JP3232568U - Vacuum sintering furnace capable of heating body and multi-region temperature control - Google Patents

Vacuum sintering furnace capable of heating body and multi-region temperature control Download PDF

Info

Publication number
JP3232568U
JP3232568U JP2021001232U JP2021001232U JP3232568U JP 3232568 U JP3232568 U JP 3232568U JP 2021001232 U JP2021001232 U JP 2021001232U JP 2021001232 U JP2021001232 U JP 2021001232U JP 3232568 U JP3232568 U JP 3232568U
Authority
JP
Japan
Prior art keywords
heating
output terminal
sintering furnace
vacuum sintering
electrode rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021001232U
Other languages
Japanese (ja)
Inventor
鵬 劉
鵬 劉
文立 徐
文立 徐
霆 杜
霆 杜
Original Assignee
寧波恒普真空技術有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 寧波恒普真空技術有限公司 filed Critical 寧波恒普真空技術有限公司
Application granted granted Critical
Publication of JP3232568U publication Critical patent/JP3232568U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B5/00Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated
    • F27B5/04Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated adapted for treating the charge in vacuum or special atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B5/00Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated
    • F27B5/06Details, accessories, or equipment peculiar to furnaces of these types
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B5/00Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated
    • F27B5/06Details, accessories, or equipment peculiar to furnaces of these types
    • F27B5/14Arrangements of heating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B5/00Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated
    • F27B5/06Details, accessories, or equipment peculiar to furnaces of these types
    • F27B5/18Arrangement of controlling, monitoring, alarm or like devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27MINDEXING SCHEME RELATING TO ASPECTS OF THE CHARGES OR FURNACES, KILNS, OVENS OR RETORTS
    • F27M2003/00Type of treatment of the charge
    • F27M2003/04Sintering

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Furnace Details (AREA)
  • Control Of Resistance Heating (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)
  • Resistance Heating (AREA)

Abstract

【課題】加熱体およびマルチ領域温度制御が可能な真空焼結炉を提供する。【解決手段】真空焼結炉は、密閉ボックス、加熱装置および断熱筒体を含み、加熱装置は密閉ボックスの外部に均等に分布している複数の加熱体群を含み、加熱体群はそれぞれ同じ構造を有し且つ密閉ボックスの側面を囲んでいる2つの加熱体を含み、加熱体は第1加熱構造と第2加熱構造を含み、第1加熱構造と第2加熱構造の先端が単相変圧器の出力端子に接続され、第1加熱構造と第2加熱構造の末端が長尺状接続部材を介して接続され、単相変圧器、第1加熱構造および第2加熱構造により電流ループが構成される。各々の加熱体で対応領域を加熱することによって、加熱体の加熱温度を自動的に調整することができ、また、複数の加熱体からなる加熱装置で真空焼結炉の複数の領域を加熱することによって、真空焼結炉の炉内の温度均一性を制御できる。【選択図】図1PROBLEM TO BE SOLVED: To provide a heating body and a vacuum sintering furnace capable of controlling a multi-region temperature. A vacuum sintering furnace includes a closed box, a heating device and a heat insulating cylinder, the heating device includes a plurality of heating bodies evenly distributed outside the closed box, and the heating bodies are the same. It contains two heating bodies that have a structure and surround the sides of the sealed box, the heating bodies include a first heating structure and a second heating structure, and the tips of the first heating structure and the second heating structure are single-phase transformers. It is connected to the output terminal of the vessel, the ends of the first heating structure and the second heating structure are connected via a long connecting member, and the single-phase transformer, the first heating structure and the second heating structure form a current loop. Will be done. By heating the corresponding region with each heating body, the heating temperature of the heating body can be automatically adjusted, and a heating device composed of a plurality of heating bodies heats a plurality of regions of the vacuum sintering furnace. Thereby, the temperature uniformity in the vacuum sintering furnace can be controlled. [Selection diagram] Fig. 1

Description

本出願は特許文献1の優先権を主張し、その内容全体が参照により本明細書に組み込まれる。 This application claims the priority of Patent Document 1, the entire contents of which are incorporated herein by reference.

本考案は、温度制御分野に関し、特に加熱体、およびマルチ領域温度制御が可能な真空焼結炉に関する。 The present invention relates to the field of temperature control, particularly to a heater and a vacuum sintering furnace capable of multi-region temperature control.

真空焼結炉は、生産性を向上させるために、炉内の空間を増加させる必要があるが、炉内の空間の増加により炉内の異なる領域の温度に通常>±10℃と大きな差をもたらし、そして炉内の空間の増加につれて、昇温中の異なる領域では、熱容量、加熱、断熱などの要因のために、温度差がより大きくなり、通常>±20℃である。他方、真空炉の発熱体の熱伝達は主に放射によるものであるが、異なる温度(光強度)における放射の熱伝達効率が異なるため、低温における炉内領域間の温度差が高温の場合の3倍になり、その結果、脱脂機能を有する真空炉の低温領域の均一性が製品の脱脂効果に直接影響し、最終製品の炭素含有量などに偏差をきたらす。低温では、脱脂プロセスを行い、温度を一般に≦600℃とし、高温では、焼結プロセスを行い、温度を一般に≧1000℃とし、低温の場合は、前後の温度差が10℃であり、それによって、前後で製品サイズに大きな違いが生じてしまい、前後の温度が近い高温焼結によっても、前の脱脂プロセスによる影響を解消できない。低温領域の均一性と高温領域の均一性が一致しないことにより、実際の生産には両立させることができない。したがって、温度分布の均一性は真空焼結炉の性能をテストするための非常に重要な指標の1つであり、炉内では、前、中間、後、上、下などの各領域での温度偏差が小さいほど、被処理物の焼結後のサイズと性能の制御性が良くなり、収率が高くなり、生産コストが低くなる。 In a vacuum sintering furnace, it is necessary to increase the space inside the furnace in order to improve productivity, but due to the increase in the space inside the furnace, the temperature in different regions inside the furnace usually has a large difference of> ± 10 ° C. As the resulting and increasing space in the furnace, in different regions during heating, the temperature difference becomes larger due to factors such as heat capacity, heating, adiabatic, usually> ± 20 ° C. On the other hand, the heat transfer of the heating element of the vacuum furnace is mainly due to radiation, but since the heat transfer efficiency of radiation at different temperatures (light intensity) is different, the temperature difference between the furnace regions at low temperature is high. As a result, the uniformity of the low temperature region of the vacuum furnace having a degreasing function directly affects the degreasing effect of the product, causing a deviation in the carbon content of the final product. At low temperatures, the degreasing process is performed and the temperature is generally ≤600 ° C. At high temperatures, the sintering process is performed and the temperature is generally ≥1000 ° C. , There is a big difference in product size before and after, and even high temperature sintering where the temperatures before and after are close cannot eliminate the influence of the previous degreasing process. Since the uniformity in the low temperature region and the uniformity in the high temperature region do not match, it cannot be compatible with actual production. Therefore, the uniformity of the temperature distribution is one of the very important indicators for testing the performance of the vacuum sintering furnace, and in the furnace, the temperature in each region such as front, middle, rear, top and bottom. The smaller the deviation, the better the controllability of the size and performance of the workpiece after sintering, the higher the yield, and the lower the production cost.

従来の真空焼結炉は、一体型加熱装置で密閉ボックスを加熱するのが一般的であるが、前後または上下の温度差が大きい場合は、発熱体のサイズを調整することで抵抗値を調整し、加えて、輸入断熱材で断熱して、このように、真空焼結炉の各領域での温度差の値を減少させる。そのため、従来の真空焼結炉の温度制御方式により温度の調整が困難となり、かつコストがかかる。 In a conventional vacuum sintering furnace, it is common to heat a closed box with an integrated heating device, but if the temperature difference between the front and back or the top and bottom is large, the resistance value is adjusted by adjusting the size of the heating element. In addition, it is insulated with imported insulation to thus reduce the value of the temperature difference in each region of the vacuum sintering furnace. Therefore, it is difficult and costly to adjust the temperature by the temperature control method of the conventional vacuum sintering furnace.

2018年04月02日出願、中国特許出願201810283615.8、発明の名称「加熱体、およびマルチ領域温度制御が可能な真空焼結炉」Filed April 02, 2018, Chinese patent application 201810283615.8, title of invention "heater and vacuum sintering furnace capable of multi-region temperature control"

本考案の目的は、従来の一体型加熱装置における上下および前後における温度偏差が大きいことにより、製品のサイズおよび性能の偏差が大きい、装置の温度制御性が悪くなるという問題を解決し、真空焼結炉の製造コストおよび製品の生産コストを下げるために、加熱体、およびマルチ領域温度制御が可能な真空焼結炉を提供することである。 An object of the present invention is to solve the problems that the temperature deviation between the upper and lower sides and the front and back of the conventional integrated heating device is large, the size and performance of the product are large, and the temperature controllability of the device is deteriorated. It is an object of the present invention to provide a heating body and a vacuum sintering furnace capable of multi-region temperature control in order to reduce the production cost of the knot and the production cost of the product.

