JP3246184B2 - Air electrode of high temperature solid electrolyte fuel cell - Google Patents

Air electrode of high temperature solid electrolyte fuel cell

Info

Publication number
JP3246184B2
JP3246184B2 JP12346294A JP12346294A JP3246184B2 JP 3246184 B2 JP3246184 B2 JP 3246184B2 JP 12346294 A JP12346294 A JP 12346294A JP 12346294 A JP12346294 A JP 12346294A JP 3246184 B2 JP3246184 B2 JP 3246184B2
Authority
JP
Japan
Prior art keywords
air electrode
solid electrolyte
solid solution
fuel cell
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12346294A
Other languages
Japanese (ja)
Other versions
JPH07335225A (en
Inventor
徹 塩満
高志 小川
昇一 須田
陽太郎 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP12346294A priority Critical patent/JP3246184B2/en
Publication of JPH07335225A publication Critical patent/JPH07335225A/en
Application granted granted Critical
Publication of JP3246184B2 publication Critical patent/JP3246184B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、固体電解質中で、高温
下において水素、一酸化炭素、メタン等の気体燃料と酸
素とを反応させて発電を行う、高温固体電解質燃料電池
の空気電極に関する。特に,空気電極、固体電解質、燃
料電極を円筒状に積層して形成した円筒型高温固体電解
質燃料電池に好適な空気電極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air electrode of a high-temperature solid electrolyte fuel cell which generates power by reacting a gaseous fuel such as hydrogen, carbon monoxide, methane or the like with oxygen in a solid electrolyte at a high temperature. . In particular, the present invention relates to an air electrode suitable for a cylindrical high-temperature solid electrolyte fuel cell formed by stacking an air electrode, a solid electrolyte, and a fuel electrode in a cylindrical shape.

【0002】[0002]

【従来の技術】円筒型高温固体電解質燃料電池の空気電
極の材料に関しては、特開昭61−171064号公報
に記載されているLa1-x x BO3 の一般式で表され
る金属酸化物固溶体(但し、上記一般式において、Aは
Ca、Sr及びBaの内の少なくとも一種、BはMn、
Cr及びCoの内の少なくとも一種とする)の様な、L
aの一部をCa、SrあるいはBa等で置換して、変成
した、亜クロム酸ランタンが代表的なものとして知られ
ている。
2. Description of the Related Art With respect to the material of an air electrode of a cylindrical high-temperature solid electrolyte fuel cell, a metal oxide represented by the general formula La 1-x A x BO 3 described in Japanese Patent Application Laid-Open No. 61-17164 is disclosed. Solid solution (however, in the above general formula, A is at least one of Ca, Sr and Ba, B is Mn,
L and at least one of Cr and Co).
Lanthanum chromite modified by substituting a part of a with Ca, Sr, Ba or the like is known as a typical example.

【0003】この材料を用いた円筒型高温固体電解質燃
料電池の発電管の構造が、特開昭63−261678号
公報に開示されている。その例を図5に示す。この発電
管は、以下の様な3層の円筒型構造であり、内層5は、
前記空気電極材料を用いた空気電極であって、同時に、
構造的強度を有する支持管を形成している。中間層6
は、例えば、イットリアで安定化したジルコニアからな
る、厚さ約1〜100μmの気密な固体電解質層であ
る。外層7は燃料電極を形成している。さらに固体電解
質層の周方向の一部に、管の長手方向に渡って切欠きを
設けて、この部分に、空気電極と外部回路との接続を行
うインタコネクタ8が形成されている。なお、図中、9
は空気の流れ、10は燃料の流れを表している。
A structure of a power generating tube of a cylindrical high temperature solid electrolyte fuel cell using this material is disclosed in Japanese Patent Application Laid-Open No. 63-261678. An example is shown in FIG. This power generating tube has the following three-layer cylindrical structure, and the inner layer 5
An air electrode using the air electrode material, at the same time,
A support tube having structural strength is formed. Middle layer 6
Is an airtight solid electrolyte layer made of, for example, zirconia stabilized with yttria and having a thickness of about 1 to 100 μm. The outer layer 7 forms a fuel electrode. Further, a cutout is provided in a part of the solid electrolyte layer in the circumferential direction along the longitudinal direction of the tube, and an interconnector 8 for connecting the air electrode to an external circuit is formed in this part. In the figure, 9
Represents the flow of air, and 10 represents the flow of fuel.

