて行う。像ブレ補正は、第1レンズ群LG1内の結像側の像ブレ補正レンズ群LV1を光軸Oと直交する方向へ移動させて行う。
(Fifth Example)
As shown in FIG. 21, the optical system of the fifth embodiment includes a first lens group LG1 having a positive refractive power, an aperture aperture St, and a second lens group LG2 having a positive refractive power from the object side. It consists of a third lens group LG3 having a negative refractive power. Im is the image plane. Focusing is performed by moving the second lens group LG2 along the optical axis O. Image stabilization is performed by moving the image stabilization lens group LV1 on the image forming side in the first lens group LG1 in a direction orthogonal to the optical axis O.

第5実施例の光学系の面データ等は以下の通りである。
No. R D Nd ABV
1 41.5820 5.1263 1.59349 67.00
2 168.5283 0.1500
3 29.3476 4.9477 1.49700 81.61
4 62.1908 2.9401
5 17.8099 5.4414 1.49700 81.61
6 35.6666 0.1500
7 35.3919 1.3000 1.80610 40.73
8 13.8675 6.4329
9 603.5398 0.9000 1.88100 40.14
10 44.5629 4.3414
11STOP 0.0000 D(11)
12ASPH 30.7447 2.5839 1.58313 59.46
13ASPH 63.0188 18.1002
14ASPH 97.4225 3.2514 1.68893 31.16
15ASPH -108.5239 D(15)
16 -941.5845 1.3000 1.88100 40.14
17 101.5513 24.3079
18 0.0000 2.5000 1.51680 64.20
19 0.0000 1.0000
The surface data and the like of the optical system of the fifth embodiment are as follows.
No. RD Nd ABV
1 41.5820 5.1263 1.59349 67.00
2 168.5283 0.1500
3 29.3476 4.9477 1.49700 81.61
4 62.1908 2.9401
5 17.8099 5.4414 1.49700 81.61
6 35.6666 0.1500
7 35.3919 1.3000 1.80610 40.73
8 13.8675 6.4329
9 603.5398 0.9000 1.88100 40.14
10 44.5629 4.3414
11STOP 0.0000 D (11)
12ASPH 30.7447 2.5839 1.58313 59.46
13ASPH 63.0188 18.1002
14ASPH 97.4225 3.2514 1.68893 31.16
15ASPH -108.5239 D (15)
16 -941.5845 1.3000 1.88100 40.14
17 101.5513 24.3079
18 0.0000 2.5000 1.51680 64.20
19 0.0000 1.0000

第5実施例の光学系の全体諸元は以下の通りである。
F 105.0016 101.0394 94.0739 92.2995
Fno 2.8622 2.9089 3.1499 3.2154
W 11.5959 11.3559 10.7823 10.6052
D(0) INF 3143.4071 1057.5649 894.8918
D(11) 10.8957 8.5769 4.1457 2.9363
D(15) 1.7991 4.1179 8.5491 9.7586
The overall specifications of the optical system of the fifth embodiment are as follows.
F 105.0016 101.0394 94.0739 92.2995
Fno 2.8622 2.9089 3.1499 3.2154
W 11.5959 11.3559 10.7823 10.6052
D (0) INF 3143.4071 1057.5649 894.8918
D (11) 10.8957 8.5769 4.1457 2.9363
D (15) 1.7991 4.1179 8.5491 9.7586

第5実施例の光学系の式1の非球面係数は以下の通りである。
No. K A4 A6 A8 A10
12 0.00000E+00 -2.29200E-05 -1.49666E-07 5.61022E-12 -5.19720E-12
13 0.00000E+00 -2.12453E-05 -1.43301E-07 -2.15666E-10 -3.62219E-12
14 0.00000E+00 -3.60916E-06 -3.05259E-08 0.00000E+00 0.00000E+00
15 0.00000E+00 -1.87582E-06 -2.75045E-08 0.00000E+00 0.00000E+00
The aspherical coefficient of Equation 1 of the optical system of the fifth embodiment is as follows.
No. K A4 A6 A8 A10
12 0.00000E + 00 -2.29200E-05 -1.49666E-07 5.61022E-12 -5.19720E-12
13 0.00000E + 00 -2.12453E-05 -1.43301E-07 -2.15666E-10 -3.62219E-12
14 0.00000E + 00 -3.60916E-06 -3.05259E-08 0.00000E + 00 0.00000E + 00
15 0.00000E + 00 -1.87582E-06 -2.75045E-08 0.00000E + 00 0.00000E + 00

