JP3220586U - Equipment for measuring the hydraulic conductivity of various types of earth and sand - Google Patents
Equipment for measuring the hydraulic conductivity of various types of earth and sand Download PDFInfo
- Publication number
- JP3220586U JP3220586U JP2019000003U JP2019000003U JP3220586U JP 3220586 U JP3220586 U JP 3220586U JP 2019000003 U JP2019000003 U JP 2019000003U JP 2019000003 U JP2019000003 U JP 2019000003U JP 3220586 U JP3220586 U JP 3220586U
- Authority
- JP
- Japan
- Prior art keywords
- organic glass
- glass cylinder
- drain pipe
- hydraulic conductivity
- earth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
【課題】1回で多種類土砂の透水係数を迅速に測定でき、時間が短く、効率が高い多種類土砂の透水係数を測定する装置を提供する。【解決手段】浸透流システムと画像取得システムとを含み、浸透流システムは有機ガラス円筒19を含み、有機ガラス円筒19内には複数層の土砂試料層が設けられており、各試料層の底部にはマノメーター3〜6が接続されており、画像取得システムは、有機ガラス円筒19内の放射性同位体により放出された放射線を追跡するための検出器18を含む。同位体追跡の方法により各層の浸透速度を取得し、マノメーター3〜6により各層の水頭差を取得し、一回で多種類土砂の透水係数を迅速に測定できる。【選択図】図1The present invention provides a device that can quickly measure the hydraulic conductivity of multiple types of earth and sand at one time, has a short time, and has high efficiency. An osmotic flow system and an image acquisition system are provided. The osmotic flow system includes an organic glass cylinder. In the organic glass cylinder, a plurality of earth and sand sample layers are provided, and the bottom of each sample layer is provided. Are connected to manometers 3-6, and the image acquisition system includes a detector 18 for tracking the radiation emitted by the radioisotopes in the organic glass cylinder 19. The permeation rate of each layer is acquired by the isotope tracking method, the water head difference of each layer is acquired by the manometers 3 to 6, and the hydraulic conductivity of many kinds of sediments can be measured quickly at one time. [Selection] Figure 1
Description
本考案は、地盤工学関連分野に属し、迅速に多種類土砂の透水係数を測定する装置に関する。 The present invention belongs to the field of geotechnical engineering and relates to an apparatus for quickly measuring the hydraulic conductivity of various types of soil.
浸透流問題は、地盤工学における非常に重要な基本問題の一つであり、多くの基礎ピットやトンネルなどの工事はいずれも地下水の影響を受けており、多くの事故も土壌中の水の浸透により引き起こされたものである。建設工事におけるボイリングなど浸透破壊の発生を避けることやトンネルの内張りの漏水防止および地盤沈下を予測することは、いずれも地層の透水係数を把握し、地層の透水係数を測定することにより、地下工事の設計および建設を指導する必要がある。現在、既存の室内において土砂の透水係数を測定する装置は、毎回一種類の土試料しか測定できない。このため、一回で多種類の土砂の透水係数の迅速測定を実現することは解決すべき問題である。 The seepage problem is one of the most important basic problems in geotechnical engineering, and many foundation pits and tunnels are affected by groundwater, and many accidents cause water infiltration into the soil. It was caused by. Avoiding osmotic failure such as boiling in construction work, preventing leakage of tunnel linings, and predicting land subsidence are all understood by measuring the permeability coefficient of the formation and measuring the permeability coefficient of the formation. Need to guide the design and construction of the. Currently, an apparatus for measuring the permeability coefficient of earth and sand in an existing room can measure only one kind of soil sample each time. For this reason, it is a problem to be solved to realize quick measurement of hydraulic conductivity of many kinds of earth and sand at a time.
本考案は、上記問題点に鑑みてなされたものであって、迅速に多種類土砂の透水係数を測定する装置の提供を目的とする。 This invention is made | formed in view of the said problem, Comprising: It aims at provision of the apparatus which measures the hydraulic conductivity of many kinds of earth and sand quickly.