【0004】実際の発電モジュールは、図6に示す様
に、上記の発電管13を、多数、並列及び直列に接続し
て構成される。並列に接続する部分では、隣接する発電
管の燃料電極7相互を接続し、直列に接続する部分で
は、隣接する発電管の燃料電極7とインターコネクタ8
を接続する。なお、これらの電極間の接続にはニッケル
フェルト12が使用されている。
As shown in FIG. 6, an actual power generation module is configured by connecting a large number of the power generation tubes 13 in parallel and in series. In the part connected in parallel, the fuel electrodes 7 of adjacent power generation tubes are connected to each other, and in the part connected in series, the fuel electrode 7 of the adjacent power generation tube and the interconnector 8 are connected.
Connect. Note that a nickel felt 12 is used for connection between these electrodes.

【0005】[0005]

【発明が解決しようとする課題】従来の円筒型高温固体
電解質燃料電池の発電管では、内層の空気電極で発生し
た電荷は、インターコネクタまで移動するためには、空
気電極内を周方向に回り込まねばならず、空気電極の電
気抵抗が、発電モジュールとして構成した際の電池性
能、即ち起電力に大きな影響を与える。
In a conventional cylindrical high-temperature solid electrolyte fuel cell power generation tube, the electric charge generated at the air electrode in the inner layer wraps around the air electrode in the circumferential direction in order to move to the interconnector. The electric resistance of the air electrode has a great effect on the battery performance when configured as a power generation module, that is, the electromotive force.

【0006】さらに、発電管は、全て、熱伝導率の小さ
いセラミックスで形成されているので、発電時に長手方
向に温度分布が生じ易く、長時間に及ぶ発電において
は、この長手方向の温度分布に起因する熱応力が、発電
管の熱疲労破壊の要因の一つとなっている。
Further, since the power generating tubes are all formed of ceramics having a low thermal conductivity, a temperature distribution is likely to occur in the longitudinal direction during power generation. The resulting thermal stress is one of the factors of thermal fatigue failure of the power generation tube.

【0007】即ち、電池性能、及び電池寿命の向上のた
めには,導電性及び伝熱性に優れた空気電極材料の開発
が望まれていた。
That is, in order to improve battery performance and battery life, it has been desired to develop an air electrode material having excellent conductivity and heat conductivity.

【0008】[0008]

【課題を解決するための手段】上記課題は,高温固体電
解質燃料電池の空気電極材料として、金属酸化物固溶体
の中に、導電性材料の分散材を分散させた複合材料を用
いることによって解決される。
The above object can be attained by using a composite material in which a dispersing material of a conductive material is dispersed in a metal oxide solid solution as an air electrode material of a high temperature solid electrolyte fuel cell. You.

【0009】ここで、前記金属酸化物固溶体は、一般
式:La 1-x x BO 3 (但し、AはCa、Sr及びB
aの内の少なくとも一種、BはMn、Cr及びCoの内
の少なくとも一種とする)で表される金属酸化物固溶体
であり、前記分散材は63%Ni、23%Cr、13%
Fe、1%Al(重量%)の組成のCr合金が使用でき
る。
Here, the metal oxide solid solution is generally
Formula: La 1-x A x BO 3 (where A is Ca, Sr and B
at least one of a, B is Mn, Cr and Co
Metal oxide solid solution represented by
Wherein the dispersant is 63% Ni, 23% Cr, 13%
A Cr alloy having a composition of Fe and 1% Al (% by weight) can be used.