以下に、各実施例における条件式の値を示す
実施例 1 2 3 4 5
(1)f1/f 1.90 3.00 2.00 2.20 2.92
(2)|f3|/f 1.27 1.22 0.90 2.25 0.99
(3)f2/f1 0.43 0.17 0.23 0.43 0.16
(4)|f3|/f1 0.67 0.41 0.45 1.02 0.34
(5)|f3|/f2 1.55 2.43 2.00 2.36 2.12
(6)oal/f 1.65 1.12 0.93 2.32 0.93
(7)oal_s/oal_i 0.41 0.35 0.47 0.61 0.48
(8)(1-β22)×β32 1.36 1.61 1.50 1.28 1.47
(9)|(1-βvc)×βr | 0.80 1.20 1.00 0.50 1.00
(10)|fvc|/f 0.61 0.17 0.26 0.99 0.18
(11)nd_max 1.88 1.88 1.88 2.00 1.88
Examples 1 2 3 4 5 show the values of the conditional expressions in each example below.
(1) f1 / f 1.90 3.00 2.00 2.20 2.92
(2) | f3 | / f 1.27 1.22 0.90 2.25 0.99
(3) f2 / f1 0.43 0.17 0.23 0.43 0.16
(4) | f3 | / f1 0.67 0.41 0.45 1.02 0.34
(5) | f3 | / f2 1.55 2.43 2.00 2.36 2.12
(6) oal / f 1.65 1.12 0.93 2.32 0.93
(7) oal_s / oal_i 0.41 0.35 0.47 0.61 0.48
(8) (1-β 2 2 ) × β 3 2 1.36 1.61 1.50 1.28 1.47
(9) | (1-βvc) × βr | 0.80 1.20 1.00 0.50 1.00
(10) | fvc | / f 0.61 0.17 0.26 0.99 0.18
(11) nd_max 1.88 1.88 1.88 2.00 1.88

以下に、各実施例のレンズ群の焦点距離を示す。
実施例 1 2 3 4 5
f1 95.00 236.60 210.00 79.38 307.061
f2 41.01 39.61 47.49 34.36 49.0556
f3 -63.71 -96.25 -94.85 -81.18 -103.9855
The focal lengths of the lens groups of each embodiment are shown below.
Example 1 2 3 4 5
f1 95.00 236.60 210.00 79.38 307.061
f2 41.01 39.61 47.49 34.36 49.0556
f3 -63.71 -96.25 -94.85 -81.18 -103.9855

本発明の実施例の撮像装置は、図26に示すように、実施例1の光学系100と、該光学系100の結像面Imに配置されて該光学系100が形成する結像を光電変換する光撮像素子PDを備えた撮像系200と、光学系100を撮像系200に着脱可能にあるいは固着的に装着するマウント部Mとを有する。撮像素子PDの直前には、赤外線カットフィルター、ローパスフィルター等のフィルターFが配置されている。 As shown in FIG. 26, the image pickup apparatus of the embodiment of the present invention has the optical system 100 of the first embodiment and the image formation formed by the optical system 100 arranged on the image plane Im of the optical system 100. It has an image pickup system 200 provided with an optical image pickup element PD to be converted, and a mount portion M for detachably or fixedly mounting the optical system 100 to the image pickup system 200. Immediately before the image pickup device PD, a filter F such as an infrared cut filter and a low-pass filter is arranged.