上記目的を達成させるために、本考案の技術案は以下のとおりである。加熱体であって、前記加熱体は、角柱体の3つの隣接側面を構成し、第1加熱構造と第2加熱構造を含み、前記第1加熱構造は第1電極棒、複数の第1加熱部材および複数の第1隅部接続部材を含み、隣接する2つの前記第1加熱部材は1つの前記第1隅部接続部材を介して接続され、前記第1隅部接続部材が前記角柱体の側稜位置に位置し、前記第1加熱部材が前記角柱体の側面位置に位置し、前記第1電極棒の電流出力端子が前記第1加熱構造の先端における第1加熱部材に接続され、前記第1電極棒の電流入力端子が単相変圧器の出力端子の第1端に接続され、前記第2加熱構造は、第2電極棒、複数の第2加熱部材および複数の第2隅部接続部材を含み、隣接する2つの前記第2加熱部材は1つの前記第2隅部接続部材を介して接続され、前記第2隅部接続部材が前記角柱体の側稜位置に位置し、前記第2加熱部材が前記角柱体の側面位置に位置し、前記第2電極棒の電流入力端子が前記第2加熱構造の先端における第2加熱部材に接続され、前記第2電極棒の電流出力端子が前記単相変圧器の出力端子の第2端に接続され、前記第1加熱構造の末端における第1加熱部材と前記第2加熱構造の末端における第2加熱部材は長尺状接続部材を介して接続され、前記単相変圧器、前記第1加熱構造および前記第2加熱構造により電流ループが構成される。 In order to achieve the above object, the technical proposal of the present invention is as follows. A heating body, the heating body constitutes three adjacent side surfaces of a prismatic body, includes a first heating structure and a second heating structure, and the first heating structure includes a first electrode rod and a plurality of first heating bodies. The two adjacent first heating members, including the member and the plurality of first corner connecting members, are connected via one first corner connecting member, and the first corner connecting member is the prismatic body. The first heating member is located at the side ridge position, the first heating member is located at the side surface position of the square column, and the current output terminal of the first electrode rod is connected to the first heating member at the tip of the first heating structure. The current input terminal of the first electrode rod is connected to the first end of the output terminal of the single-phase transformer, and the second heating structure includes a second electrode rod, a plurality of second heating members, and a plurality of second corner connections. Two adjacent second heating members including the member are connected via one second corner connecting member, and the second corner connecting member is located at a side ridge position of the square column, and the first 2 The heating member is located at a side surface position of the square column, the current input terminal of the second electrode rod is connected to the second heating member at the tip of the second heating structure, and the current output terminal of the second electrode rod is connected. The first heating member at the end of the first heating structure and the second heating member at the end of the second heating structure are connected to the second end of the output terminal of the single-phase transformer via a long connecting member. Connected, the single-phase transformer, the first heating structure and the second heating structure form a current loop.

好ましくは、前記単相変圧器の入力端子がパワーコントローラの出力端子に接続され、前記パワーコントローラの制御入力端子がPIDコントローラの制御出力端子に接続され、前記PIDのPV入力端子が被加熱物体の領域内に設置された熱電対に接続され、前記熱電対は前記加熱体に対応した被加熱物体の温度測定値を前記PIDコントローラに伝送し、前記PIDコントローラは前記パワーコントローラの出力パワーを制御することで前記単相変圧器の出力パワーを制御して、前記加熱体の加熱温度を調整する。 Preferably, the input terminal of the single-phase transformer is connected to the output terminal of the power controller, the control input terminal of the power controller is connected to the control output terminal of the PID controller, and the PV input terminal of the PID is a heated object. Connected to a thermocouple installed in the region, the thermocouple transmits a temperature measurement value of the object to be heated corresponding to the heating body to the PID controller, and the PID controller controls the output power of the power controller. By controlling the output power of the single-phase transformer, the heating temperature of the heating body is adjusted.

前記第1電極棒の電流出力端子は、ネジが設けられており、ナットにより前記第1加熱構造の先端における第1加熱部材に接続され、前記第2電極棒の電流入力端子は、ネジが設けられており、ナットにより前記第2加熱構造の先端における第2加熱部材に接続されるようにしてもよい。 The current output terminal of the first electrode rod is provided with a screw and is connected to the first heating member at the tip of the first heating structure by a nut, and the current input terminal of the second electrode rod is provided with a screw. It may be connected to the second heating member at the tip of the second heating structure by a nut.

前記第1加熱部材と前記第2加熱部材はいずれも内部が中空、縁部が曲線状となる板状構造であるようにしてもよい。 Both the first heating member and the second heating member may have a plate-like structure in which the inside is hollow and the edge is curved.

前記第1加熱部材と前記第2加熱部材はいずれも内部が中空の長方形板状構造であるようにしてもよい。 Both the first heating member and the second heating member may have a rectangular plate-like structure having a hollow inside.

本考案はさらに、マルチ領域温度制御が可能な真空焼結炉であって、密閉ボックス、加熱装置および断熱筒体を含み、前記密閉ボックスは角柱形、前記断熱筒体は円柱形または角柱形であり、前記加熱装置は、前記断熱筒体と前記密閉ボックスの間に設置され、前記密閉ボックスの外部に均等に分布して前記密閉ボックスの複数の領域を加熱する複数の加熱体群を含み、前記加熱体群はそれぞれ同じ構造を有し且つ前記密閉ボックスの側面を上下に囲んでいる2つの加熱体を含み、前記加熱体は、前記密閉ボックスの3つの隣接側面に分布しており、第1加熱構造と第2加熱構造を含み、前記第1加熱構造の先端が単相変圧器の出力端子の第1端に接続され、前記第2加熱構造の先端が前記単相変圧器の出力端子の第2端に接続され、前記第1加熱構造の末端と前記第2加熱構造の末端は長尺状接続部材を介して接続され、前記単相変圧器、前記第1加熱構造および前記第2加熱構造により電流ループが構成される、真空焼結炉を提供する。 The present invention is further a vacuum sintering furnace capable of multi-region temperature control, which includes a closed box, a heating device and a heat insulating cylinder, the closed box having a prismatic shape, and the heat insulating cylinder having a cylindrical or square pillar shape. The heating device includes a plurality of heating bodies that are installed between the heat insulating cylinder and the sealing box and are evenly distributed outside the sealing box to heat a plurality of regions of the sealing box. The heating body group includes two heating bodies each having the same structure and vertically surrounding the side surface of the closed box, and the heating bodies are distributed on three adjacent side surfaces of the closed box. The tip of the first heating structure is connected to the first end of the output terminal of the single-phase transformer, and the tip of the second heating structure is the output terminal of the single-phase transformer. The end of the first heating structure and the end of the second heating structure are connected to the second end of the single-phase transformer, the first heating structure and the second. Provided is a vacuum sintering furnace in which a current loop is formed by a heating structure.

前記第1加熱構造は、第1電極棒、複数の第1加熱部材および複数の第1隅部接続部材を含み、隣接する2つの前記第1加熱部材は1つの前記第1隅部接続部材を介して接続され、前記第1隅部接続部材が前記角柱形の密閉ボックスの側稜位置に位置し、前記第1加熱部材が前記角柱形の密閉ボックスの側面位置に位置し、前記第1電極棒の電流出力端子が前記第1加熱構造の先端における第1加熱部材に接続され、前記第1電極棒の電流入力端子が単相変圧器の出力端子の第1端に接続され、前記第2加熱構造は、第2電極棒、複数の第2加熱部材および複数の第2隅部接続部材を含み、隣接する2つの前記第2加熱部材は1つの前記第2隅部接続部材を介して接続され、前記第2隅部接続部材が前記角柱形の密閉ボックスの側稜位置に位置し、前記第2加熱部材が前記角柱形の密閉ボックスの側面位置に位置し、前記第2電極棒の電流入力端子が前記第2加熱構造の先端における第2加熱部材に接続され、前記第2電極棒の電流出力端子が前記単相変圧器の出力端子の第2端に接続されるようにしてもよい。 The first heating structure includes a first electrode rod, a plurality of first heating members, and a plurality of first corner connecting members, and two adjacent first heating members have one first corner connecting member. The first corner connecting member is located at the side ridge position of the prismatic sealing box, the first heating member is located at the side surface position of the prismatic sealing box, and the first electrode is connected. The current output terminal of the rod is connected to the first heating member at the tip of the first heating structure, the current input terminal of the first electrode rod is connected to the first end of the output terminal of the single-phase transformer, and the second The heating structure includes a second electrode rod, a plurality of second heating members, and a plurality of second corner connecting members, and two adjacent second heating members are connected via one second corner connecting member. The second corner connecting member is located at the side ridge position of the prismatic sealing box, the second heating member is located at the side surface position of the prismatic sealing box, and the current of the second electrode rod is The input terminal may be connected to the second heating member at the tip of the second heating structure, and the current output terminal of the second electrode rod may be connected to the second end of the output terminal of the single-phase transformer. ..