【0010】また、前記金属酸化物固溶体は、一般式:
La 1-x x BO 3 (但し、AはCa、Sr及びBaの
内の少なくとも一種、BはMn、Cr及びCoの内の少
なくとも一種とする)で表される金属酸化物固溶体であ
り、前記分散材は表面に予め、一般式:La 1-y y
3 (但し、AはCa、Sr及びBaの内の少なくとも
一種、BはMn、Cr及びCoの内の少なくとも一種と
する)で表される母材と同種の金属酸化物固溶体による
コーティングを施した耐熱合金を用いることにより、経
時変化がより少ない空気電極が形成できる。なお、分散
材表面へのコーティングは、例えば、コーティング材中
の元素比に対応する組成比の金属塩の水溶液を、加熱し
た分散材の表面に噴霧することにより行なわれる。
The metal oxide solid solution has a general formula:
La 1-x A x BO 3 (where A is Ca, Sr and Ba
B is at least one of Mn, Cr and Co.
At least one type).
In addition, the dispersant has a general formula: La 1-y A y B on the surface in advance.
O 3 (where A is at least one of Ca, Sr and Ba)
B is at least one of Mn, Cr and Co
The same type of metal oxide solid solution as the base material
By using a coated heat-resistant alloy, an air electrode with less change over time can be formed. The coating on the surface of the dispersion material is performed, for example, by spraying an aqueous solution of a metal salt having a composition ratio corresponding to the element ratio in the coating material onto the surface of the heated dispersion material.

【0011】[0011]

【作用】空気電極を、金属酸化物固溶体の中に、導電性
材料の分散材を分散させて焼結した複合材料によって形
成することによって、空気電極の電気伝導率および熱伝
導率を増大させることができる。なお、分散材として
は、繊維状、薄片状あるいは粒状などの各種形状のもの
が使用できるが、特に、繊維状のものを使用すると、空
気電極の機械的強度の改善に効果がある。
The air electrode is formed of a composite material obtained by dispersing a conductive material dispersing material in a metal oxide solid solution and sintering the same, thereby increasing the electric conductivity and thermal conductivity of the air electrode. Can be. As the dispersing material, various shapes such as a fibrous shape, a flaky shape or a granular shape can be used. In particular, using a fibrous shape is effective in improving the mechanical strength of the air electrode.

【0012】円筒型高温固体電解質燃料電池において
は、電気伝導率の増大によって、発電管の起電力が増大
して、電池性能が改善される。また、電気伝導率の増大
による発熱量の減少に加えて、熱伝導率の増大により、
発電管内の温度分布が緩和され、その結果、熱応力が軽
減されるので、発電管の寿命も改善される。なお、電気
伝導率および熱伝導率の増大による、起電力の増加及び
熱応力の軽減の効果は、円筒型の燃料電池に限定され
ず、高温固体電解質燃料電池一般に対しても有効であ
る。
In a cylindrical high-temperature solid electrolyte fuel cell, an increase in electric conductivity increases an electromotive force of a power generation tube, thereby improving cell performance. In addition to the decrease in the amount of heat generated by the increase in electrical conductivity, the increase in thermal conductivity
The life of the power generating tube is also improved because the temperature distribution in the power generating tube is reduced, and as a result, the thermal stress is reduced. The effects of increasing the electromotive force and reducing the thermal stress due to the increase in the electric conductivity and the heat conductivity are not limited to the cylindrical fuel cell, but are also effective for high-temperature solid electrolyte fuel cells in general.

【0013】金属酸化物固溶体としては、一般式:La
1-x x BO3 (ただし、AはCa、Sr及びBaの内
の少なくとも一種、BはMn、Cr及びCoの内の少な
くとも一種とする)で表される、従来型の金属酸化物固
溶体が使用できる。この場合、導電性材料の分散材とし
ては、当該金属酸化物固溶体の焼結温度において材質及
び形状が維持されることが要求されるので、耐熱合金が
適当である。
The metal oxide solid solution has a general formula: La
A conventional metal oxide solid solution represented by 1-x A x BO 3 (where A is at least one of Ca, Sr and Ba, and B is at least one of Mn, Cr and Co) Can be used. In this case, as the dispersing material of the conductive material, it is required that the material and the shape are maintained at the sintering temperature of the metal oxide solid solution, so that a heat-resistant alloy is appropriate.