LG1 第1レンズ群
LG2 第2レンズ群
LG3 第3レンズ群
St 開口絞り
Im 結像面
PD 撮像素子
LG1 1st lens group LG2 2nd lens group LG3 3rd lens group St Aperture aperture Im Image plane PD Image sensor

Claims (10)

物体側から順に配置された、正の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群とから成り、開口絞りを有し、フォーカシング時に前記第1レンズ群と前記第2レンズ群との間隔、及び、前記第2レンズ群と前記第3レンズ群との間隔が変化するように前記第2レンズ群が光軸に沿って移動し、前記第1レンズ群に凸レンズが2枚以上含まれ、前記第2レンズ群は2枚以上のレンズで構成され、以下の条件式を満足することを特徴とする光学系。
1.90 ≦ f1 / f ≦ 3.60 ・・・・・・(1)
0.50 ≦ |f3| / f ≦ 2.60 ・・・・・・(2)
1.20 ≦ |f3| / f2 ≦ 12.00 ・・・・・・(5)
0.25 ≦ oal_s / oal_i ≦ 0.80 ・・・・・(7)
ただし、f1:前記第1レンズ群の焦点距離
f3:前記第3レンズ群の焦点距離
f:当該光学系の焦点距離
f2:前記第2レンズ群の焦点距離
oal_s:前記第1レンズ群の最物体側面頂点から前記開口絞りまでの距離
oal_i:前記開口絞りから結像位置までの距離
It consists of a first lens group having a positive refractive force, a second lens group having a positive refractive force, and a third lens group having a negative refractive force arranged in order from the object side, and has an aperture aperture. Then , the second lens group is along the optical axis so that the distance between the first lens group and the second lens group and the distance between the second lens group and the third lens group change during focusing. An optical system characterized in that the first lens group includes two or more convex lenses, the second lens group is composed of two or more lenses, and the following conditional expression is satisfied.
1.90 ≤ f1 / f ≤ 3.60 ・ ・ ・ ・ ・ ・ (1)
0.50 ≤ | f3 | / f ≤ 2.60 ・ ・ ・ ・ ・ ・ (2)
1.20 ≤ | f3 | / f2 ≤ 12.00 ・ ・ ・ ・ ・ ・ (5)
0.25 ≤ oal_s / oal_i ≤ 0.80 ・ ・ ・ ・ ・ (7)
However, f1: the focal length of the first lens group.
f3: Focal length of the third lens group
f: Focal length of the optical system
f2: Focal length of the second lens group
oal_s: Distance from the apex of the outermost object of the first lens group to the aperture stop.
oal_i: Distance from the aperture stop to the image formation position
以下の条件式を満足することを特徴とする請求項1に記載の光学系。
0.10 ≦ f2 / f1 ≦ 0.55 ・・・・・・(3)
The optical system according to claim 1, wherein the optical system satisfies the following conditional expression.
0.10 ≤ f2 / f1 ≤ 0.55 ・ ・ ・ ・ ・ ・ (3)
以下の条件式を満足することを特徴とする請求項1又は請求項2に記載の光学系。
0.20 ≦ |f3| / f1 ≦ 10.00 ・・・・・・(4)
The optical system according to claim 1 or 2, wherein the optical system satisfies the following conditional expression.
0.20 ≤ | f3 | / f1 ≤ 10.00 ・ ・ ・ ・ ・ ・ (4)
以下の条件式を満足することを特徴とする請求項1から請求項のいずれか一項に記載の光学系。
0.65 ≦ oal / f ≦ 3.00 ・・・・・・・(6)
ただし、oal:前記第1レンズ群の最物体側面頂点から結像位置までの距離
The optical system according to any one of claims 1 to 3 , wherein the optical system satisfies the following conditional expression.
0.65 ≤ oal / f ≤ 3.00 ・ ・ ・ ・ ・ ・ ・ (6)
However, oal: the distance from the apex of the side surface of the outermost object of the first lens group to the image formation position.
以下の条件式を満足することを特徴とする請求項1から請求項のいずれか一項に記載の光学系。
0.60 ≦ (1-β22) ×β32 ≦ 2.50 ・・・・(8)
ただし、β2:無限遠合焦時の前記第2レンズ群の横倍率
β3:無限遠合焦時の前記第3レンズ群の横倍率