前記真空焼結炉はさらに、複数の熱電対、複数のPIDコントローラおよび複数のパワーコントローラを含み、k番目の加熱体に対しては、前記熱電対が前記PIDコントローラのPV入力端子に接続されて、前記k番目の加熱体に対応した前記密閉ボックスのk番目の被加熱領域の温度測定値を前記PIDコントローラに伝送し、前記PIDコントローラの制御出力端子が前記パワーコントローラの制御入力端子に接続され、前記パワーコントローラの出力端子が前記k番目の加熱体に対応した単相変圧器の入力端子に接続されて、前記単相変圧器の出力パワーを調整することで、前記k番目の加熱体による前記k番目の被加熱領域への加熱温度を調整するようにしてもよい。 The vacuum sintering furnace further includes a plurality of thermocouples, a plurality of PID controllers and a plurality of power controllers, and for the k-th heating body, the thermocouple is connected to the PV input terminal of the PID controller. , The temperature measurement value of the kth heated region of the sealed box corresponding to the kth heating body is transmitted to the PID controller, and the control output terminal of the PID controller is connected to the control input terminal of the power controller. The output terminal of the power controller is connected to the input terminal of the single-phase transformer corresponding to the k-th heating body, and the output power of the single-phase transformer is adjusted to obtain the k-th heating body. The heating temperature to the k-th heated region may be adjusted.

前記真空焼結炉の複数の領域を加熱するために、前記加熱体群の数が1より大きいようにしてもよい。 In order to heat a plurality of regions of the vacuum sintering furnace, the number of the heating bodies may be larger than 1.

前記真空焼結炉はさらに、前記加熱装置と前記真空焼結炉内におけるほかの部品とを離間させるための絶縁材料を含むようにしてもよい。 The vacuum sintering furnace may further include an insulating material for separating the heating device from other parts in the vacuum sintering furnace.

従来技術に比べて、本考案は、真空焼結炉の均一な温度制御を達成するために、各加熱領域の加熱温度がPIDによって自動的に調整されるという利点を有する。マルチ領域温度制御の方式により、真空焼結炉の領域間の温度差が小さく、動的温度応答が良好であり、そして低温領域と高温領域の間の温度差が一致に調整できるという効果を奏する。大体積の炉型でも温度均一性が自動的に実現でき、従来の加熱方式に比べて、同体積の真空焼結炉では、異なる領域間の温度差の値が大幅に減少し、かつ断熱材自体への要求も低下し、さらにコストが削減される。本考案の加熱装置を用いて真空焼結炉を加熱すると、全炉の収率が改善され、生産量が高まり、そして一部の領域の温度偏差によって製品サイズ、炭素含有量、外観および密度が標準に達しないという従来の問題が解決され、昇温速度が高まり、加熱プロセスの時間が短縮されて、コストが節約される。 Compared with the prior art, the present invention has the advantage that the heating temperature of each heating region is automatically adjusted by the PID in order to achieve uniform temperature control of the vacuum sintering furnace. The multi-region temperature control method has the effect that the temperature difference between the regions of the vacuum sintering furnace is small, the dynamic temperature response is good, and the temperature difference between the low temperature region and the high temperature region can be adjusted consistently. .. Temperature uniformity can be automatically achieved even in a large volume furnace type, and compared to the conventional heating method, in a vacuum sintering furnace of the same volume, the value of the temperature difference between different regions is significantly reduced, and the heat insulating material The demand for itself is also reduced, and the cost is further reduced. Heating a vacuum sintering furnace using the heating device of the present invention improves the yield of the whole furnace, increases the production volume, and the temperature deviation in some areas results in product size, carbon content, appearance and density. The traditional problem of non-standards is solved, the heating rate is increased, the heating process time is shortened, and the cost is saved.

本考案の加熱体の構造模式図Schematic diagram of the structure of the heating body of the present invention 本考案の加熱体の展開模式図Developmental schematic diagram of the heating body of the present invention 本考案の真空焼結炉の断面模式図Schematic cross-sectional view of the vacuum sintering furnace of the present invention 本考案の真空焼結炉における加熱装置の構造模式図Schematic diagram of the structure of the heating device in the vacuum sintering furnace of the present invention 本考案の真空焼結炉における加熱装置の複数の加熱体群の回路模式図Schematic diagram of a plurality of heating bodies of a heating device in the vacuum sintering furnace of the present invention 本考案の実施形態に係る炉内温度測定点の分布模式図Schematic diagram of distribution of temperature measurement points in the furnace according to the embodiment of the present invention

本考案の趣旨は、従来の一体型加熱装置の上下および前後の温度偏差が大きいことにより、製品のサイズおよび性能の偏差が大きい、装置の温度制御性が悪くなるという問題を解決し、真空焼結炉の製造コストおよび製品の生産コストを下げるために、加熱体、およびマルチ領域温度制御が可能な真空焼結炉を提供することである。 The purpose of the present invention is to solve the problems that the temperature deviation between the upper and lower sides and the front and back of the conventional integrated heating device is large, the deviation in the size and performance of the product is large, and the temperature controllability of the device is deteriorated. It is an object of the present invention to provide a heating body and a vacuum sintering furnace capable of multi-region temperature control in order to reduce the production cost of the knot and the production cost of the product.

以下、図面を参照しながら本考案をさらに説明する。
具体的にはな実施例を参照しながら、本考案をより詳細に説明する。
Hereinafter, the present invention will be further described with reference to the drawings.
The present invention will be described in more detail with reference to specific examples.

図1は本考案の加熱体の構造模式図である。図1に示されるように、加熱体は、角柱体の3つの隣接側面を構成して、凸状となる。前記加熱体は、第1加熱構造1と第2加熱構造2を含み、前記第1加熱構造1は、第1電極棒1−1、複数の第1加熱部材1−2および複数の第1隅部接続部材1−3を含み、隣接する2つの前記第1加熱部材1−2は1つの第1隅部接続部材1−3を介して接続され、前記第1隅部接続部材1−3が前記角柱体の側稜位置に位置し、前記第1加熱部材1−2が前記角柱体の側面位置に位置し、前記第1電極棒1−1の電流出力端子が前記第1加熱構造1の先端における第1加熱部材に接続され、前記第1電極棒1−1の電流入力端子が単相変圧器の出力端子の第1端に接続され、第1電極棒1−1の電流出力端子は、ネジが設けられており、ナット1−4によって第1加熱部材1−2に固定して接続される。第1加熱部材1−2と第1隅部接続部材1−3もボルトとナットにより接続される。 FIG. 1 is a schematic structural diagram of the heated body of the present invention. As shown in FIG. 1, the heated body constitutes three adjacent side surfaces of the prismatic body and has a convex shape. The heating body includes a first heating structure 1 and a second heating structure 2, and the first heating structure 1 includes a first electrode rod 1-1, a plurality of first heating members 1-2, and a plurality of first corners. The two adjacent first heating members 1-2 including the part connecting member 1-3 are connected via one first corner connecting member 1-3, and the first corner connecting member 1-3 is connected. The first heating member 1-2 is located at the side ridge position of the square pillar body, the first heating member 1-2 is located at the side surface position of the square pillar body, and the current output terminal of the first electrode rod 1-1 is the first heating structure 1. The current input terminal of the first electrode rod 1-1 is connected to the first end of the output terminal of the single-phase transformer, and the current output terminal of the first electrode rod 1-1 is connected to the first heating member at the tip. , Screws are provided, and are fixed and connected to the first heating member 1-2 by the nuts 1-4. The first heating member 1-2 and the first corner connecting member 1-3 are also connected by bolts and nuts.

同様に、第2加熱構造2は、第1加熱構造1と同じ構造を有し、第2電極棒2−1、複数の第2加熱部材2−2および複数の第2隅部接続部材2−3を含み、隣接する2つの前記第2加熱部材2−2は第2隅部接続部材2−3を介して接続され、前記第2隅部接続部材2−3が前記角柱体の側稜位置に位置し、前記第2加熱部材2−2が前記角柱体の側面位置に位置し、前記第2電極棒2−1の電流入力端子が前記第2加熱構造2の先端における第2加熱部材に接続され、前記第2電極棒2−1の電流出力端子が前記単相変圧器の出力端子の第2端に接続される。 Similarly, the second heating structure 2 has the same structure as the first heating structure 1, and has a second electrode rod 2-1 and a plurality of second heating members 2-2 and a plurality of second corner connecting members 2-. The two adjacent second heating members 2-2 including 3 are connected via the second corner connecting member 2-3, and the second corner connecting member 2-3 is located at the side ridge of the square column. The second heating member 2-2 is located at a side surface position of the square column body, and the current input terminal of the second electrode rod 2-1 is attached to the second heating member at the tip of the second heating structure 2. It is connected, and the current output terminal of the second electrode rod 2-1 is connected to the second end of the output terminal of the single-phase transformer.