【0014】また、空気電極に対しては通気性が要求さ
れるため、多孔質の組織を持つ様に製作されるので、焼
結工程のみでは、分散材の表面を金属酸化物固溶体で完
全に覆うことはできない。このため、発電時の高温環境
下で、耐熱合金の分散材の表面が酸化される現象があ
る。これを防ぐために、分散材に、予め、同種の金属酸
化物固溶体によりコーティングを施しておくと、コーテ
ィング層が、分散材の表面酸化による消耗を防止して、
空気電極の導電性及び伝熱性を、長時間、維持すること
ができる。
Further, since the air electrode is required to have air permeability, it is manufactured to have a porous structure. Therefore, only by the sintering step, the surface of the dispersing material is completely made of a metal oxide solid solution. It cannot be covered. For this reason, there is a phenomenon that the surface of the dispersion material of the heat-resistant alloy is oxidized in a high-temperature environment during power generation. To prevent this, the dispersion material is coated in advance with the same kind of metal oxide solid solution, the coating layer prevents the dispersant from being consumed by surface oxidation,
The conductivity and heat conductivity of the air electrode can be maintained for a long time.

【0015】[0015]

【実施例】本発明の空気電極材料の評価試験の結果の例
を以下に示す。金属酸化物固溶体としては、La0.8
0.2 MnO3 、分散材としては、63%Ni、23%
Cr、13%Fe、1%Al(重量%)の組成のCr合
金(商標名インコネル601)を素材とした、直径0.
25mm、長さ10mmの繊維状の分散材を使用した。
EXAMPLES Examples of the results of the evaluation test of the air electrode material of the present invention are shown below. As a metal oxide solid solution, La 0.8 S
r 0.2 MnO 3 , as a dispersing material, 63% Ni, 23%
A Cr alloy having a composition of Cr, 13% Fe, and 1% Al (% by weight) (trade name: Inconel 601) having a diameter of 0.1%.
A fibrous dispersion material having a length of 25 mm and a length of 10 mm was used.

【0016】コーティング用の処理剤としては、所定の
金属元素比になるように混合されたLa、Sr、および
Coの硝酸塩水溶液にグリセリンを加えて粘度を調製し
たものを用いて、この処理液を、予め300〜500℃
に加熱した分散材に噴霧した後、850℃で熱処理する
ことによってLa0.8 Sr0.2 CoO3 コーティングを
行なった。
As a treatment agent for coating, a treatment solution prepared by adding glycerin to an aqueous solution of nitrate of La, Sr, and Co and mixed so as to have a predetermined metal element ratio to adjust the viscosity is used. 300-500 ° C in advance
After spraying onto the heated dispersion material, heat treatment was performed at 850 ° C. to perform La 0.8 Sr 0.2 CoO 3 coating.

【0017】コーティング処理の後、上記の金属酸化物
固溶体と分散材とを、重量比1:1で混合して、直径2
0mm、厚さ7mmのペレット状に成形して、1000
℃で5時間、焼結した後、大きさ約5mm×5mm×1
0mmの直方体状に加工して試験片を作成した。
After the coating treatment, the metal oxide solid solution and the dispersant are mixed at a weight ratio of 1: 1 to form a mixture having a diameter of 2: 1.
0mm, 7mm thick pellet shape, 1000
After sintering at 5 ° C for 5 hours, size about 5mm x 5mm x 1
A test piece was prepared by processing into a 0 mm rectangular parallelepiped.