上記目的を達成するための本考案に係る迅速に多種類土砂の透水係数を測定する装置は、浸透流システムおよび画像取得システムを含み、前記浸透流システムは有機ガラス円筒を含み、前記有機ガラス円筒内には、上部に位置されている第二透水石および下部に位置されている第一透水石が水平に取り付けられており、第一透水石の下部には砂利が充填されており、第二透水石と第一透水石との間には複数層の土砂試料層が設けられており、前記有機ガラス円筒の側壁には、第二排水管、第三排水管および複数のマノメーターが接続されており、マノメーターの数は前記土砂試料層の層数と同じく、各マノメーターは各土砂試料層間の境界面および最下層の土砂試料と第一透水石との境界面にそれぞれ設置されており、前記第二排水管は円筒の底部に設置されており、第三排水管は第二透水石の上方に設置されており、前記画像取得システムは、有機ガラス円筒内の放射性同位体により放出された放射線を追跡するための検出器を含み、該検出器は有機ガラス円筒の一側に取り付けられている。 In order to achieve the above object, an apparatus for rapidly measuring the permeability coefficient of various types of earth and sand according to the present invention includes an osmotic flow system and an image acquisition system, and the osmotic flow system includes an organic glass cylinder, and the organic glass cylinder Inside, the second permeable stone located in the upper part and the first permeable stone located in the lower part are horizontally attached, and the lower part of the first permeable stone is filled with gravel, A plurality of sediment sample layers are provided between the permeable stone and the first permeable stone, and a second drain pipe, a third drain pipe, and a plurality of manometers are connected to the side wall of the organic glass cylinder. The number of manometers is the same as the number of layers of the sediment sample layer, and each manometer is installed at the boundary surface between the sediment sample layers and at the boundary surface of the bottom sediment sample and the first permeable stone. Two drain pipes are cylindrical Installed at the bottom, the third drain pipe is installed above the second permeable stone, the image acquisition system is a detector for tracking radiation emitted by radioisotopes in an organic glass cylinder The detector is attached to one side of the organic glass cylinder.
さらに、前記第三排水管には流量制御弁が設置されている。 Furthermore, a flow control valve is installed in the third drain pipe.
さらに、有機ガラス円筒に水を注入するための供水装置を含む。 Furthermore, a water supply device for injecting water into the organic glass cylinder is included.
さらに、前記供水装置は、貯水槽および第一排水管を含み、前記第一排水管の出口は有機ガラス円筒の上方に位置されている。 Furthermore, the water supply device includes a water storage tank and a first drain pipe, and an outlet of the first drain pipe is located above the organic glass cylinder.
さらに、前記第一排水管には流量制御弁が設置されている。 Further, a flow control valve is installed in the first drain pipe.
さらに、前記マノメーターには目盛が刻まれており、目盛値は有機ガラス円筒の底面からの高さである。 Further, the manometer is engraved with a scale, and the scale value is the height from the bottom of the organic glass cylinder.
従来技術に比べて、本考案は以下の効果を奏する。
1、本考案によれば、水流の浸透速度を直観的に可視化観測できる。
2、本考案によれば、一回で迅速に多種類土砂の透水係数を測定でき、時間が短く、効率が高い。
3、本考案に係る装置の構造は簡単であり、操作は便利である。
Compared with the prior art, the present invention has the following effects.
1. According to the present invention, it is possible to intuitively visualize and observe the permeation rate of a water flow.
2. According to the present invention, the hydraulic conductivity of many kinds of sediments can be measured quickly at one time, and the time is short and the efficiency is high.