前記第1加熱構造1の末端における第1加熱部材と前記第2加熱構造2の末端における第2加熱部材は長尺状接続部材3を介して接続され、前記単相変圧器(未図示)、前記第1加熱構造1、前記長尺状接続部材3および前記第2加熱構造2により電流ループが構成される。 The first heating member at the end of the first heating structure 1 and the second heating member at the end of the second heating structure 2 are connected via a long connecting member 3, and the single-phase transformer (not shown). A current loop is formed by the first heating structure 1, the elongated connecting member 3, and the second heating structure 2.

第1加熱部材と第2加熱部材の構造については、内部が中空、縁部が曲線状となる板状構造としてもよく、内部が中空の長方形板状構造としてもよく、また、加熱部材の厚みと幅を減少させることによって、抵抗を増大するとともに、スペースをコンパクトにする。また、曲線状に配列されることで、放射面積を大幅に増大して、加熱されるべき物体をより迅速かつ均一に加熱する。 The structures of the first heating member and the second heating member may be a plate-like structure having a hollow inside and a curved edge, a rectangular plate-like structure having a hollow inside, and the thickness of the heating member. And by reducing the width, the resistance is increased and the space is made compact. Also, by arranging in a curved line, the radiant area is greatly increased, and the object to be heated is heated more quickly and uniformly.

加熱体を使用するとき、PIDコントローラで単相変圧器の出力パワーを制御することで、加熱体の加熱温度を調整できる。具体的には、単相変圧器の入力端子がパワーコントローラの出力端子に接続され、前記パワーコントローラの制御入力端子がPIDコントローラの制御出力端子に接続され、前記PIDのPV入力端子が被加熱物体の領域内に設置された熱電対に接続され、前記熱電対は、前記加熱体に対応した被加熱物体の温度測定値を前記PIDコントローラに伝送し、前記PIDコントローラは、前記パワーコントローラの出力パワーを制御することで前記単相変圧器の出力パワーを制御して、前記加熱体による被加熱領域への加熱温度を調整する。 When the heating body is used, the heating temperature of the heating body can be adjusted by controlling the output power of the single-phase transformer with the PID controller. Specifically, the input terminal of the single-phase transformer is connected to the output terminal of the power controller, the control input terminal of the power controller is connected to the control output terminal of the PID controller, and the PV input terminal of the PID is the object to be heated. The thermocouple is connected to a thermocouple installed in the area of the above, and the thermocouple transmits the temperature measurement value of the object to be heated corresponding to the heating body to the PID controller, and the PID controller uses the output power of the power controller. By controlling the above, the output power of the single-phase transformer is controlled to adjust the heating temperature of the heated body to the area to be heated.

図2は本考案の加熱体の展開模式図である。図2に示されるように、加熱体は単相回路を構成し、電流が単相変圧器の出力端子の第1端から取り出されて、第1電極棒1−1、第1加熱部材1−2、長尺状接続部材3、第2加熱部材2−2、第2電極棒2−1を流れて、単相変圧器出力端子の第2端に入る。 FIG. 2 is a developed schematic view of the heating body of the present invention. As shown in FIG. 2, the heating body constitutes a single-phase circuit, and current is taken out from the first end of the output terminal of the single-phase transformer, and the first electrode rod 1-1 and the first heating member 1- 2. It flows through the long connecting member 3, the second heating member 2-2, and the second electrode rod 2-1 and enters the second end of the single-phase transformer output terminal.

図3は本考案の真空焼結炉の断面模式図である。図3に示されるように、前記真空焼結炉は、炉体7の内部に配置された、密閉ボックス4、加熱装置5および断熱筒体6を含む。 FIG. 3 is a schematic cross-sectional view of the vacuum sintering furnace of the present invention. As shown in FIG. 3, the vacuum sintering furnace includes a closed box 4, a heating device 5, and a heat insulating cylinder 6 arranged inside the furnace body 7.

前記密閉ボックス4は角柱形であり、前記加熱装置5は前記断熱筒体6と前記密閉ボックス4の間に設置され、密閉ボックスガイドレール8が密閉ボックス4の底面に取り付けらえて、前記密閉ボックス4を支持する。前記加熱装置5は、前記密閉ボックス4の外部に均一に分布して前記密閉ボックス4を均一に囲んでいる複数の加熱体群を含む。 The airtight box 4 has a prismatic shape, the heating device 5 is installed between the heat insulating cylinder 6 and the airtight box 4, and the airtight box guide rail 8 is attached to the bottom surface of the airtight box 4. Support 4. The heating device 5 includes a plurality of heating bodies that are uniformly distributed outside the closed box 4 and uniformly surround the closed box 4.

前記加熱体群はそれぞれ同じ構造を有しかつ前記密閉ボックス4の側面を上下に囲んでいる2つの加熱体を含み、前記加熱体は図1に示された加熱体構造を有する。前記加熱体は、前記密閉ボックス4の3つの隣接側面に分布しており、第1加熱構造と第2加熱構造を含み、前記第1加熱構造の先端が前記単相変圧器の出力端子の第1端に接続され、前記第2加熱構造の先端が前記単相変圧器の出力端子の第2端に接続され、前記第1加熱構造の末端と前記第2加熱構造の末端は前記長尺状接続部材3を介して接続され、前記単相変圧器、前記第1加熱構造、および前記第2加熱構造により電流ループが構成される。前記第1加熱構造は、第1電極棒、複数の第1加熱部材および複数の第1隅部接続部材を含み、隣接する2つの前記第1加熱部材は1つの前記第1隅部接続部材を介して接続され、前記第1隅部接続部材が前記角柱形の密閉ボックスの側稜位置に位置し、前記第1加熱部材が前記角柱形の密閉ボックスの側面位置に位置し、前記第1電極棒の電流出力端子が前記第1加熱構造の先端における第1加熱部材に接続され、前記第1電極棒の電流入力端子が前記単相変圧器の出力端子の第1端に接続され、前記第2加熱構造は、第2電極棒、複数の第2加熱部材および複数の第2隅部接続部材を含み、隣接する2つの前記第2加熱部材は1つの前記第2隅部接続部材を介して接続され、前記第2隅部接続部材が前記角柱形の密閉ボックスの側稜位置に位置し、前記第2加熱部材が前記角柱形の密閉ボックスの側面位置に位置し、前記第2電極棒の電流入力端子が前記第2加熱構造の先端における第2加熱部材に接続され、前記第2電極棒の電流出力端子が前記単相変圧器の出力端子の第2端に接続される。ここでいう加熱体が同じ構造を有する、および、加熱体群が同じ構造を有するとは、同じ構成要素を有するとともに、構造の組成が同じであることを意味する。通常、全体の形状が完全に同様にされればよいが、特殊な位置の場合は、加熱部材の幅または湾曲形状などのほかのパラメータを必要に応じて調整することができる。図3において、5−1は加熱体群における1つの加熱体の1つの電極棒である。 The heating body group includes two heating bodies each having the same structure and vertically surrounding the side surface of the closed box 4, and the heating body has the heating body structure shown in FIG. The heating body is distributed on three adjacent side surfaces of the closed box 4, includes a first heating structure and a second heating structure, and the tip of the first heating structure is the first output terminal of the single-phase transformer. It is connected to one end, the tip of the second heating structure is connected to the second end of the output terminal of the single-phase transformer, and the end of the first heating structure and the end of the second heating structure are elongated. Connected via a connecting member 3, the single-phase transformer, the first heating structure, and the second heating structure form a current loop. The first heating structure includes a first electrode rod, a plurality of first heating members, and a plurality of first corner connecting members, and two adjacent first heating members have one first corner connecting member. The first corner connecting member is located at the side ridge position of the prismatic sealing box, the first heating member is located at the side surface position of the prismatic sealing box, and the first electrode is connected. The current output terminal of the rod is connected to the first heating member at the tip of the first heating structure, and the current input terminal of the first electrode rod is connected to the first end of the output terminal of the single-phase transformer. The two heating structure includes a second electrode rod, a plurality of second heating members, and a plurality of second corner connecting members, and two adjacent second heating members are interposed via one second corner connecting member. Connected, the second corner connecting member is located at the side ridge position of the prismatic sealing box, the second heating member is located at the side surface position of the prismatic sealing box, and the second electrode rod is connected. The current input terminal is connected to the second heating member at the tip of the second heating structure, and the current output terminal of the second electrode rod is connected to the second end of the output terminal of the single-phase transformer. When the heated bodies have the same structure and the heated bodies have the same structure, it means that they have the same components and the same structure composition. Normally, the overall shape may be exactly the same, but for special positions other parameters such as the width or curved shape of the heating member can be adjusted as needed. In FIG. 3, 5-1 is one electrode rod of one heating body in the heating body group.