【0018】この試験片を用いて、高温固体電解質燃燃
料電池の代表的な動作温度である1000℃において、
直流4端子法によって、電気伝導率を測定した。その結
果、500Scm-1という良好な結果を得た。
Using this test piece, at 1000 ° C., which is a typical operating temperature of a high-temperature solid electrolyte fuel cell,
The electric conductivity was measured by a DC four-terminal method. As a result, a good result of 500 Scm -1 was obtained.

【0019】1000℃の空気中での高温暴露試験にお
ける電気伝導率の変化を図2に示す。高温暴露試験にお
いて、500時間経過後の電気伝導率は450Scm-1
となり、電気伝導率の変化はほとんど認められなかっ
た。
FIG. 2 shows the change in electric conductivity in a high-temperature exposure test in air at 1000 ° C. In the high-temperature exposure test, the electric conductivity after 500 hours passed was 450 Scm -1.
And almost no change in electric conductivity was observed.

【0020】また、室温と1000℃の間で、繰り返し
熱サイクルを与えて、電気伝導率の変化を測定した結果
を図3に示す。なお、1サイクル当たり25時間とし
て、昇温速度及び降温速度は100℃/hr、1000
℃での保持時間は5時間としている。熱サイクル試験に
おいて、20回の熱サイクルの負荷の後も、電気伝導率
の変化はほとんど認められなかった。
FIG. 3 shows the result of measuring the change in electric conductivity by repeatedly applying a thermal cycle between room temperature and 1000 ° C. In addition, the heating rate and the cooling rate were 100 ° C./hr and 1000
The holding time at ° C. is 5 hours. In the heat cycle test, almost no change in electrical conductivity was observed even after the load of 20 heat cycles.

【0021】さらに、燃料電池の起電力に与える効果を
調べるため、同じ空気電極材料を用いて、図1に示す様
な、内径8mm、外径14mm、長さ50mmの空気電
極を作成した。なお図中、1は金属酸化物固溶体、2は
耐熱合金の分散材を模式的に示している。
Further, in order to examine the effect on the electromotive force of the fuel cell, an air electrode having an inner diameter of 8 mm, an outer diameter of 14 mm and a length of 50 mm as shown in FIG. 1 was prepared using the same air electrode material. In the figures, 1 is a metal oxide solid solution, and 2 is a dispersant of a heat-resistant alloy.

【0022】この空気電極の外周部に8mol%Y2
3 −ZrO2 により厚み50μmの固体電解質膜を、そ
の外周部に8mol%Y2 3 −ZrO2 とNiとのサ
ーメットにより厚み50μmの燃料電極を積層して、さ
らに、固体電解質膜及び燃料電極の周方法の一部に設け
られた切欠き部に、La0.8 Sr0.2 CrO3 によるイ
ンタコネクタを、厚み40μで積層して発電管を作成し
た。
8 mol% Y 2 O is applied to the outer periphery of the air electrode.
The 3 -ZrO 2 solid electrolyte film with a thickness of 50 [mu] m, by laminating a fuel electrode having a thickness of 50 [mu] m by a cermet with 8mol% Y 2 O 3 -ZrO 2 and Ni on its outer periphery, furthermore, the solid electrolyte membrane and a fuel electrode An interconnector made of La 0.8 Sr 0.2 CrO 3 was laminated with a thickness of 40 μ on a notch provided in a part of the circumferential method to produce a power generating tube.

【0023】また、比較のため、分散剤を混入していな
い従来型のLa0.8 Sr0.2 MnO 3 のみの空気電極材
料を用いて、他は同じ条件として発電管を作成した。
For comparison, no dispersant was mixed.
Conventional La0.8Sr0.2MnO ThreeOnly air electrode material
The power generation tube was prepared using the materials and under the same conditions.