3. The structure of the device according to the present invention is simple and the operation is convenient.
図1に示すように、迅速に多種類土砂の透水係数を測定する装置は、浸透流システムおよび画像取得システムを含む。浸透流システムは有機ガラス円筒19を含み、有機ガラス円筒19内には、上部に位置されている第二透水石15および下部に位置されている第一透水石7が水平に取り付けられている。第一透水石7および第二透水石15は、水を通過させるが土粒子を通過させない。第一透水石7の下部には、砂利8が充填されている。第二透水石15と第一透水石7との間には、複数層の土砂試料層が設けられている(図においては4層)。有機ガラス円筒19の側壁には、第二排水管10、第三排水管16および複数のマノメーターが接続されており、マノメーターの数は土砂試料層の層数と同じく、各マノメーターは各土砂試料層間の境界面および最下層の土砂試料と第一透過石7との境界面にそれぞれ設置されている。第二排水管10は円筒の底部に設置されており、第三排水管16は第二透水石15の上方に設置されている。画像取得システムは、有機ガラス円筒19内の放射性同位体により放出された放射線を追跡するための検出器を含み、該検出器は有機ガラス円筒19の一側に取り付けられている。 As shown in FIG. 1, an apparatus for quickly measuring the hydraulic conductivity of various types of sediment includes an osmotic flow system and an image acquisition system. The osmotic flow system includes an organic glass cylinder 19 in which a second permeable stone 15 located at the upper part and a first permeable stone 7 located at the lower part are horizontally mounted. The first permeable stone 7 and the second permeable stone 15 allow water to pass but do not allow soil particles to pass. The bottom of the first permeable stone 7 is filled with gravel 8. Between the second permeable stone 15 and the first permeable stone 7, a plurality of sediment sample layers are provided (four layers in the figure). The second drain pipe 10, the third drain pipe 16, and a plurality of manometers are connected to the side wall of the organic glass cylinder 19, and the number of manometers is the same as the number of sediment sample layers, and each manometer is between each sediment sample layer. Are installed on the boundary surface between the first permeation stone 7 and the lowermost soil sample. The second drain pipe 10 is installed at the bottom of the cylinder, and the third drain pipe 16 is installed above the second permeable stone 15. The image acquisition system includes a detector for tracking the radiation emitted by the radioisotope in the organic glass cylinder 19, which is attached to one side of the organic glass cylinder 19.
浸透流速vは透水係数kと動水勾配iとの積であり、動水勾配iは水頭差Δhと浸透経路Dとの商であり、v=k*i=k*Δh/Dである。 The osmotic flow velocity v is the product of the hydraulic conductivity k and the hydraulic gradient i, and the hydraulic gradient i is the quotient of the hydraulic head difference Δh and the infiltration path D, and v = k * i = k * Δh / D.
したがって、測定方法は以下のとおりである。
(1)有機ガラス円筒19に水を注入し、注入速度を制御することにより、液面高さが定数H(円筒の底面からの高さ)に維持されるようにする。続いて、浸透が安定した後、同位体トレーサーH218Oを加える。図に示すように、貯水槽1および第一排水管2を用いて注水し、第一排水管2の出口は有機ガラス円筒19の上方に位置されており、第一排水管2または第三排水管16の上に流量制御弁を設置することにより、液面の高さを維持し、すなわち、水頭が変わらないことを維持する。浸透安定のしるしは液面の高さが安定することおよび第二排水管の排水状況が安定することである。
Therefore, the measuring method is as follows.
(1) By injecting water into the organic glass cylinder 19 and controlling the injection speed, the liquid surface height is maintained at a constant H (height from the bottom surface of the cylinder). Subsequently, after the permeation has stabilized, the isotope tracer H218O is added. As shown in the figure, water is poured using the water storage tank 1 and the first drain pipe 2, and the outlet of the first drain pipe 2 is located above the organic glass cylinder 19, and the first drain pipe 2 or the third drain By installing a flow control valve on the pipe 16, the liquid level is maintained, i.e., the head is kept unchanged. The sign of stable permeation is that the liquid level is stable and the drainage state of the second drain pipe is stable.
(2)検出器は放射性同位体トレーサーH218Oの運動軌跡を取得する。該運動軌跡に基づいて、一つの層の土砂試料における浸透時間tを取得し、v=D/tにより浸透流速vを取得する。ここで、Dは該土砂試料層の厚さである。 (2) The detector acquires the movement locus of the radioisotope tracer H218O. Based on the movement trajectory, the permeation time t in one layer of sediment sample is obtained, and the permeation flow velocity v is obtained by v = D / t. Here, D is the thickness of the sediment sample layer.
(3)該層の土砂試料の底面に接続されているマノメーターにおける液面高さhに基づいて、Δh=H−hにより水頭差Δhを取得する。第四種の土砂試料14の水頭差は、第一マノメーター3における液面高さhと円筒における液面高さHとの差である。第三種の土砂試料13の水頭差は、第二マノメーター4における液面高さhと円筒における液面高さHとの差である。第二種の土砂試料12の水頭差は、第三マノメーター5における液面高さhと円筒における液面高さHとの差である。第一種の土砂試料11の水頭差は、第四マノメーター6における液面高さhと円筒における液面高さHとの差である。 (3) Based on the liquid level height h in the manometer connected to the bottom surface of the sediment sample of the layer, the water head difference Δh is obtained by Δh = H−h. The water head difference of the fourth kind of earth and sand sample 14 is the difference between the liquid level height h in the first manometer 3 and the liquid level height H in the cylinder. The water head difference of the third kind of earth and sand sample 13 is the difference between the liquid level height h in the second manometer 4 and the liquid level height H in the cylinder. The water head difference of the second kind of earth and sand sample 12 is the difference between the liquid level height h in the third manometer 5 and the liquid level height H in the cylinder. The water head difference of the first kind of earth and sand sample 11 is the difference between the liquid level height h in the fourth manometer 6 and the liquid level height H in the cylinder.