前記真空焼結炉はさらに、複数のThc熱電対9、複数のPIDコントローラおよび複数のパワーコントローラを含み、この場合、熱電対、PIDコントローラ、パワーコントローラ、単相変圧器および加熱体の数が対応している。k番目の加熱体に対しては、前記熱電対は前記PIDコントローラのPV入力端子に接続されて、前記k番目の加熱体に対応した前記密閉ボックスのk番目の被加熱領域の温度測定値を前記PIDコントローラに伝送し、前記PIDコントローラの制御出力端子が前記パワーコントローラの制御入力端子に接続され、前記パワーコントローラの出力端子が前記k番目の加熱体に対応した単相変圧器の入力端子に接続されて、前記k番目の加熱体に対応した単相変圧器の出力パワーを調整することで、前記k番目の加熱体による前記k番目の被加熱領域への加熱温度を調整する。k番目の加熱体とは、加熱装置におけるいずれかの加熱体である。 The vacuum sintering furnace further includes a plurality of Thc thermocouples 9, a plurality of PID controllers and a plurality of power controllers, in which case the number of thermocouples, PID controllers, power controllers, single-phase transformers and heating elements corresponds. doing. For the k-th heating body, the thermocouple is connected to the PV input terminal of the PID controller, and the temperature measurement value of the k-th heated region of the sealed box corresponding to the k-th heating body is measured. It is transmitted to the PID controller, the control output terminal of the PID controller is connected to the control input terminal of the power controller, and the output terminal of the power controller becomes the input terminal of the single-phase transformer corresponding to the kth heating body. By adjusting the output power of the single-phase transformer corresponding to the k-th heating body, the heating temperature of the k-th heating body to the k-th heated region is adjusted. The k-th heating body is any heating body in the heating device.

具体的には、加熱装置5の構造は図4に示されており、図4は本考案の真空焼結炉における加熱装置の構造模式図である。従来の炉型で生じる温度偏差が前、中、後、上、下の6つの領域では大きいため、真空焼結炉を6つの領域に分けて加熱制御を行える。図4には、3組の加熱体群を例にしており、A1は第1加熱体群における一番目の加熱体の第1電極棒であり、B1は第1加熱体群における一番目の加熱体の第2電極棒であり、A4は第1加熱体群における二番目の加熱体の第1電極棒であり、B4は第1加熱体群における二番目の加熱体の第2電極棒であり、A2は第2加熱体群における一番目の加熱体の第1電極棒であり、B2は第2加熱体群における一番目の加熱体の第2電極棒であり、A5は第2加熱体群における二番目の加熱体の第1電極棒であり、B5は第2加熱体群における二番目の加熱体の第2電極棒であり、A3は第3加熱体群における一番目の加熱体の第1電極棒であり、B3は第3加熱体群における一番目の加熱体の第2電極棒であり、A6は第3加熱体群における二番目の加熱体の第1電極棒であり、B6は第3加熱体群における二番目の加熱体の第2電極棒である。以上の加熱体群は、炉内の密閉ボックスを6つの領域に分けて加熱温度制御を行い、第1加熱体群の第1加熱体は密閉ボックスの上部について加熱と温度制御を行い、第1加熱体群の第2加熱体は密閉ボックスの下部について加熱と温度制御を行う。同様に、第2、第3加熱体群は、密閉ボックスの対応領域について加熱と温度制御を行い、このように、前、中、後、上、下の6つの領域に分けて別々に温度制御を行うことによって、炉内の温度均一性が実現される。 Specifically, the structure of the heating device 5 is shown in FIG. 4, and FIG. 4 is a schematic view of the structure of the heating device in the vacuum sintering furnace of the present invention. Since the temperature deviation generated in the conventional furnace type is large in the six regions of front, middle, rear, upper, and lower, the vacuum sintering furnace can be divided into six regions for heating control. In FIG. 4, three sets of heating bodies are taken as an example, A1 is the first electrode rod of the first heating body in the first heating body group, and B1 is the first heating body in the first heating body group. The second electrode rod of the body, A4 is the first electrode rod of the second heater in the first heater group, and B4 is the second electrode rod of the second heater in the first heater group. , A2 is the first electrode rod of the first heating body in the second heating body group, B2 is the second electrode rod of the first heating body in the second heating body group, and A5 is the second heating body group. Is the first electrode rod of the second heating body in the above, B5 is the second electrode rod of the second heating body in the second heating body group, and A3 is the first electrode rod of the first heating body in the third heating body group. 1 electrode rod, B3 is the second electrode rod of the first heating body in the third heating body group, A6 is the first electrode rod of the second heating body in the third heating body group, and B6 is. It is the second electrode rod of the second heating body in the third heating body group. In the above heating body group, the closed box in the furnace is divided into six regions to control the heating temperature, and the first heating body of the first heating body group heats and controls the temperature of the upper part of the closed box, and the first The second heating body of the heating body group heats and controls the temperature of the lower part of the closed box. Similarly, the second and third heating body groups perform heating and temperature control for the corresponding area of the closed box, and in this way, the temperature is controlled separately by dividing into six areas of front, middle, rear, upper, and lower. By performing the above, temperature uniformity in the furnace is realized.

勿論、炉型が大きくなればなるほど、その区域の設計が増えて、それに対応して、加熱体群の数も増える。また、たとえば、脱脂口の位置での熱損失が大きく、気流が旋回する傾向があり、それによって脱脂口での製品のサイズが大きくなったり、灰色の外観となったりするような欠陥などの問題が発生し、この場合、独立した加熱体を設計して領域加熱をすることができる。それに対して、炉型が小さい場合は、領域を適切に減らして加熱と温度制御を行うことができる。 Of course, the larger the furnace type, the more designs the area will have, and the correspondingly more heating groups. Also, for example, there are problems such as large heat loss at the degreasing port and the tendency of the airflow to swirl, which increases the size of the product at the degreasing port and causes defects such as a gray appearance. In this case, an independent heating body can be designed to heat the region. On the other hand, when the furnace type is small, the area can be appropriately reduced to perform heating and temperature control.

図5は本考案の真空焼結炉における加熱装置の複数の加熱体群の回路模式図である。図5に示されるように、6つの単相変圧器から電力を供給し、対応するパワーコントローラで加熱パワーを制御し、各被加熱領域ごとに実際温度(PV値)をPIDにフィードバックする熱電対Thcを設け、PIDにより現在設定温度(SV値)に従ってMV値を計算してパワーコントローラに出力し、それによって、PV値が現在設定されているSV値に限りなく近づくようにパワーコントローラの出力パワーを調整する。 FIG. 5 is a schematic circuit diagram of a plurality of heating elements of the heating device in the vacuum sintering furnace of the present invention. As shown in FIG. 5, a thermocouple that supplies power from six single-phase transformers, controls the heating power with a corresponding power controller, and feeds back the actual temperature (PV value) to the PID for each heated region. Thc is provided, the MV value is calculated according to the currently set temperature (SV value) by PID and output to the power controller, thereby the output power of the power controller so that the PV value approaches the currently set SV value as much as possible. To adjust.

本考案に係る一実施形態は以下のとおりである。 One embodiment according to the present invention is as follows.

出荷前に炉体をデバッグする必要があり、その中でも、温度分布は必要とされるテスト項目である。 It is necessary to debug the furnace body before shipping, and among them, the temperature distribution is a required test item.

たとえば、炉内設定温度が800℃の場合、図6に示すように、炉内の6個の異なる点の位置でセンサにより温度を検出し、図6は本考案の実施形態に係る炉内温度検出点の分布模式図であり、黒い点は検出点を示し、各検出点で検出された温度は以下のとおりである。
点1は800℃、点2は810℃、点3は795℃、点4は800℃、点5は805℃、点6は790℃である。
For example, when the set temperature in the furnace is 800 ° C., as shown in FIG. 6, the temperature is detected by a sensor at the positions of six different points in the furnace, and FIG. 6 shows the temperature in the furnace according to the embodiment of the present invention. It is a schematic distribution diagram of detection points, black dots indicate detection points, and the temperature detected at each detection point is as follows.
Point 1 is 800 ° C., point 2 is 810 ° C., point 3 is 795 ° C., point 4 is 800 ° C., point 5 is 805 ° C., and point 6 is 790 ° C.

この場合、点1は800℃、点6は790℃である。 In this case, point 1 is 800 ° C. and point 6 is 790 ° C.

このとき、上下の2つの領域に分けた温度制御設計を採用した場合、すなわち、2つの発熱体で加熱する場合は、点1と点6が共に下部領域にあるため、別々に温度制御を調整することができない。 At this time, when a temperature control design divided into two upper and lower regions is adopted, that is, when heating with two heating elements, points 1 and 6 are both in the lower region, so the temperature control is adjusted separately. Can not do it.

このとき、6つの領域に分けた温度制御の設計を採用した場合、すなわち、6つの加熱体で加熱する場合、各領域の熱電対は検出された実際温度(PV値)をPIDにフィードバックし、PIDはそれを設定温度(SV値)と比較する。点3と点6がある領域の温度が800℃より低いと検出した場合、その領域のみについて加熱パワーを上げ、この領域の温度(PV値)をSV値まで向上させ、点2と点5がある領域の温度が800℃を超えると検出した場合、その領域のみについて加熱パワーを下げ、この領域の温度(PV値)をSV値まで低下させる。炉内の異なる領域の温度は、炉内の異なる領域の温度を別々に監視することによって独立して制御される。それにより、温度均一性が最適な効果となる。 At this time, when the temperature control design divided into 6 regions is adopted, that is, when heating is performed by 6 heating bodies, the thermocouple in each region feeds back the detected actual temperature (PV value) to the PID. PID compares it with the set temperature (SV value). When it is detected that the temperature of the region where points 3 and 6 are located is lower than 800 ° C., the heating power is increased only in that region to raise the temperature (PV value) in this region to the SV value, and points 2 and 5 are located. When it is detected that the temperature in a certain region exceeds 800 ° C., the heating power is reduced only in that region, and the temperature (PV value) in this region is lowered to the SV value. The temperature of different regions in the furnace is controlled independently by monitoring the temperature of different regions in the furnace separately. As a result, temperature uniformity has the optimum effect.

前記のとおり、炉体の容積が同じである場合、独立して温度制御を行う領域が多いほど、炉内の温度均一性が良くなる。 As described above, when the volume of the furnace body is the same, the more regions where the temperature is controlled independently, the better the temperature uniformity in the furnace.

以下、従来技術との相違点を比較しながら、本考案の有益な効果を説明する。
従来技術では、単一領域加熱が一般的である。温度分布の均一性に影響を及ぼす要因は以下のとおりである。
1.設計:たとえば、炉体の体積の大きさ:体積が大きくなるほど、温度均一性は悪くなる。炉体での接続口の位置:たとえば、ポンプポートでの熱損失が大きく、あるいは、どこかにクーラーが設置されるため、熱損失が大きくなる。
2.断熱材自体の断熱均一性の差異。
3.加熱の均一性:発熱体自体の抵抗にも均一性の差異が存在し、たとえば、グラファイト部材では、同じ材料であっても、必ずしも同じ抵抗値を有するとは限らない。
4.各領域での気流による影響や気流の流動方向:たとえば、高温の気体が上向きに流れるため、一般的に上部の温度が下部の温度より高い。
Hereinafter, the beneficial effects of the present invention will be described while comparing the differences with the prior art.
In the prior art, single region heating is common. The factors that affect the uniformity of the temperature distribution are as follows.
1. 1. Design: For example, the size of the volume of the furnace body: The larger the volume, the worse the temperature uniformity. Position of the connection port in the furnace body: For example, the heat loss at the pump port is large, or the heat loss is large because the cooler is installed somewhere.
2. Difference in insulation uniformity of the insulation itself.
3. 3. Heating uniformity: There is also a difference in uniformity in the resistance of the heating element itself. For example, graphite members do not always have the same resistance value even if they are made of the same material.
4. The effect of airflow in each region and the direction of airflow flow: For example, the temperature of the upper part is generally higher than the temperature of the lower part because hot gas flows upward.

従来技術では、温度均一性は以下の点によって維持される。
1.断熱性能を高めるために、断熱材として輸入された高級材料を用いる。
2.発熱材の抵抗を調整し、たとえば、前後の温度差が大きい場合、前後の抵抗値を調整する。(設計された発熱材の形状に応じて調整する必要があるため、調整はより困難である)
3.炉型を小型化させる。すなわち、加熱範囲を減らすことによって温度均一性を改善する。
In the prior art, temperature uniformity is maintained by:
1. 1. Imported high-grade materials are used as heat insulating materials to improve heat insulating performance.
2. Adjust the resistance of the exothermic material, for example, if the temperature difference between the front and back is large, adjust the resistance value before and after. (Adjustment is more difficult because it needs to be adjusted according to the shape of the designed exothermic material)
3. 3. Miniaturize the furnace type. That is, the temperature uniformity is improved by reducing the heating range.

結論:
上記方法により、従来の小炉型の温度均一性は<±5℃、大型真空炉の温度均一性は<±10℃に制御することができる。しかしながら、上記方法はコストが高く、調整が困難であるため、温度均一性を確保するには、新しい温度制御方法が期待される。
Conclusion:
By the above method, the temperature uniformity of the conventional small furnace type can be controlled to <± 5 ° C., and the temperature uniformity of the large vacuum furnace can be controlled to <± 10 ° C. However, since the above method is expensive and difficult to adjust, a new temperature control method is expected to ensure temperature uniformity.

本考案は、以下のとおりである。
1.マルチ領域温度制御を通じて、各領域の温度均一性を実現する。
2.異なるSV値を設定し、各領域の温度均一性をPIDにより別々に調整して制御する。
3.構造がシンプルであるため、領域を容易に追加でき、たとえば、元炉の炉型には2つの領域があるが、炉型が長くなると、4つの領域に設計できる。
4.発熱体の面積が大きく、たとえば、S字型に設計されることによって、発熱面積を増大させて、密閉ボックスの昇温速度を加速させ、そして均一な温度を有する。
5.発熱体は、断面積が小さくて薄く、コンパクトに設計されているため、有効利用スペースが大きくなる。
The present invention is as follows.
1. 1. Achieve temperature uniformity in each region through multi-region temperature control.
2. Different SV values are set, and the temperature uniformity of each region is adjusted and controlled separately by PID.
3. 3. Since the structure is simple, regions can be easily added. For example, the furnace type of the main reactor has two regions, but when the furnace mold is long, it can be designed into four regions.
4. The area of the heating element is large, for example, by being designed in an S shape, the area of heat generation is increased, the heating rate of the closed box is accelerated, and the temperature is uniform.
5. Since the heating element has a small cross-sectional area, is thin, and is designed to be compact, the effective utilization space is large.

効果:
1.一般的な断熱材を使用して各領域の温度偏差の欠陥を補うことによって、断熱材自体に存在する温度偏差の欠陥を補うことができる。(断熱材に対する要求が低下する)
2.従来のように抵抗を調整することで温度差を調整すると、調整が困難である。そして、各炉の温度差が異なるので、調整が不便である。(温度差を調整することで温度差を調整する必要はない)
3.大体積の炉型でも、温度均一性が実現でき、温度均一性は<±5℃に制御することができる。
4.同体積の炉でも、異なる領域間の温度差が大幅に減少される。(同体積の炉では、独立して温度制御がされる領域が多くなればなるほど、炉内の空間内の温度はより均一になる)
5.動的温度応答が良好である。
6.低温領域と高温領域の違いについて、一致に調整できる。
7.全炉の収量が増加し、すなわち生産量が増加する。一部の領域の温度偏差により製品のサイズ、炭素含有量、外観、および密度が標準に達しないという従来の問題を解決する。
8.発熱体が大きな面積を有するため、温度放射がより均一である。
9.昇温速度を上げ、加熱プロセスに要する時間を短縮させて、コストを削減させる。
10.加圧炉の炉型では、内部の気体には明らかな対流を有するため、領域間で著しい温度差を生じさせる。
effect:
1. 1. By compensating for the temperature deviation defect in each region by using a general heat insulating material, the temperature deviation defect existing in the heat insulating material itself can be compensated. (Reduced demand for insulation)
2. If the temperature difference is adjusted by adjusting the resistance as in the conventional case, it is difficult to adjust. And since the temperature difference of each furnace is different, it is inconvenient to adjust. (It is not necessary to adjust the temperature difference by adjusting the temperature difference)
3. 3. Temperature uniformity can be achieved even with a large volume furnace type, and the temperature uniformity can be controlled to <± 5 ° C.
4. Even in furnaces of the same volume, the temperature difference between different regions is significantly reduced. (In a furnace of the same volume, the more areas where the temperature is controlled independently, the more uniform the temperature in the space inside the furnace becomes.)
5. Good dynamic temperature response.
6. The difference between the low temperature region and the high temperature region can be adjusted consistently.
7. The yield of all furnaces increases, that is, the production volume increases. It solves the traditional problem of product size, carbon content, appearance, and density not reaching standards due to temperature deviations in some areas.
8. Due to the large area of the heating element, the temperature radiation is more uniform.
9. The heating rate is increased, the time required for the heating process is shortened, and the cost is reduced.
10. In the furnace type of the pressurizing furnace, the gas inside has a clear convection, which causes a significant temperature difference between the regions.