【0024】これら発電管に、燃料として水素(水蒸気
を4.2vol%含有)を、酸化剤として空気をそれぞ
れ供給して雰囲気温度の制御により、発電管近傍の温度
を1000℃に保持した条件下において発電試験を行っ
た。その結果を図4に示す。なお図中、3は本発明の空
気電極を用いた発電管の起電力、4は比較用の従来型の
空気電極を用いた発電管の起電力の測定値を示してい
る。
Hydrogen (containing 4.2 vol% of water vapor) as a fuel and air as an oxidant were supplied to these power generating tubes, and the temperature in the vicinity of the power generating tubes was maintained at 1000 ° C. by controlling the ambient temperature. A power generation test was performed. FIG. 4 shows the results. In the figures, 3 indicates the measured value of the electromotive force of the power generating tube using the air electrode of the present invention, and 4 indicates the measured value of the electromotive force of the power generating tube using the conventional air electrode for comparison.

【0025】従来の空気電極材料を用いた発電管では、
負荷電流密度300mA/cm2 において、起電力0.
70Vを示したのに対して、本発明による空気電極材料
を用いた発電管では同じ負荷電流密度において、起電力
0.73Vを示した。これは、空気電極の電気伝導率の
改善によって、燃料電池の性能が向上したことを示して
いる。
In a conventional power generating tube using an air electrode material,
At a load current density of 300 mA / cm 2 , an electromotive force of 0.
In contrast to 70 V, the power generating tube using the air electrode material according to the present invention showed an electromotive force of 0.73 V at the same load current density. This indicates that the performance of the fuel cell was improved by improving the electric conductivity of the air electrode.

【0026】[0026]

【発明の効果】本発明によれば、円筒型高温固体電解質
燃料電池において、空気電極を金属酸化物固溶体中に導
電性材料の分散材を分散させた複合材により形成するこ
とにより、電気伝導率が増加する結果、発電管の起電力
が増大する。また、電気伝導率及び熱伝導率が増加する
結果、発電中の発電管の温度分布が緩和され、熱応力が
軽減され、発電管の寿命が改善される。
According to the present invention, in a cylindrical high temperature solid electrolyte fuel cell, the air electrode is formed of a composite material in which a dispersing material of a conductive material is dispersed in a metal oxide solid solution, so that the electric conductivity is increased. As a result, the electromotive force of the power generation tube increases. In addition, as a result of the increase in electrical conductivity and thermal conductivity, the temperature distribution of the power generation tube during power generation is reduced, thermal stress is reduced, and the life of the power generation tube is improved.

【0027】なお、電気伝導率および熱伝導率の増大に
よる、起電力の増加及び熱応力の軽減の効果は、円筒型
の燃料電池に限定されず、高温固体電解質燃料電池一般
に対しても有効である。
The effects of increasing the electromotive force and reducing the thermal stress due to the increase in the electrical conductivity and the thermal conductivity are not limited to the cylindrical fuel cell, but are also effective for high-temperature solid electrolyte fuel cells in general. is there.

【0028】また、従来のLa1-x x BO3 の一般式
で表される金属酸化物固溶体を母材とし、分散材として
耐熱合金を使用する場合は、分散材の表面に、予め、前
記酸化物固溶体と同種の材料によりコーティング処理を
施しておくことによって、発電時の高温雰囲気中での分
散材の表面酸化による消耗が防止され、発電管の起電力
の長期安定化、及び、発電管の長寿命化の効果をさらに
高めることができる。
When a conventional metal oxide solid solution represented by the general formula of La 1-x A x BO 3 is used as a base material and a heat-resistant alloy is used as a dispersing material, the surface of the dispersing material must be By performing the coating treatment with the same kind of material as the oxide solid solution, wear of the dispersing material due to surface oxidation in a high-temperature atmosphere during power generation is prevented, long-term stabilization of the electromotive force of the power generation tube, and power generation. The effect of extending the life of the tube can be further enhanced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による合金の分散材を分散させた複合材
料による空気電極の説明図。
FIG. 1 is an explanatory view of an air electrode made of a composite material in which an alloy dispersant according to the present invention is dispersed.

【図2】本発明による空気電極材料の高温暴露試験にお
ける電気伝導率の経時変化についての測定データを示す
図。
FIG. 2 is a view showing measurement data on a change over time in electric conductivity in a high-temperature exposure test of an air electrode material according to the present invention.

【図3】本発明による空気電極材料の熱サイクル試験に
おける、電気伝導率の変化についての測定データを示す
図。
FIG. 3 is a view showing measured data on a change in electric conductivity in a heat cycle test of an air electrode material according to the present invention.

【図4】従来型の空気電極材料を用いた発電管と、本発
明による空気電極材料を用いた発電管との、発電特性の
比較試験の結果を示す図。
FIG. 4 is a view showing the results of a comparison test of power generation characteristics between a power generation tube using a conventional air electrode material and a power generation tube using the air electrode material according to the present invention.

【図5】従来の円筒型高温固体電解質燃料電池の発電管
の構造の説明図。
FIG. 5 is an explanatory view of the structure of a power generating tube of a conventional cylindrical high temperature solid electrolyte fuel cell.

【図6】従来の円筒型高温固体電解質燃料電池の発電管
の相互接続についての説明図。
FIG. 6 is an explanatory diagram of interconnection of power generation tubes of a conventional cylindrical high temperature solid electrolyte fuel cell.

【符号の説明】[Explanation of symbols]

1...金属酸化物固溶体 2...耐熱合金の分散材 3...本発明の空気電極を用いた発電管の起電力 4...従来型の空気電極を用いた発電管の起電力 5...空気電極 6...固体電解質層 7...燃料電極 8...インタコネクタ 9...空気の流れ 10...燃料の流れ 11...ニッケル板 12...ニッケルフェルト 13...発電管 1. . . 1. Metal oxide solid solution . . 2. Dispersing material of heat-resistant alloy . . 3. Electromotive force of power generation tube using air electrode of the present invention . . 4. Electromotive force of power generation tube using conventional air electrode . . Air electrode 6. . . Solid electrolyte layer 7. . . Fuel electrode 8. . . Interconnector 9. . . Air flow 10. . . Fuel flow 11. . . Nickel plate 12. . . Nickel felt 13. . . Generator tube

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大野 陽太郎 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (56)参考文献 特開 平3−81959(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/86 H01M 4/88 H01M 8/12 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yotaro Ohno 1-2-1 Marunouchi, Chiyoda-ku, Tokyo Inside Nippon Kokan Co., Ltd. (56) References JP-A-3-81959 (JP, A) (58) Survey Field (Int.Cl. 7 , DB name) H01M 4/86 H01M 4/88 H01M 8/12

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】金属酸化物固溶体の中に導電性材料の分散
材を分散させた複合材により形成され、前記金属酸化物
固溶体は、一般式:La 1-x x BO 3 (但し、AはC
a、Sr及びBaの内の少なくとも一種、BはMn、C
r及びCoの内の少なくとも一種とする)で表される金
属酸化物固溶体であり、前記分散材は63%Ni、23
%Cr、13%Fe、1%Al(重量%)の組成のCr
合金であること、を特徴とする高温固体電解質燃料電池
の空気電極。
1. Dispersion of a conductive material in a metal oxide solid solution
The metal oxide is formed by a composite material in which a material is dispersed.
The solid solution is represented by the general formula: La 1-x A x BO 3 (where A is C
at least one of a, Sr and Ba, B is Mn, C
represented by at least one of r and Co)
Oxide solid solution, wherein the dispersant is 63% Ni, 23
% Cr, 13% Fe, 1% Al (% by weight) Cr
An air electrode for a high temperature solid electrolyte fuel cell , which is an alloy .
【請求項2】金属酸化物固溶体の中に導電性材料の分散
材を分散させた複合材により形成され、前記金属酸化物
固溶体は、一般式:La 1-x x BO 3 (但し、AはC
a、Sr及びBaの内の少なくとも一種、BはMn、C
r及びCoの内の少なくとも一種とする)で表される金
属酸化物固溶体であり、前記分散材は表面に予め、一般
式:La 1-y y BO 3 (但し、AはCa、Sr及びB
aの内の少なくとも一種、BはMn、Cr及びCoの内
の少なくとも一種とする)で表される金属酸化物固溶体
のコーティングが施された耐熱合金であること、を特徴
とする高温固体電解質燃料電池の空気電極。
2. Dispersion of a conductive material in a metal oxide solid solution
The metal oxide is formed by a composite material in which a material is dispersed.
The solid solution is represented by the general formula: La 1-x A x BO 3 (where A is C
at least one of a, Sr and Ba, B is Mn, C
represented by at least one of r and Co)
Oxide solid solution, wherein the dispersant is
Formula: La 1-y A y BO 3 (where A is Ca, Sr and B
at least one of a, B is Mn, Cr and Co
Metal oxide solid solution represented by
An air electrode for a high-temperature solid electrolyte fuel cell, characterized in that the air electrode is a heat-resistant alloy coated with:
JP12346294A 1994-06-06 1994-06-06 Air electrode of high temperature solid electrolyte fuel cell Expired - Fee Related JP3246184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12346294A JP3246184B2 (en) 1994-06-06 1994-06-06 Air electrode of high temperature solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12346294A JP3246184B2 (en) 1994-06-06 1994-06-06 Air electrode of high temperature solid electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JPH07335225A JPH07335225A (en) 1995-12-22
JP3246184B2 true JP3246184B2 (en) 2002-01-15

Family

ID=14861232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12346294A Expired - Fee Related JP3246184B2 (en) 1994-06-06 1994-06-06 Air electrode of high temperature solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP3246184B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8939115B2 (en) 2009-11-18 2015-01-27 Harley-Davidson Motor Company Group, LLC Cylinder head cooling system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8939115B2 (en) 2009-11-18 2015-01-27 Harley-Davidson Motor Company Group, LLC Cylinder head cooling system

Also Published As

Publication number Publication date
JPH07335225A (en) 1995-12-22

Similar Documents

Publication Publication Date Title
EP0815607B1 (en) Fuel cell interconnect device
JP5173524B2 (en) Solid oxide fuel cell and water electrolysis cell
RU2521874C2 (en) Solid oxide cell and battery containing same
JP3617814B2 (en) Air electrode material for alkaline-earth-added nickel-iron perovskite-type low-temperature solid fuel cell
US7566509B2 (en) Tubular fuel cell and method of producing the same
JP4156213B2 (en) Solid oxide fuel cell
JPH04133264A (en) Fuel electrode of solid electrolyte cell and its manufacture
JP5259480B2 (en) Interconnector for solid oxide fuel cell and method for forming the same
JP3246184B2 (en) Air electrode of high temperature solid electrolyte fuel cell
US6379830B1 (en) Solid electrolyte fuel cell having anode comprising metal oxide particles in a porous platinum layer
US5989740A (en) Molten carbonate fuel cell
JP3241306B2 (en) Interconnector material
US6585931B1 (en) Molten carbonate fuel cell anode and method for manufacturing the same
JP2016085921A (en) Cell support and solid oxide fuel cell
JPH08264188A (en) Solid electrolyte type fuel cell and its manufacture
JPH1125999A (en) Solid electrolyte fuel cell
JP3297609B2 (en) Method for manufacturing fuel cell stack
US11063271B2 (en) Electrolyte with embedded metal for solid oxide electrochemical devices
JPH07201340A (en) Solid electrolyte fuel cell
AU704511B2 (en) Fuel cell interconnect device
JP2001196083A (en) Solid electrolyte fuel cell
CA2560769C (en) Electrolyte electrode assembly and method of producing the same
JPH03112059A (en) Solid electrolyte fuel cell
JP6948791B2 (en) Manufacturing method of cell-to-cell connection member and manufacturing method of cell for solid oxide fuel cell
JP3308089B2 (en) Solid electrolyte for fuel cell and solid electrolyte fuel cell using the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011002

LAPS Cancellation because of no payment of annual fees