The optical system according to any one of claims 1 to 4 , wherein the optical system satisfies the following conditional expression.
0.60 ≤ (1-β2 2 ) × β3 2 ≤ 2.50 ・ ・ ・ ・ (8)
However, β2: lateral magnification of the second lens group at the time of infinity focusing β3: lateral magnification of the third lens group at the time of infinity focusing
前記第1レンズ群が物体側から順に正のレンズ部分群と負のレンズ部分群を有し、前記負のレンズ部分群を防振群として光軸に対して垂直に移動させることを特徴とする請求項1から請求項のいずれか一項に記載の光学系。 The first lens group has a positive lens subgroup and a negative lens subgroup in order from the object side, and the negative lens subgroup is used as an anti-vibration group and is moved perpendicular to the optical axis. The optical system according to any one of claims 1 to 5 . 以下の条件式を満足することを特徴とする請求項に記載の光学系。
0.35 ≦ |(1-βvc) ×βr | ≦ 2.00 ・・・・(9)
ただし、βvc:防振群の無限遠合焦時の横倍率
βr :防振群より像側に配置された全てのレンズの無限遠合焦時の合成横倍率
The optical system according to claim 6 , wherein the optical system satisfies the following conditional expression.
0.35 ≤ | (1-βvc) × βr | ≤ 2.00 ・ ・ ・ ・ (9)
However, βvc: lateral magnification of the anti-vibration group at infinity focus βr: synthetic lateral magnification of all lenses placed on the image side of the anti-vibration group at infinity focus
以下の条件式を満足することを特徴とする請求項又は請求項に記載の光学系。
0.10 ≦ | fvc | / f ≦ 1.30 ・・・・・・・(10)
ただし、fvc:防振群の焦点距離
The optical system according to claim 6 or 7 , wherein the optical system satisfies the following conditional expression.
0.10 ≤ | fvc | / f ≤ 1.30 ・ ・ ・ ・ ・ ・ ・ ・ ・ (10)
However, fvc: focal length of anti-vibration group
以下の条件式を満足することを特徴とする請求項1から請求項のいずれか一項に記載の光学系。
Nd_max ≧ 1.80 ・・・・・・・・・・・・(11)
ただし、Nd_max:当該光学系の中で最も屈折率の高い硝材の屈折率
The optical system according to any one of claims 1 to 8 , wherein the optical system satisfies the following conditional expression.
Nd_max ≧ 1.80 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ (11)
However, Nd_max: Refractive index of the glass material with the highest refractive index in the optical system.
請求項1から請求項のいずれか一項に記載の光学系と、該光学系によって形成された像を光電変換する撮像系とを有することを特徴とする撮像装置。 An image pickup apparatus comprising the optical system according to any one of claims 1 to 9 and an image pickup system that photoelectrically converts an image formed by the optical system.
JP2018095286A 2018-05-17 2018-05-17 Optical system and image pickup device Active JP7096065B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018095286A JP7096065B2 (en) 2018-05-17 2018-05-17 Optical system and image pickup device
CN201811534416.6A CN110501810B (en) 2018-05-17 2018-12-14 Optical system and imaging apparatus
JP2022101093A JP7431282B2 (en) 2018-05-17 2022-06-23 Optical system and imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018095286A JP7096065B2 (en) 2018-05-17 2018-05-17 Optical system and image pickup device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022101093A Division JP7431282B2 (en) 2018-05-17 2022-06-23 Optical system and imaging device

Publications (2)

Publication Number Publication Date
JP2019200339A JP2019200339A (en) 2019-11-21
JP7096065B2 true JP7096065B2 (en) 2022-07-05

Family

ID=68584318

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018095286A Active JP7096065B2 (en) 2018-05-17 2018-05-17 Optical system and image pickup device
JP2022101093A Active JP7431282B2 (en) 2018-05-17 2022-06-23 Optical system and imaging device

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022101093A Active JP7431282B2 (en) 2018-05-17 2022-06-23 Optical system and imaging device

Country Status (2)

Country Link
JP (2) JP7096065B2 (en)
CN (1) CN110501810B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112105980B (en) * 2018-05-18 2023-04-28 株式会社尼康 Optical system and optical apparatus
JP7218132B2 (en) * 2018-09-25 2023-02-06 キヤノン株式会社 Optical system and imaging device having the same
JP7289707B2 (en) * 2019-04-11 2023-06-12 キヤノン株式会社 Imaging optical system and imaging device
FR3103876B1 (en) * 2019-12-03 2022-02-18 Valeo Vision Optical device for projecting light beams
CN112014953B (en) * 2020-10-13 2021-01-01 瑞泰光学(常州)有限公司 Image pickup optical lens

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098894A (en) 2000-09-26 2002-04-05 Canon Inc Zoom lens and optical equipment provided therewith
JP2013178395A (en) 2012-02-28 2013-09-09 Nikon Corp Imaging apparatus
JP2014145954A (en) 2013-01-30 2014-08-14 Sigma Corp Imaging optical system
JP2019197125A (en) 2018-05-09 2019-11-14 株式会社シグマ Image-forming optical system

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0685018B2 (en) * 1986-02-24 1994-10-26 オリンパス光学工業株式会社 Macro lens
JP3260798B2 (en) * 1991-03-04 2002-02-25 オリンパス光学工業株式会社 Wide-angle zoom lens
EP0881516A1 (en) * 1993-11-29 1998-12-02 Nikon Corporation Lens capable of short distance photographing with vibration reduction function
JPH0961708A (en) * 1995-08-29 1997-03-07 Olympus Optical Co Ltd Standard lens system
JP5831291B2 (en) * 2012-02-28 2015-12-09 リコーイメージング株式会社 Short-range correction lens system
JP5973292B2 (en) * 2012-08-31 2016-08-23 株式会社シグマ Zoom lens system
JP6253012B2 (en) 2012-12-27 2017-12-27 パナソニックIpマネジメント株式会社 Inner focus lens system, interchangeable lens device and camera system
KR20140125680A (en) 2013-04-19 2014-10-29 삼성전자주식회사 Wide angle lens and imaging apparatus employing the same
JP2016136213A (en) * 2015-01-23 2016-07-28 株式会社ニコン Optical system, optical instrument having the same, and manufacturing method of optical system
JP6462415B2 (en) * 2015-02-27 2019-01-30 株式会社タムロン Optical system and imaging apparatus
JP6763409B2 (en) 2016-01-26 2020-09-30 ソニー株式会社 Imaging lens and imaging device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098894A (en) 2000-09-26 2002-04-05 Canon Inc Zoom lens and optical equipment provided therewith
JP2013178395A (en) 2012-02-28 2013-09-09 Nikon Corp Imaging apparatus
JP2014145954A (en) 2013-01-30 2014-08-14 Sigma Corp Imaging optical system
JP2019197125A (en) 2018-05-09 2019-11-14 株式会社シグマ Image-forming optical system

Also Published As

Publication number Publication date
CN110501810B (en) 2022-10-11
JP2022118219A (en) 2022-08-12
CN110501810A (en) 2019-11-26
JP2019200339A (en) 2019-11-21
JP7431282B2 (en) 2024-02-14

Similar Documents

Publication Publication Date Title
JP7096065B2 (en) Optical system and image pickup device
JP6325284B2 (en) Inner focus lens
JP4532916B2 (en) Zoom lens and imaging apparatus having the same
JP7061980B2 (en) Zoom lens and image pickup device
JP6377319B2 (en) Zoom lens and imaging device
JP2006284764A (en) Zoom lens
JP2014219616A (en) Zoom lens and imaging apparatus including the same
JP6216246B2 (en) Inner focus lens
JP2015163928A (en) Inner focus lens
JP6377320B2 (en) Zoom lens and imaging device
JP4984608B2 (en) Zoom lens and imaging apparatus
JP2015018124A (en) Zoom lens and image capturing device
JP2014228808A5 (en)
JP7254734B2 (en) Imaging lens and imaging device
JP5433958B2 (en) Zoom lens and optical apparatus provided with the same
CN106019541B (en) Internal focusing lens
JP2005148437A (en) Variable power optical system
JP7043384B2 (en) Zoom lens and image pickup device
JP2006003539A (en) Zoom lens and imaging apparatus having same
JP7000138B2 (en) Optical system and an image pickup device having it
JP6270341B2 (en) Zoom lens and imaging device
WO2014069077A1 (en) Inner focus type lens
CN106019533B (en) Internal focusing lens
JP5462081B2 (en) Zoom lens and imaging device
JP6548514B2 (en) Zoom lens and imaging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211012

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220623

R150 Certificate of patent or registration of utility model

Ref document number: 7096065

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150