(4)k=v*D/Δhに基づいて計算することにより透水係数kを取得する。
好ましくは、マノメーターには目盛が刻まれており、目盛値は有機ガラス円筒19の底面からの高さである。
(4) The hydraulic conductivity k is obtained by calculating based on k = v * D / Δh.
Preferably, the manometer is engraved with a scale, and the scale value is the height from the bottom surface of the organic glass cylinder 19.
1 貯水槽、
2 第一排水管、
3 第一マノメーター、
4 第二マノメーター、
5 第三マノメーター、
6 第四マノメーター、
7 第一透水石、
8 砂利、
9 集水装置、
10 第二排水管、
11 第一種の土砂試料、
12 第二種の土砂試料、
13 第三種の土砂試料、
14 第四種の土砂試料、
15 第二透水石、
16 第三排水管、
17 コンピュータ、
18 検出器、
19 有機ガラス円筒。
1 water tank,
2 First drain pipe,
3 First manometer,
4 Second manometer,
5 Third manometer,
6 Fourth manometer,
7 First permeable stone,
8 Gravel,
9 Water collector,
10 Second drain pipe,
11 Type 1 sediment sample,
12 The second kind of earth and sand sample,
13 Type 3 sediment sample,
14 The fourth kind of earth and sand sample,
15 Second permeable stone,
16 Third drain pipe,
17 computer,
18 detector,
19 Organic glass cylinder.
Claims (6)
前記浸透流システムは有機ガラス円筒(19)を含み、前記有機ガラス円筒(19)内には、上部に位置されている第二透水石(15)および下部に位置されている第一透水石(7)が水平に取り付けられており、
第一透水石(7)の下部には砂利(8)が充填されており、第二透水石(15)と第一透水石(7)との間には複数層の測定待ちの土砂試料層が設けられており、
前記有機ガラス円筒(19)の側壁には、第二排水管(10)、第三排水管(16)および複数のマノメーターが接続されており、マノメーターの数は前記土砂試料層の層数と同じく、各マノメーターは各土砂試料層間の境界面および最下層の土砂試料と第一透水石(7)との境界面にそれぞれ設置されており、
前記第二排水管(10)は円筒(19)の底部に設置されており、第三排水管(16)は第二透水石(15)の上方に設置されており、
前記の画像取得システムは、有機ガラス円筒(19)内の放射性同位体により放出された放射線を追跡するための検出器を含み、該検出器は有機ガラス円筒(19)の一側に取り付けられている、
ことを特徴とする多種類土砂の透水係数を測定する装置。 Including an osmotic flow system and an image acquisition system;
The osmotic flow system includes an organic glass cylinder (19), and the organic glass cylinder (19) includes a second permeable stone (15) positioned at an upper portion and a first permeable stone (15) positioned at a lower portion. 7) is mounted horizontally,
The bottom of the first permeable stone (7) is filled with gravel (8), and a plurality of sediment sample layers waiting for measurement are interposed between the second permeable stone (15) and the first permeable stone (7). Is provided,
A second drain pipe (10), a third drain pipe (16) and a plurality of manometers are connected to the side wall of the organic glass cylinder (19), and the number of manometers is the same as the number of the earth and sand sample layers. , Each manometer is installed at the interface between each sediment sample layer and the interface between the bottom sediment sample and the first permeable stone (7),
The second drain pipe (10) is installed at the bottom of the cylinder (19), the third drain pipe (16) is installed above the second permeable stone (15),
The image acquisition system includes a detector for tracking radiation emitted by radioisotopes in the organic glass cylinder (19), the detector being attached to one side of the organic glass cylinder (19). Yes,
An apparatus for measuring the hydraulic conductivity of various types of sediments.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201820249015.5U CN207908316U (en) | 2018-02-12 | 2018-02-12 | A kind of device quickly measuring a variety of sand infiltration coefficients |
CN201820249015.5 | 2018-02-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP3220586U true JP3220586U (en) | 2019-03-22 |
Family
ID=63560788
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019000003U Expired - Fee Related JP3220586U (en) | 2018-02-12 | 2019-01-04 | Equipment for measuring the hydraulic conductivity of various types of earth and sand |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP3220586U (en) |
CN (1) | CN207908316U (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109975192A (en) * | 2019-04-22 | 2019-07-05 | 中南大学 | The infiltration measuring device and method of different osmotic gradient lower leaf sand transition process |
CN110044710A (en) * | 2019-05-09 | 2019-07-23 | 中国科学院武汉岩土力学研究所 | Soil cave collapse experiment simulator under a kind of precipitation funnel |