上記実施例は、単に本考案を説明する目的で提供されており、本考案の範囲を限定することを意図していない。本考案の範囲は特許請求の範囲によって規定される。本考案の精神および範囲から逸脱することなく行われる様々な等価の置換および修正は、いずれも本考案の範囲によって包含される。 The above embodiments are provided solely for the purpose of illustrating the present invention and are not intended to limit the scope of the present invention. The scope of the present invention is defined by the claims. Various equivalent substitutions and modifications made without departing from the spirit and scope of the invention are all covered by the scope of the invention.

Claims (10)

加熱体であって、
前記加熱体は角柱体の3つの隣接側面を構成し、第1加熱構造と第2加熱構造を含み、前記第1加熱構造は第1電極棒、複数の第1加熱部材および複数の第1隅部接続部材を含み、隣接する2つの前記第1加熱部材は1つの前記第1隅部接続部材を介して接続され、前記第1隅部接続部材が前記角柱体の側稜位置に位置し、前記第1加熱部材が前記角柱体の側面位置に位置し、前記第1電極棒の電流出力端子が前記第1加熱構造の先端における第1加熱部材に接続され、前記第1電極棒の電流入力端子が単相変圧器の出力端子の第1端に接続され、
前記第2加熱構造は、第2電極棒、複数の第2加熱部材および複数の第2隅部接続部材を含み、隣接する2つの前記第2加熱部材は1つの前記第2隅部接続部材を介して接続され、前記第2隅部接続部材が前記角柱体の側稜位置に位置し、前記第2加熱部材が前記角柱体の側面位置に位置し、前記第2電極棒の電流入力端子が前記第2加熱構造の先端における第2加熱部材に接続され、前記第2電極棒の電流出力端子が前記単相変圧器の出力端子の第2端に接続され、
前記第1加熱構造の末端における第1加熱部材と前記第2加熱構造の末端における第2加熱部材は長尺状接続部材を介して接続され、前記単相変圧器、前記第1加熱構造および前記第2加熱構造により電流ループが構成される
ことを特徴とする加熱体。
It ’s a heating body,
The heating body constitutes three adjacent side surfaces of a prismatic body, and includes a first heating structure and a second heating structure, and the first heating structure includes a first electrode rod, a plurality of first heating members, and a plurality of first corners. Two adjacent first heating members including the part connecting member are connected via one first corner connecting member, and the first corner connecting member is located at a side ridge position of the square column. The first heating member is located at a side surface position of the square column, the current output terminal of the first electrode rod is connected to the first heating member at the tip of the first heating structure, and the current input of the first electrode rod. The terminal is connected to the first end of the output terminal of the single-phase transformer,
The second heating structure includes a second electrode rod, a plurality of second heating members, and a plurality of second corner connecting members, and two adjacent second heating members have one second corner connecting member. The second corner connecting member is located at the side ridge position of the square pillar body, the second heating member is located at the side surface position of the square pillar body, and the current input terminal of the second electrode rod is located. It is connected to the second heating member at the tip of the second heating structure, and the current output terminal of the second electrode rod is connected to the second end of the output terminal of the single-phase transformer.
The first heating member at the end of the first heating structure and the second heating member at the end of the second heating structure are connected via a long connecting member, and the single-phase transformer, the first heating structure, and the said. A heating body characterized in that a current loop is formed by a second heating structure.
前記単相変圧器の入力端子がパワーコントローラの出力端子に接続され、前記パワーコントローラの制御入力端子がPIDコントローラの制御出力端子に接続され、前記PIDのPV入力端子が被加熱物体の領域内に設置された熱電対に接続され、前記熱電対は前記加熱体に対応した被加熱物体の温度測定値を前記PIDコントローラに伝送し、前記PIDコントローラは前記パワーコントローラの出力パワーを制御することで前記単相変圧器の出力パワーを制御して、前記加熱体の加熱温度を調整する
請求項1に記載の加熱体。
The input terminal of the single-phase transformer is connected to the output terminal of the power controller, the control input terminal of the power controller is connected to the control output terminal of the PID controller, and the PV input terminal of the PID is in the area of the object to be heated. Connected to the installed thermocouple, the thermocouple transmits the temperature measurement value of the object to be heated corresponding to the heating body to the PID controller, and the PID controller controls the output power of the power controller. The heater according to claim 1, wherein the output power of the single-phase transformer is controlled to adjust the heating temperature of the heater.
前記第1電極棒の電流出力端子は、ネジが設けられており、ナットにより前記第1加熱構造の先端における第1加熱部材に接続され、前記第2電極棒の電流入力端子は、ネジが設けられており、ナットにより前記第2加熱構造の先端における第2加熱部材に接続される
請求項1に記載の加熱体。
The current output terminal of the first electrode rod is provided with a screw and is connected to the first heating member at the tip of the first heating structure by a nut, and the current input terminal of the second electrode rod is provided with a screw. The heating body according to claim 1, wherein the heating body is connected to a second heating member at the tip of the second heating structure by a nut.
前記第1加熱部材と前記第2加熱部材はいずれも内部が中空、縁部が曲線状となる板状構造である
請求項1に記載の加熱体。
The heating body according to claim 1, wherein both the first heating member and the second heating member have a plate-like structure in which the inside is hollow and the edge is curved.
前記第1加熱部材と前記第2加熱部材はいずれも内部が中空の長方形板状構造である
請求項1に記載の加熱体。
The heating body according to claim 1, wherein both the first heating member and the second heating member have a rectangular plate-like structure having a hollow inside.
マルチ領域温度制御が可能な真空焼結炉であって、
密閉ボックス、加熱装置および断熱筒体を含み、前記密閉ボックスは角柱形、前記断熱筒体は円柱形または角柱形であり、前記加熱装置は、前記断熱筒体と前記密閉ボックスの間に設置され、前記密閉ボックスの外部に均等に分布して前記密閉ボックスの複数の領域を加熱する複数の加熱体群を含み、
前記加熱体群はそれぞれ同じ構造を有し且つ前記密閉ボックスの側面を上下に囲んでいる2つの加熱体を含み、前記加熱体は、前記密閉ボックスの3つの隣接側面に分布しており、第1加熱構造と第2加熱構造を含み、前記第1加熱構造の先端が単相変圧器の出力端子の第1端に接続され、前記第2加熱構造の先端が前記単相変圧器の出力端子の第2端に接続され、前記第1加熱構造の末端と前記第2加熱構造の末端は長尺状接続部材を介して接続され、前記単相変圧器、前記第1加熱構造および前記第2加熱構造により電流ループが構成される
ことを特徴とするマルチ領域温度制御が可能な真空焼結炉。
A vacuum sintering furnace capable of multi-region temperature control,
The sealing box includes a sealing box, a heating device and a heat insulating cylinder, the sealing box is prismatic, the heat insulating cylinder is cylindrical or prismatic, and the heating device is installed between the heat insulating cylinder and the sealing box. , A plurality of heating bodies that are evenly distributed outside the sealed box and heat a plurality of regions of the sealed box.
The heating body group includes two heating bodies each having the same structure and vertically surrounding the side surface of the closed box, and the heating bodies are distributed on three adjacent side surfaces of the closed box. The tip of the first heating structure is connected to the first end of the output terminal of the single-phase transformer, and the tip of the second heating structure is the output terminal of the single-phase transformer. The end of the first heating structure and the end of the second heating structure are connected to the second end of the single-phase transformer, the first heating structure and the second. A vacuum sintering furnace capable of multi-region temperature control, characterized in that a current loop is formed by a heating structure.
前記第1加熱構造は、第1電極棒、複数の第1加熱部材および複数の第1隅部接続部材を含み、隣接する2つの前記第1加熱部材は1つの前記第1隅部接続部材を介して接続され、前記第1隅部接続部材が前記角柱形の密閉ボックスの側稜位置に位置し、前記第1加熱部材が前記角柱形の密閉ボックスの側面位置 に位置し、前記第1電極棒の電流出力端子が前記第1加熱構造の先端における第1加熱部材に接続され、前記第1電極棒の電流入力端子が前記単相変圧器の出力端子の第1端に接続され、
前記第2加熱構造は、第2電極棒、複数の第2加熱部材および複数の第2隅部接続部材を含み、隣接する2つの前記第2加熱部材は1つの前記第2隅部接続部材を介して接続され、前記第2隅部接続部材が前記角柱形の密閉ボックスの側稜位置に位置し、前記第2加熱部材が前記角柱形の密閉ボックスの側面位置に位置し、前記第2電極棒の電流入力端子が前記第2加熱構造の先端における第2加熱部材に接続され、前記第2電極棒の電流出力端子が前記単相変圧器の出力端子の第2端に接続される
請求項6に記載の真空焼結炉。
The first heating structure includes a first electrode rod, a plurality of first heating members, and a plurality of first corner connecting members, and two adjacent first heating members have one first corner connecting member. The first corner connecting member is located at the side ridge position of the prismatic sealing box, the first heating member is located at the side surface position of the prismatic sealing box, and the first electrode is connected. The current output terminal of the rod is connected to the first heating member at the tip of the first heating structure, and the current input terminal of the first electrode rod is connected to the first end of the output terminal of the single-phase transformer.
The second heating structure includes a second electrode rod, a plurality of second heating members, and a plurality of second corner connecting members, and two adjacent second heating members have one second corner connecting member. The second corner connecting member is located at the side ridge position of the prismatic sealing box, the second heating member is located at the side surface position of the prismatic sealing box, and the second electrode is connected. Claim that the current input terminal of the rod is connected to the second heating member at the tip of the second heating structure, and the current output terminal of the second electrode rod is connected to the second end of the output terminal of the single-phase transformer. 6. The vacuum sintering furnace according to 6.
前記真空焼結炉はさらに、複数の熱電対、複数のPIDコントローラおよび複数のパワーコントローラを含み、k番目の加熱体に対しては、前記熱電対が前記PIDコントローラのPV入力端子に接続されて、前記k番目の加熱体に対応した前記密閉ボックスのk番目の被加熱領域の温度測定値を前記PIDコントローラに伝送し、前記PIDコントローラの制御出力端子が前記パワーコントローラの制御入力端子に接続され、前記パワーコントローラの出力端子が前記k番目の加熱体に対応した前記単相変圧器の入力端子に接続されて、前記単相変圧器の出力パワーを調整することで、前記k番目の加熱体による前記k番目の被加熱領域への加熱温度を調整する
請求項6に記載の真空焼結炉。
The vacuum sintering furnace further includes a plurality of thermocouples, a plurality of PID controllers and a plurality of power controllers, and for the k-th heating body, the thermocouple is connected to the PV input terminal of the PID controller. , The temperature measurement value of the kth heated region of the sealed box corresponding to the kth heating body is transmitted to the PID controller, and the control output terminal of the PID controller is connected to the control input terminal of the power controller. The output terminal of the power controller is connected to the input terminal of the single-phase transformer corresponding to the k-th heating body, and the output power of the single-phase transformer is adjusted to adjust the output power of the k-th heating body. The vacuum sintering furnace according to claim 6, wherein the heating temperature to the k-th heated region is adjusted according to the above.
前記真空焼結炉の複数の領域を加熱するために、前記加熱体群の数が1より大きい
請求項6に記載の真空焼結炉。
The vacuum sintering furnace according to claim 6, wherein the number of heating bodies is larger than 1 in order to heat a plurality of regions of the vacuum sintering furnace.
前記真空焼結炉はさらに、前記加熱装置と前記真空焼結炉内におけるほかの部品とを離間させるための絶縁材料を含む
請求項6に記載の真空焼結炉。
The vacuum sintering furnace according to claim 6, wherein the vacuum sintering furnace further includes an insulating material for separating the heating device and other parts in the vacuum sintering furnace.
JP2021001232U 2018-04-02 2021-04-02 Vacuum sintering furnace capable of heating body and multi-region temperature control Active JP3232568U (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810283615.8A CN108458589B (en) 2018-04-02 2018-04-02 A kind of calandria and the vacuum sintering furnace for realizing multizone temperature control
CN201810283615.8 2018-04-02

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2021063472 Continuation 2018-10-30

Publications (1)

Publication Number Publication Date
JP3232568U true JP3232568U (en) 2021-06-24

Family

ID=63238062

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019521056A Active JP6935050B2 (en) 2018-04-02 2018-10-30 Vacuum sintering furnace capable of heating body and multi-region temperature control
JP2021001232U Active JP3232568U (en) 2018-04-02 2021-04-02 Vacuum sintering furnace capable of heating body and multi-region temperature control

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2019521056A Active JP6935050B2 (en) 2018-04-02 2018-10-30 Vacuum sintering furnace capable of heating body and multi-region temperature control

Country Status (3)

Country Link
JP (2) JP6935050B2 (en)
CN (1) CN108458589B (en)
WO (1) WO2019192167A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108458589B (en) * 2018-04-02 2019-10-29 宁波恒普真空技术有限公司 A kind of calandria and the vacuum sintering furnace for realizing multizone temperature control
CN109732091B (en) * 2019-03-01 2023-09-08 宁波恒普技术股份有限公司 Pressure sintering furnace and partition heating device thereof
GB2582981B (en) 2019-04-12 2022-01-05 Glassflake Ltd A system and method for melting materials
CN111457715A (en) * 2020-05-09 2020-07-28 宁波恒普真空技术有限公司 Heating member and multi-zone temperature control vacuum furnace
CN116772598B (en) * 2023-06-13 2024-07-12 宁夏鑫中奥智能装备有限公司 Method for controlling sintering soaking temperature following of slender piece
CN116772599B (en) * 2023-06-13 2024-07-23 宁夏鑫中奥智能装备有限公司 Soaking sintering furnace with multiple temperature areas and small temperature difference soaking control method
CN118244823A (en) * 2024-05-28 2024-06-25 山东链云科技有限公司 Intelligent temperature control method suitable for tail vegetable treatment

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09229561A (en) * 1996-02-22 1997-09-05 Kobe Steel Ltd Lateral pressurizing sintering furnace
CN2896172Y (en) * 2006-04-26 2007-05-02 苏州先端稀有金属有限公司 Heater
CN101483943A (en) * 2009-02-20 2009-07-15 苏州汇科机电设备有限公司 Radiation type heating board structure for electronic product annealing and sintering furnace
CN203364597U (en) * 2013-06-03 2013-12-25 厦门至隆真空科技有限公司 Sintering furnace heating unit
CN204612450U (en) * 2014-12-21 2015-09-02 洛阳市西格马炉业有限公司 A kind of large-scale vacuum sintering furnace with U-shaped heater
CN105142256B (en) * 2015-09-16 2017-03-22 苏州汇科机电设备有限公司 Feeding structure of high-temperature vacuum sintering furnace
CN108458589B (en) * 2018-04-02 2019-10-29 宁波恒普真空技术有限公司 A kind of calandria and the vacuum sintering furnace for realizing multizone temperature control
CN208475958U (en) * 2018-04-02 2019-02-05 宁波恒普真空技术有限公司 A kind of calandria and the vacuum sintering furnace for realizing multizone temperature control

Also Published As

Publication number Publication date
WO2019192167A1 (en) 2019-10-10
CN108458589A (en) 2018-08-28
JP2020521268A (en) 2020-07-16
JP6935050B2 (en) 2021-09-15
CN108458589B (en) 2019-10-29

Similar Documents

Publication Publication Date Title
JP3232568U (en) Vacuum sintering furnace capable of heating body and multi-region temperature control
CN105200224A (en) Heat treatment method after local welding of quenched and tempered material super-large container
CN108253780B (en) Realize vacuum sintering stove of four regional accuse temperatures
CN106052392A (en) Hot-pressing sintering machine and temperature uniformity control method thereof
WO2021227126A1 (en) Heating body, and vacuum furnace with multi-region temperature control
CN201753314U (en) Heating system for annealing kiln
CN208475958U (en) A kind of calandria and the vacuum sintering furnace for realizing multizone temperature control
CN202322911U (en) Internal-heating type horizontal grid barrier flow guide vacuum annealing furnace
CN208475959U (en) A kind of vacuum sintering furnace for realizing four controlling temperature with region
CN206335211U (en) A kind of soldering oven vacuum heating chamber
CN102912414B (en) A kind of polycrystalline silicon ingot or purifying furnace and crucible thereof
CN212158107U (en) Heating member and multi-zone temperature control vacuum furnace
CN106628836A (en) Insulated conveying system, insulated method thereof and application
CN202254787U (en) Heating device with high temperature heat compensation and tunnel furnace
CN104391524B (en) A kind of Muffle heat-treatment furnace cascade temperature control system
CN215728497U (en) Thermoelectric performance test workbench for thermoelectric power generation module
CN115213578A (en) Vacuum welding equipment and control method thereof
CN110872688A (en) Heating device, coating equipment, temperature control method and system
CN103696002A (en) Electromagnetic and resistance mixed heating thermal field structure of ingot furnace and using method of electromagnetic and resistance mixed heating thermal field structure
CN116772599B (en) Soaking sintering furnace with multiple temperature areas and small temperature difference soaking control method
JP3466673B2 (en) Vacuum furnace with movable heat reflector
CN218469600U (en) Device for reducing temperature difference under high pressure
JP2009231015A (en) Uniform heating control device of tabular member, and control method of the device
CN207259373U (en) A kind of devitrified glass accurate temperature controlling heat-treatment furnace
CN207313429U (en) Glass oven

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210405

R150 Certificate of patent or registration of utility model

Ref document number: 3232568

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R323531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R323533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250