CN111487177A (en) * | 2020-05-21 | 2020-08-04 | 山东建筑大学 | Fiber bundle drain pipe seepage measuring device and test method |
CN111665186A (en) * | 2020-07-24 | 2020-09-15 | 长安大学 | Multifunctional soil column test device |
CN112504920A (en) * | 2020-11-24 | 2021-03-16 | 天地科技股份有限公司 | Method for testing permeability of roadway surrounding rock grouting slurry |
CN112666060A (en) * | 2020-12-17 | 2021-04-16 | 北京航空航天大学 | Penetration tester for researching soil body penetration destruction characteristics |
CN114324110A (en) * | 2021-12-28 | 2022-04-12 | 中国海洋大学 | Device and method for simulating grouting, diffusion and reinforcement of water-rich sand layer and testing permeability coefficient |
CN114878437A (en) * | 2022-06-06 | 2022-08-09 | 四川大学 | Device and method for testing permeability of soft permeable pipe in tailing pond |
CN118444358A (en) * | 2024-05-11 | 2024-08-06 | 江苏省环境科学研究院 | Based on14Method for investigating soil sampling cross contamination in C-marked detection field |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108195742A (en) * | 2018-02-12 | 2018-06-22 | 浙江大学 | A kind of device and method for quickly measuring a variety of sand infiltration coefficients |
CN109632581B (en) * | 2019-02-19 | 2021-09-14 | 泰华智慧产业集团股份有限公司 | Underground water quality permeation simulation experiment device and using method |
CN110018097B (en) * | 2019-03-27 | 2023-10-20 | 哈尔滨工业大学(深圳) | Bidirectional soil seepage test device and test method for multilayer detachable sample preparation and sampling |
CN110940625A (en) * | 2019-04-25 | 2020-03-31 | 河海大学 | Device and method for simulating permeable concrete blocking mechanism under real rainfall condition |
CN111707556A (en) * | 2020-06-24 | 2020-09-25 | 信息产业部电子综合勘察研究院 | Indoor simulation test method for seepage and settlement deformation of filled foundation |
CN112082919A (en) * | 2020-08-21 | 2020-12-15 | 西南交通大学 | Device for testing permeability of graded broken stone-high polymer grouting solidified body |
CN112683630B (en) * | 2021-01-25 | 2024-05-24 | 浙江科技学院 | In-situ solidification sample preparation instrument and sample preparation method for calcareous sand hollow cylindrical sample |
CN113295846B (en) * | 2021-05-08 | 2023-08-11 | 合肥工业大学 | Test device and test method for detecting effect of MICP solidified polluted soil |
-
2018
- 2018-02-12 CN CN201820249015.5U patent/CN207908316U/en active Active
-
2019
- 2019-01-04 JP JP2019000003U patent/JP3220586U/en not_active Expired - Fee Related
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109975192A (en) * | 2019-04-22 | 2019-07-05 | 中南大学 | The infiltration measuring device and method of different osmotic gradient lower leaf sand transition process |
CN109975192B (en) * | 2019-04-22 | 2024-10-08 | 中南大学 | Permeation measurement device and method for layered sand migration process under different permeation gradients |
CN110044710B (en) * | 2019-05-09 | 2024-01-12 | 中国科学院武汉岩土力学研究所 | Test simulation device for subsidence of soil hole under precipitation funnel |
CN110044710A (en) * | 2019-05-09 | 2019-07-23 | 中国科学院武汉岩土力学研究所 | Soil cave collapse experiment simulator under a kind of precipitation funnel |
CN111487177A (en) * | 2020-05-21 | 2020-08-04 | 山东建筑大学 | Fiber bundle drain pipe seepage measuring device and test method |
CN111665186A (en) * | 2020-07-24 | 2020-09-15 | 长安大学 | Multifunctional soil column test device |
CN112504920A (en) * | 2020-11-24 | 2021-03-16 | 天地科技股份有限公司 | Method for testing permeability of roadway surrounding rock grouting slurry |
CN112504920B (en) * | 2020-11-24 | 2022-09-09 | 天地科技股份有限公司 | Method for testing permeability of grouting slurry of surrounding rock of roadway |
CN112666060A (en) * | 2020-12-17 | 2021-04-16 | 北京航空航天大学 | Penetration tester for researching soil body penetration destruction characteristics |
CN114324110A (en) * | 2021-12-28 | 2022-04-12 | 中国海洋大学 | Device and method for simulating grouting, diffusion and reinforcement of water-rich sand layer and testing permeability coefficient |
CN114324110B (en) * | 2021-12-28 | 2023-10-17 | 中国海洋大学 | Device and method for simulating grouting diffusion reinforcement and testing permeability coefficient of water-rich sand layer |
CN114878437B (en) * | 2022-06-06 | 2023-04-14 | 四川大学 | Device and method for testing permeability of soft permeable pipe in tailing pond |
CN114878437A (en) * | 2022-06-06 | 2022-08-09 | 四川大学 | Device and method for testing permeability of soft permeable pipe in tailing pond |
CN118444358A (en) * | 2024-05-11 | 2024-08-06 | 江苏省环境科学研究院 | Based on14Method for investigating soil sampling cross contamination in C-marked detection field |
Also Published As
Publication number | Publication date |
---|---|
CN207908316U (en) | 2018-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3220586U (en) | Equipment for measuring the hydraulic conductivity of various types of earth and sand | |
Chen et al. | Centrifugal model tests on face failure of earth pressure balance shield induced by steady state seepage in saturated sandy silt ground | |
WO2019153782A1 (en) | Apparatus and method for quickly measuring multiple sandy soil infiltration coefficients | |
Hvorslev | Time lag and soil permeability in ground-water observations | |
CN108318396B (en) | Test method of tailing dam seepage field similarity simulation test system | |
CN109712500B (en) | Three-dimensional holographic visualization test device for soil piping damage and using method | |
CN108195723B (en) | Permeation grouting test system and method for reinforcing loose gravel soil | |
CN107167411A (en) | Piping infiltration visible model testing device and test method in a kind of seepage liquefaction | |
CN108222082B (en) | Dynamic precipitation indoor model test method and device for foundation pit under condition of multiple aquifers | |
Tang et al. | Groundwater engineering | |
Bouwer | A double tube method for measuring hydraulic conductivity of soil in situ above a water table | |
CN105806418A (en) | Reservoir landslide multi-field information field monitoring system and construction method thereof | |
CN109798130A (en) | A kind of Multifunctional shield synchronous grouting model test apparatus | |
CN105092798A (en) | Indoor recirculation system for simulating varying-head water-permeable soil layer phreatic water stratum and experimental method | |
CN107587516A (en) | A kind of efficient sealing of Follow-up type hinders sand precipitation hybrid system and its construction method | |
CN206470116U (en) | A kind of experimental rig for simulating the lower basement bottom board stress of artesian water effect | |
Yao et al. | Study on permeability and collapsibility characteristics of sandy loess in northern Loess Plateau, China | |
Zhang et al. | Experimental study for joint leakage process of tunnel lining and particle flow numerical simulation | |
CN207457026U (en) | A kind of constant head earth pillar permeability intensity device | |
Dai et al. | Experimental and numerical investigation on the mechanism of ground collapse induced by underground drainage pipe leakage | |
Malusis et al. | Comparison of laboratory and field measurements of backfill hydraulic conductivity for a large-scale soil-bentonite cutoff wall | |
CN204925080U (en) | Simulation becomes indoor system of recharging in flood peak permeable ground dive stratum | |
Zhang et al. | Design of groundwater extraction in open cut foundation pit and simplified calculation of ground subsidence due to dewatering in sandy pebble soil strata | |
Li et al. | The development of sand erosion induced by shield-tunnel joint leakage | |
Meng et al. | Influence of constant total hydraulic head on pore pressure and water inflow of grouted tunnel calculated by complex variable method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3220586 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |