JP3217575B2 - Combustion method - Google Patents

Combustion method

Info

Publication number
JP3217575B2
JP3217575B2 JP01832694A JP1832694A JP3217575B2 JP 3217575 B2 JP3217575 B2 JP 3217575B2 JP 01832694 A JP01832694 A JP 01832694A JP 1832694 A JP1832694 A JP 1832694A JP 3217575 B2 JP3217575 B2 JP 3217575B2
Authority
JP
Japan
Prior art keywords
combustion
air
combustion chamber
fuel
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01832694A
Other languages
Japanese (ja)
Other versions
JPH06294503A (en
Inventor
正康 坂井
君代 徳田
正治 大栗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP01832694A priority Critical patent/JP3217575B2/en
Publication of JPH06294503A publication Critical patent/JPH06294503A/en
Application granted granted Critical
Publication of JP3217575B2 publication Critical patent/JP3217575B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はボイラ火炉本体に予燃焼
室が連結された燃焼装置による燃焼方法に関するもの
で、特に発生するNOx および煤塵の量を抑制できる燃
焼方法に関する。
The present invention relates not relate combustion method by the combustion device precombustion chamber is connected to the boiler furnace main body, to a combustion method which can suppress the NO x and amount of dust in particular occur.

【0002】[0002]

【従来の技術】図4は従来の予燃焼室付きパッケージボ
イラの一例を示す横断平面図(図5のIV−IV断面図)、
図5は図4のV−V線による縦断正面図である。これら
の図において、(01)は輻射伝熱面(水冷壁)、(0
2)はボイラ火炉本体、(03)は1次空気風箱、(0
4)はエアレジスタ、(05)はバーナガン、(06)
は対流伝熱面、(07)は蒸気ドラム、(08)は水ド
ラム、(09)は燃焼用空気、(10)は燃料、(1
1)は噴霧媒体、(12)は燃焼ガス、(13)は燃焼
ガス出口、(14)は1次空気供給ライン、(15)は
2次空気供給ライン、(16)は3次空気供給ライン、
(17)は2次空気風箱、(18)は3次空気風箱、
(19)は2次空気噴出孔、(20)は3次空気噴出
孔、(21)は1次空気、(22)は2次空気、(2
3)は3次空気、(24)は予燃焼室、(25)は保炎
器、(26)は予燃焼室排出口をそれぞれ示す。
2. Description of the Related Art FIG. 4 is a cross-sectional plan view (an IV-IV sectional view of FIG. 5) showing an example of a conventional package boiler with a pre-combustion chamber.
FIG. 5 is a vertical sectional front view taken along line VV of FIG. In these figures, (01) is a radiation heat transfer surface (water cooling wall), (0)
2) is a boiler furnace main body, (03) is a primary air wind box, (0)
4) Air register, (05) Burnagan, (06)
Is a convection heat transfer surface, (07) is a steam drum, (08) is a water drum, (09) is combustion air, (10) is fuel, (1)
1) is a spray medium, (12) is a combustion gas, (13) is a combustion gas outlet, (14) is a primary air supply line, (15) is a secondary air supply line, and (16) is a tertiary air supply line. ,
(17) is a secondary air wind box, (18) is a tertiary air wind box,
(19) is a secondary air outlet, (20) is a tertiary air outlet, (21) is primary air, (22) is secondary air, (2)
3) indicates tertiary air, (24) indicates a pre-combustion chamber, (25) indicates a flame stabilizer, and (26) indicates a pre-combustion chamber outlet.

【0003】パッケージボイラは、水冷壁から成る輻射
伝熱面(01)で構成されたボイラ火炉本体(02)
と、これに隣接し水冷壁から成る対流伝熱面(06)
と、蒸気ドラム(07)および水ドラム(08)とによ
って形成されている。
[0003] The package boiler is composed of a boiler furnace main body (02) composed of a radiant heat transfer surface (01) composed of a water-cooled wall.
And a convection heat transfer surface (06) consisting of a water-cooled wall adjacent thereto
And a steam drum (07) and a water drum (08).

【0004】ボイラ火炉本体(02)前壁に設けられた
予燃焼室(24)は、耐火材で構成されていて、その前
壁には1次空気風箱(03)が設けられている。1次空
気風箱(03)内にはエアレジスタ(04)が内蔵さ
れ、その中心部にはバーナガン(05)が装着されてい
て、図示されていない燃料供給設備から送り込まれて来
る燃料(10)を、別途図示されてない噴霧媒体供給設
備から送り込まれて来る噴霧媒体(11)と共に、予燃
焼室(24)内へ吹き込む。燃焼用空気(09)は、図
示されていない通風装置から送り込まれて来て1次空
気、2次空気および3次空気の各供給ライン(14),
(15),(16)に分岐され、ボイラに供給される。
The pre-combustion chamber (24) provided on the front wall of the boiler furnace main body (02) is made of a refractory material, and the front wall is provided with a primary air wind box (03). An air register (04) is built in the primary air wind box (03), and a burner gun (05) is mounted in the center of the air register (04). The fuel (10) sent from a fuel supply facility (not shown) is installed. ) Is blown into the pre-combustion chamber (24) together with the spray medium (11) sent from a spray medium supply facility (not shown). Combustion air (09) is supplied from a ventilation device (not shown), and is supplied to primary air, secondary air, and tertiary air supply lines (14),
It is branched to (15) and (16) and supplied to the boiler.

【0005】予燃焼室(24)内へ吹き込まれた燃料
(10)は、1次空気供給ライン(14)を経由して1
次空気風箱(03)へ送り込まれバーナガン(05)の
周囲から保炎器(25)を通して吹き込まれる1次空気
(21)と、2次空気供給ライン(15)を経由して2
次空気風箱(17)へ送り込まれ予燃焼室(24)の側
壁に穿孔された複数個の2次空気噴出孔(19)から吹
き込まれる2次空気(22)とによって、燃焼する。
[0005] The fuel (10) blown into the pre-combustion chamber (24) passes through the primary air supply line (14) to the fuel (10).
Primary air (21) sent to the secondary air wind box (03) and blown from the periphery of the burner gun (05) through the flame stabilizer (25) and 2 via the secondary air supply line (15)
The secondary air (22) is sent into the secondary air wind box (17) and is blown from a plurality of secondary air ejection holes (19) perforated in the side wall of the pre-combustion chamber (24) to burn.

【0006】予燃焼室(24)内へ吹き込まれる1次空
気(21)と2次空気(22)とによって供給される酸
素量は、別途予燃焼室(24)内へ吹き込まれた燃料
(10)の燃焼に必要な理論酸素量未満であり、予燃焼
室(24)内は還元雰囲気の状態に保持されている。し
たがって、予燃焼室(24)で発生した燃焼ガス(1
2)は、酸素不足燃焼のため未燃燃料を含有した状態
で、予燃焼室(24)末端の予燃焼室排出口(26)か
らボイラ火炉本体(02)内へ吹き込まれる。
[0006] The amount of oxygen supplied by the primary air (21) and the secondary air (22) blown into the pre-combustion chamber (24) depends on the amount of fuel (10) separately blown into the pre-combustion chamber (24). The amount of oxygen is less than the theoretical amount of oxygen necessary for the combustion of (1), and the inside of the pre-combustion chamber (24) is kept in a reducing atmosphere. Therefore, the combustion gas (1) generated in the pre-combustion chamber (24)
2) is blown into the boiler furnace body (02) from the pre-combustion chamber outlet (26) at the end of the pre-combustion chamber (24) in a state containing unburned fuel due to insufficient oxygen combustion.

【0007】予燃焼室排出口(26)の外周部には、複
数個の3次空気噴出孔(20)が穿孔されており、3次
空気供給ライン(16)を経由して送り込まれて来た3
次空気(23)が燃焼ガス(12)中へ吹き込まれる。
燃焼ガス(12)中へ吹き込まれる3次空気(23)
は、燃焼ガス(12)中の未燃燃料の完全燃焼に必要な
酸素量を供給できる充分な量が送り込まれる。この結
果、未燃燃料を含有した燃焼ガス(12)は、ボイラ火
炉本体(02)内で燃焼を完結する。
[0007] A plurality of tertiary air ejection holes (20) are formed in the outer peripheral portion of the pre-combustion chamber discharge port (26), and are sent through a tertiary air supply line (16). 3
Secondary air (23) is blown into the combustion gas (12).
Tertiary air (23) blown into combustion gas (12)
Is supplied with an amount sufficient to supply an amount of oxygen necessary for complete combustion of the unburned fuel in the combustion gas (12). As a result, the combustion gas (12) containing the unburned fuel completes combustion in the boiler furnace main body (02).

【0008】上記の燃焼過程において、予燃焼室(2
4)内での燃焼を1次燃焼、ボイラ火炉本体(02)内
での燃焼を2次燃焼と呼ぶことにする。窒素酸化物( N
x )の発生には、空気中の窒素の酸化による場合(
Thermal NOx )、燃料中の窒素が燃焼によって酸化
する場合( Fuel NOx )、上記1次燃焼のような還
元雰囲気下の燃焼で発生したアンモニア( NH3 )、シ
アン( HCN )等の中間生成物が2次燃焼で酸化される
場合がある。
In the above combustion process, the pre-combustion chamber (2)
The combustion in 4) is called primary combustion, and the combustion in the boiler furnace main body (02) is called secondary combustion. Nitrogen oxide (N
Ox ) is generated by the oxidation of nitrogen in air (
Thermal NO x ), when nitrogen in fuel is oxidized by combustion (Fuel NO x ), intermediate production of ammonia (NH 3 ), cyan (HCN), etc. generated by combustion under a reducing atmosphere such as the above-mentioned primary combustion The material may be oxidized in the secondary combustion.

【0009】予燃焼室(24)を有しない従来の燃焼装
置において、NOx 発生を抑制する燃焼法として、2段
燃焼法がある。この方法によれば、1次燃焼域の酸素濃
度を低くする程(限界はあるが)NOx の発生を抑制す
る効果があるが、この領域の燃焼温度が低下するので、
燃焼が悪化して未燃分が増加し煤塵が激増するという、
燃焼面からの制約があり、そのためNOx 抑制効果に限
界があった。また2段燃焼法では、上述の燃焼面からの
制約上、2次燃焼域の空気吹き込み位置を1次燃焼(火
炎)域から充分に遠ざけることができないために、2次
燃焼域で吹き込まれる空気の干渉によって、1次燃焼域
の還元雰囲気が不充分となり、前述のNOx ( Fuel
NOx ) を充分に抑制する効果があまり期待できなかっ
た。また、たとえその抑制効果が充分であっても、前述
のアンモニア、シアン等の中間生成物に対する考慮がな
されてないため、2次燃焼域で発生するNOx の抑制が
充分でなく、極低NOx 化には不充分であった。
[0009] In conventional combustion apparatus having no precombustion chamber (24), as the combustion method of inhibiting the NO x generation, there is a two-stage combustion process. According to this method, the lower the oxygen concentration in the primary combustion region (there is a certain limit), the more effective it is to suppress the generation of NO x , but the combustion temperature in this region is reduced.
Combustion worsens, unburned fuel increases, and dust increases sharply.
Is limited from the combustion surface, there is a limit to the order NO x suppressing effect. Further, in the two-stage combustion method, the air blowing position in the secondary combustion region cannot be sufficiently moved away from the primary combustion (flame) region due to the above-described restriction from the combustion surface, and thus the air blown in the secondary combustion region. interference by, becomes insufficient reducing atmosphere in the primary combustion region of the aforementioned NO x (Fuel
The effect of sufficiently suppressing NO x ) could not be expected. Further, even if sufficient its inhibitory effect, the aforementioned ammonia, because it is not made considering the intermediate product of cyan, etc., not sufficient suppression of generated NO x in the secondary combustion zone, the extremely low NO It was not enough for x conversion.

【0010】前記図4および図5に示した燃焼装置は、
上記欠点に対処するため、高負荷燃焼が可能な耐火材類
で構成された予燃焼室(24)を設け、予燃焼室(2
4)内の1次燃焼域を、燃料(10)と同燃料(10)
の理論空気量以下の1次空気(21)および2次空気
(22)によって形成し、高負荷燃焼を行なうものであ
る。この結果、1次燃焼域は充分な還元雰囲気に保持さ
れ、また耐火材で構成された予燃焼室(24)の内壁面
からの放射熱によって、燃焼温度が上るため、1次燃焼
域における燃焼面の制約がなくなって、予燃焼室(2
4)内の空気比を自由に設定でき、1次燃焼域で生じた
前記、のNOx ( Thermal NOx , FuelNOx )と
アンモニア、シアン等の中間生成物を窒素分子N2 へ効
率よく還元することができる。このため2次燃焼域にお
けるNOx 抑制が可能となるのである。
The combustion apparatus shown in FIGS.
In order to address the above drawbacks, a pre-combustion chamber (24) made of refractory materials capable of high load combustion is provided, and the pre-combustion chamber (2) is provided.
4) The primary combustion zone in the fuel (10) and the same fuel (10)
Is formed by the primary air (21) and the secondary air (22) having a theoretical air amount less than or equal to the theoretical air amount, and performs high load combustion. As a result, the primary combustion zone is maintained in a sufficient reducing atmosphere, and the combustion temperature rises due to radiant heat from the inner wall surface of the pre-combustion chamber (24) made of a refractory material. The surface restriction is removed and the pre-combustion chamber (2
4) it can be freely set the air ratio in the produced in the primary combustion zone, the NO x (Thermal NO x, FuelNO x) with ammonia, an intermediate product of the cyan, etc., to molecular nitrogen N 2 effectively reduced can do. For this reason, NO x can be suppressed in the secondary combustion region.

【0011】還元雰囲気の予燃焼室(24)内において
NOx とアンモニア,シアン等中間生成物とを還元する
場合の効率が、燃焼温度が高い程高くなることは、図6
からも明らかである。この図6は、先に発明者らが実施
した実験の結果として、予燃焼室(24)内の空気比を
一定にした場合の、ボイラ火炉本体(02)出口におけ
るNOx 量と予燃焼室(24)内燃焼温度との関係を示
したものである。図6から明らかなとおり、予燃焼室
(24)におけるNOx 発生抑制効果を顕著にするため
には、予燃焼室(24)内の燃焼温度を約1600 ℃以上
とすることが必要である。したがって従来の燃焼装置で
はこのような高温にしていた。
[0011] NO x and ammonia in the precombustion chamber (24) in a reducing atmosphere, the efficiency of the case of reducing the cyanide such as an intermediate product, the higher the higher the combustion temperature, Figure 6
It is clear from. The 6, as a result of experiments previously inventors have conducted, in the case of a constant air ratio of the precombustion chamber (24) in the boiler furnace main body (02) NO x amount and the pre-combustion chamber at the outlet (24) shows the relationship with the internal combustion temperature. As apparent from FIG. 6, in order to remarkably NO x generation suppressing effect in the precombustion chamber (24), it is necessary to the combustion temperature of the precombustion chamber (24) and about 1600 ° C. or higher. Accordingly, such a high temperature is used in a conventional combustion device.

【0012】[0012]

【発明が解決しようとする課題】前記のように従来の燃
焼装置では、予燃焼室(24)におけるNOx 抑制効果
を顕著なものとするために、予燃焼室(24)の内壁面
が約1600 ℃以上の高温になっていた。しかも還元雰囲
気の燃焼ガス(12)にさらされるため、予燃焼室(2
4)内壁面を形成する耐火材の選定が困難であり、寿命
が短いという問題点があった。
In [0006] the conventional combustion device as, in order to be significant the NO x suppressing effect in the precombustion chamber (24), the inner wall of the precombustion chamber (24) is about The temperature was over 1600 ° C. In addition, since the pre-combustion chamber (2) is exposed to the combustion gas (12) in the reducing atmosphere.
4) There is a problem that it is difficult to select a refractory material forming the inner wall surface and the life is short.

【0013】[0013]

【課題を解決するための手段】本発明者は、前記従来の
課題を解決するために、壁面が水冷管で構成された火炉
本体に連結され耐火材で構成された予燃焼室に気体燃料
または液体燃料と上記燃料に対する理論空気量に満たな
い空気とを供給して燃焼させるとともに、上記燃料の燃
焼を完結させ得る量の空気を上記火炉本体に供給し、か
つ上記予燃焼室と上記火炉本体との連結部にニッケル系
の触媒を設け、同ニッケル系の触媒内のガス温度を120
0 ℃ないし1300 ℃とすることを特徴とする燃焼方法を
提案するものである。
In order to solve the above-mentioned conventional problems, the present inventor has proposed that a gaseous fuel or a gaseous fuel is supplied to a pre-combustion chamber which is connected to a furnace body having a wall formed of a water-cooled tube and made of a refractory material. A liquid fuel and air less than the theoretical amount of air for the fuel are supplied and burned, and air is supplied to the furnace body in an amount capable of completing the combustion of the fuel, and the pre-combustion chamber and the furnace body are supplied. A nickel-based catalyst is provided at the connection with the catalyst, and the gas temperature in the nickel-based catalyst is set to 120.
The present invention proposes a combustion method characterized by a temperature of 0 ° C. to 1300 ° C.

【0014】[0014]

【作用】本発明においては、予燃焼室と火炉本体との連
結部に設けられたニッケル(Ni)系の触媒によって、
NOx 還元反応が助長されるとともに、未燃分(タール
等)が除去される。すなわち、予燃焼室内の還元性雰囲
気でNOx が還元されて生じたNH3 ,HCNは触媒に
よってN2 ,H2 O,CO2 に分解される。この場合、
本発明では触媒内のガス温度を1000 ℃を越えて1200
以上の高温にするので、この分解反応が充分に促進さ
れ、また3次空気中のO2 によるNOの再生成がないの
で、最終NOx が 50〜 80ppm にまで低減する。
According to the present invention, a nickel (Ni) -based catalyst provided at the connection between the pre-combustion chamber and the furnace main body is used.
With the NO x reduction reaction is promoted, unburned (tar, etc.) are removed. That is, NH 3 and HCN generated by reducing NO x in the reducing atmosphere in the pre-combustion chamber are decomposed into N 2 , H 2 O, and CO 2 by the catalyst. in this case,
In the present invention, the temperature of the gas in the catalyst is raised to over 1200 ° C. to 1200 ° C.
The high temperature of not less than ° C. promotes this decomposition reaction sufficiently, and since there is no regeneration of NO by O 2 in the tertiary air, the final NO x is reduced to 50 to 80 ppm.

【0015】更に本発明では、上記のように予燃焼室出
口部の触媒でNOx の要因ガスであるNH3 ,HCNを
分解するので、予燃焼室内の燃焼温度を従来の燃焼方法
のように高く保持する必要はなく、燃焼ガス温度を130
0 ℃以下に保持できる。したがって予燃焼室を比較的低
温用の耐火壁で構成することができる。なお、本発明で
は、予燃焼室温度を1200 ℃ないし1300 ℃に保持する
ことにより、例えばパッケージボイラの様に高粘度の難
燃性成分を含む燃料であっても、水冷管壁面で構成され
た火炉本体内での燃焼を確実に行い、良好な燃焼完結を
期待することができる。
Further, in the present invention, since the catalyst at the outlet of the pre-combustion chamber decomposes NH 3 and HCN, which are the factor gases of NO x , as described above, the combustion temperature in the pre-combustion chamber is reduced as in the conventional combustion method. It is not necessary to keep it high, and the combustion gas temperature
Can be kept below 0 ° C. Therefore, the pre-combustion chamber can be constituted by a refractory wall for a relatively low temperature. In the present invention,
Maintains the pre-combustion chamber temperature between 1200 ° C and 1300 ° C
This makes it difficult to obtain high viscosity
Even with fuel containing flammable components, it is composed of water-cooled pipe walls.
Combustion within the furnace body to ensure good combustion completion.
You can expect.

【0016】[0016]

【実施例】図1は本発明方法を実施する予燃焼室付きパ
ッケージボイラの一例を示す横断平面図(図2のI−I
断面図)、図2は図1のII−II線による縦断正面図であ
る。これらの図において、前記図4および図5により説
明した従来のものと同様の部分については、冗長になる
のを避けるため、同一の符号を付けて詳しい説明を省略
する。図1および図2中、(27)は再循環ガス送風機
(GRF),(28)は再循環ガス(GR)供給ライ
ン,(29)は再循環ガス(GR),(30)はニッケ
ル(Ni)系触媒,(31)はボイラ出口煙道をそれぞ
れ示す。
1 is a cross-sectional plan view showing an example of a package boiler with a pre-combustion chamber for carrying out the method of the present invention (II in FIG. 2).
2 is a longitudinal sectional front view taken along line II-II in FIG. In these figures, the same components as those of the conventional device described with reference to FIGS. 4 and 5 are denoted by the same reference numerals and their detailed description is omitted to avoid redundancy. 1 and 2, (27) is a recirculating gas blower (GRF), (28) is a recirculating gas (GR) supply line, (29) is a recirculating gas (GR), and (30) is nickel (Ni). ) -Based catalyst, (31) indicates a boiler outlet flue.

【0017】本実施例では、予燃焼室(24)出口部に
ニッケル(Ni)系触媒(30)が設けられ、予燃焼室
(24)の還元雰囲気における1次燃焼で発生した燃焼
ガス(12)が送り込まれる。このニッケル系触媒(3
0)は、ニッケル金属、ニッケル合金またはセラミック
ス板にニッケル粉末を溶射した材料等を使用し、燃焼ガ
ス(12)の接触面積を大きくするため、格子状に組込
んだものである。
In this embodiment, a nickel (Ni) catalyst (30) is provided at the outlet of the pre-combustion chamber (24), and the combustion gas (12) generated by the primary combustion in the reducing atmosphere of the pre-combustion chamber (24). ) Is sent. This nickel-based catalyst (3
No. 0) is made of nickel metal, a nickel alloy or a material obtained by spraying nickel powder on a ceramic plate, etc., and is incorporated in a grid to increase the contact area of the combustion gas (12).

【0018】燃焼ガス(12)は、ニッケル系触媒(3
0)を通った後、ボイラ火炉本体(02)内に吹き込ま
れて、3次空気(23)の供給によって完全燃焼し、対
流伝熱面(06)で熱交換した後、ボイラ出口煙道(3
1)を通って図示されてない煙突から大気放出される。
その際、燃焼ガス(12)の一部を再循環ガス(GR)
(29)として、ボイラ出口煙道(31)から分岐した
再循環ガス(GR)供給ライン(28)を通して、再循
環ガス送風機(GRF)(27)により誘引し、1次空
気(21)および2次空気(22)に合流させて、予燃
焼室(24)内へ吹き込む。
The combustion gas (12) is a nickel-based catalyst (3
0), is blown into the boiler furnace main body (02), is completely burned by the supply of tertiary air (23), exchanges heat with the convection heat transfer surface (06), and then passes through the boiler outlet flue ( 3
Air is discharged from a chimney (not shown) through 1).
At this time, a part of the combustion gas (12) is recirculated (GR).
As (29), the primary air (21) and the secondary air (2) are drawn by a recirculating gas blower (GRF) (27) through a recirculating gas (GR) supply line (28) branched from a boiler outlet flue (31). Merges with the next air (22) and blows into the pre-combustion chamber (24).

【0019】ニッケル系触媒(30)が未燃分(ター
ル)除去および脱硝に効果のあることは公知の事項であ
るが、本実施例ではニッケル系触媒(30)内での燃焼
ガス(12)の温度を1200 ℃〜1300 ℃とする。
It is well known that the nickel-based catalyst (30) is effective in removing unburned components (tar) and denitration, but in this embodiment, the combustion gas (12) in the nickel-based catalyst (30) is effective. Temperature is set to 1200 ° C to 1300 ° C.

【0020】図3は、先に発明者らが実施した実験の結
果として、ニッケル系触媒(30)内における燃焼ガス
(12)の温度と未燃分(タール)除去率および脱硝率
との関係を示したものである。この図から、ニッケル系
触媒(30)が未燃分除去および脱硝に効果があるの
は、燃焼ガス(12)の温度が1000 ℃以上の場合であ
ることが判る。一方燃焼ガス(12)の温度の上限を1
300 ℃としたのは、ニッケル系触媒(30)の寿命を考
慮してのことである。なおニッケル系触媒(30)によ
る脱硝効果自体は、前記の様に1000 ℃付近から期待で
きるものの、水冷壁(01)で構成したボイラ火炉本体
(02)内では、壁面温度が低いために前記燃焼ガス
(12)の温度が1000 ℃付近で低いと、高粘度の難燃
性の燃料では良好な燃焼完結が期待できない。しかし、
この燃焼ガス(12)の温度が、1000 ℃を越えて120
0 ℃〜1300 ℃確保できれば、例え燃料が難燃性成分を
含むものであってもボイラ火炉本体(02)内で良好な
燃焼完結を期待することができる。
FIG. 3 shows the relationship between the temperature of the combustion gas (12) in the nickel-based catalyst (30) and the unburned matter (tar) removal rate and the denitration rate as a result of the experiment conducted by the inventors previously. It is shown. From this figure, it can be seen that the nickel-based catalyst (30) is effective in removing unburned components and denitration when the temperature of the combustion gas (12) is 1,000 ° C. or higher. On the other hand, the upper limit of the temperature of the combustion gas (12) is set to 1
The reason why the temperature was set to 300 ° C. was to consider the life of the nickel-based catalyst (30). The nickel catalyst (30)
The denitration effect itself is expected from around 1000 ° C as described above.
Boiler furnace body composed of water-cooled wall (01)
In (02), the combustion gas
If the temperature of (12) is low around 1000 ° C, high viscosity flame retardant
Good combustion completion cannot be expected with a non-flammable fuel. But,
When the temperature of this combustion gas (12) exceeds
If 0 ℃ ~ 1300 ℃ can be ensured, even if the fuel has flame retardant components
Even if it contains, it is good in the boiler furnace main body (02).
Combustion completion can be expected.

【0021】上記のとおり本実施例では、予燃焼室(2
4)出口部にニッケル系触媒(30)を設けることによ
り、予燃焼室(24)内における燃焼ガス(12)の温
度を従来の装置に比べ低く抑えても(最高温度≦1400
℃)、従来以上の低煤塵・低NOx 運転を行なうことが
できる。その上、予燃焼室(24)内壁も水冷壁で構成
でき、従来の耐火材で生じていた破損等のトラブルをな
くすことができる。
As described above, in this embodiment, the pre-combustion chamber (2
4) By providing the nickel-based catalyst (30) at the outlet, the temperature of the combustion gas (12) in the pre-combustion chamber (24) can be kept lower than that of the conventional apparatus (maximum temperature ≦ 1400).
° C.), it can be carried out conventionally over a low dust, low NO x operation. In addition, the inner wall of the pre-combustion chamber (24) can also be constituted by a water-cooled wall, and troubles such as breakage caused by the conventional refractory material can be eliminated.

【0022】前記図4および図5に示される従来の燃焼
装置においては、NOx 抑制効果は予燃焼室(24)内
の空気比によって大きく左右されるが、本実施例ではニ
ッケル系触媒(30)による脱硝でNOx を抑制するた
め、予燃焼室(24)内の空気比にそれほど影響され
ず、還元雰囲気さえ保持できればよいという利点もあ
る。
[0022] FIG. 4 and the conventional combustion apparatus shown in FIG. 5, NO x suppressing effect is greatly affected by the air ratio of the precombustion chamber (24) in, in this example nickel-based catalyst (30 ) for suppressing the NO x denitration by, precombustion chamber (24) air ratio without being influenced so much in an advantage that it is sufficient even hold a reducing atmosphere.

【0023】なお、予燃焼室(24)内の燃焼ガス(1
2)の温度調整は、本実施例では前述のとおり、1次空
気(21)および2次空気(22)へ再循環ガス(G
R)(29)を混入して行なうものであるが、もとより
予燃焼室(24)内空気比の調整によっても可能であ
る。
The combustion gas (1) in the pre-combustion chamber (24)
In the present embodiment, the temperature adjustment of the recirculation gas (G) is performed to the primary air (21) and the secondary air (22) as described above.
R) and (29), but it is also possible to adjust the air ratio in the pre-combustion chamber (24).

【0024】[0024]

【発明の効果】本発明においては、予燃焼室と火炉本体
との連結部にニッケル系の触媒を設けることにより、予
燃焼室内燃焼ガス温度(触媒内ガス温度)は、従来の装
置が1600 ℃以上を必要としていたのに対し、1300 ℃
以下でよく、このため予燃焼室内壁面を水冷壁等で構成
でき、従来の耐火材で起きていた破損等のトラブルを完
全に解消できるばかりでなく、ニッケル系触媒の寿命も
延長される。
According to the present invention, by providing a nickel-based catalyst at the connection between the pre-combustion chamber and the furnace body, the temperature of the combustion gas (gas temperature in the catalyst) of the conventional apparatus is 1600 ° C. 1300 ℃
For this reason, the wall surface of the pre-combustion chamber can be constituted by a water-cooled wall or the like, so that not only troubles such as breakage occurring in the conventional refractory material can be completely eliminated, but also the life of the nickel-based catalyst can be extended.

【0025】また、この触媒内ガス温度の下限を1200
℃以上と高温にするので、ガス中のアンモニア、シアン
の分解反応が充分に促進され、3次空気中のO2 による
NOの再生成もなく、最終NOx が低減されると共に、
例えばパッケージボイラの様に高粘度の難燃性成分を含
む燃料であっても、水冷管壁面で構成された火炉本体内
での燃焼を確実に行い、良好な燃焼完結を期待すること
ができる。
The lower limit of the gas temperature in the catalyst is 1200
C. or higher, the decomposition reaction of ammonia and cyan in the gas is sufficiently promoted, NO is not regenerated by O 2 in the tertiary air, and the final NO x is reduced .
For example, it contains high-viscosity flame-retardant components such as package boilers.
Even if the fuel is
To ensure that the fuel is burned in the furnace and to expect good combustion completion
Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は本発明方法を実施する予燃焼室付きパッ
ケージボイラの一例を示す横断平面図(図2のI−I断
面図)である。
FIG. 1 is a cross-sectional plan view (a cross-sectional view taken along line II of FIG. 2) showing an example of a package boiler with a pre-combustion chamber for implementing the method of the present invention.

【図2】図2は図1のII−II線による縦断正面図であ
る。
FIG. 2 is a vertical sectional front view taken along line II-II of FIG.

【図3】図3はニッケル系触媒における燃焼ガス温度と
未燃分除去率および脱硝率との関係を示す図である。
FIG. 3 is a diagram showing the relationship between the combustion gas temperature and the unburned matter removal rate and the denitration rate in a nickel-based catalyst.

【図4】図4は従来の予燃焼室付きパッケージボイラの
一例を示す横断平面図(図5のIV−IV断面図)である。
FIG. 4 is a cross-sectional plan view (a cross-sectional view taken along line IV-IV of FIG. 5) showing an example of a conventional package boiler with a pre-combustion chamber.

【図5】図5は図4のV−V線による縦断正面図であ
る。
FIG. 5 is a vertical sectional front view taken along line VV of FIG. 4;

【図6】図6は予燃焼室内燃焼温度とボイラ火炉本体出
口のNOx 量との関係を示す図である。
Figure 6 is a diagram showing the relationship between the pre-combustion chamber the combustion temperature and the boiler furnace main body amount of NO x outlet.

【符号の説明】[Explanation of symbols]

(01) 輻射伝熱面(水冷壁) (02) ボイラ火炉本体 (03) 1次空気風箱 (04) エアレジスタ (05) バーナガン (06) 対流伝熱面 (07) 蒸気ドラム (08) 水ドラム (09) 燃焼用空気 (10) 燃料 (11) 噴霧媒体 (12) 燃焼ガス (13) 燃焼ガス出口 (14) 1次空気供給ライン (15) 2次空気供給ライン (16) 3次空気供給ライン (17) 2次空気風箱 (18) 3次空気風箱 (19) 2次空気噴出孔 (20) 3次空気噴出孔 (21) 1次空気 (22) 2次空気 (23) 3次空気 (24) 予燃焼室 (25) 保炎器 (26) 予燃焼室排出口 (27) 再循環ガス送風機(GRF) (28) 再循環ガス(GR)供給ライン (29) 再循環ガス(GR) (30) ニッケル(Ni)系触媒 (31) ボイラ出口煙道 (01) Radiant heat transfer surface (water-cooled wall) (02) Boiler furnace main body (03) Primary air wind box (04) Air register (05) Burner gun (06) Convection heat transfer surface (07) Steam drum (08) Water Drum (09) Combustion air (10) Fuel (11) Spray medium (12) Combustion gas (13) Combustion gas outlet (14) Primary air supply line (15) Secondary air supply line (16) Tertiary air supply Line (17) Secondary air wind box (18) Tertiary air wind box (19) Secondary air outlet (20) Tertiary air outlet (21) Primary air (22) Secondary air (23) Tertiary Air (24) Pre-combustion chamber (25) Flame stabilizer (26) Pre-combustion chamber outlet (27) Recirculated gas blower (GRF) (28) Recirculated gas (GR) supply line (29) Recirculated gas (GR) (30) Nickel (Ni) system Medium (31) boiler outlet flue

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大栗 正治 長崎市飽の浦町1番1号 三菱重工業株 式会社長崎研究所内 (56)参考文献 特開 昭51−82434(JP,A) 実開 昭62−180205(JP,U) 特公 昭57−2371(JP,B2) 特公 昭52−37611(JP,B2) ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Shoji Oguri 1-1, Akunouracho, Nagasaki City Inside Nagasaki Research Laboratory, Mitsubishi Heavy Industries, Ltd. (56) References JP-A-51-82434 (JP, A) -180205 (JP, U) JP-B-57-2371 (JP, B2) JP-B-52-37611 (JP, B2)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 壁面が水冷管で構成された火炉本体に連
結され耐火材で構成された予燃焼室に気体燃料または液
体燃料と上記燃料に対する理論空気量に満たない空気と
を供給して燃焼させるとともに、上記燃料の燃焼を完結
させ得る量の空気を上記火炉本体に供給し、かつ上記予
燃焼室と上記火炉本体との連結部にニッケル系の触媒を
設け、同ニッケル系の触媒内のガス温度を1200 ℃ない
し1300 ℃とすることを特徴とする燃焼方法。
1. A gas or liquid fuel and air less than a stoichiometric amount of air for a fuel are supplied to a pre-combustion chamber formed of a refractory material and connected to a furnace body whose wall is formed of a water-cooled tube, and burned. At the same time, an amount of air capable of completing the combustion of the fuel is supplied to the furnace main body, and a nickel-based catalyst is provided at a connection portion between the pre-combustion chamber and the furnace main body, and the nickel-based catalyst in the nickel-based catalyst is provided. A combustion method characterized in that the gas temperature is 1200 ° C. to 1300 ° C.
JP01832694A 1994-02-15 1994-02-15 Combustion method Expired - Fee Related JP3217575B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01832694A JP3217575B2 (en) 1994-02-15 1994-02-15 Combustion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01832694A JP3217575B2 (en) 1994-02-15 1994-02-15 Combustion method

Publications (2)

Publication Number Publication Date
JPH06294503A JPH06294503A (en) 1994-10-21
JP3217575B2 true JP3217575B2 (en) 2001-10-09

Family

ID=11968503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01832694A Expired - Fee Related JP3217575B2 (en) 1994-02-15 1994-02-15 Combustion method

Country Status (1)

Country Link
JP (1) JP3217575B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5187730B2 (en) * 2007-11-15 2013-04-24 一般財団法人電力中央研究所 Boiler and power generation system
KR101314825B1 (en) * 2011-02-25 2013-10-04 삼성중공업 주식회사 Deodorization boiler and sludge treating apparatus including the same
CN113217937A (en) * 2021-06-11 2021-08-06 西安热工研究院有限公司 System and method for reducing carbon dioxide emission of coal-fired unit by using ammonia combustion

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5182434A (en) * 1975-01-16 1976-07-20 Kawasaki Heavy Ind Ltd YONENSHOSHITSUTSUKI NENSHOHOTOSONOSOCHI
JPS5237611A (en) * 1975-08-13 1977-03-23 Hatsuo Uchikoba Subcmbustion room jet whirlpool engie
JPS572371A (en) * 1980-06-04 1982-01-07 Pilot Ink Co Ltd Water-based ink composition

Also Published As

Publication number Publication date
JPH06294503A (en) 1994-10-21

Similar Documents

Publication Publication Date Title
JP3175943B2 (en) Apparatus and method for injecting NOx reducing agents
JPH0618610B2 (en) NOx reduction method in flue gas
KR102559863B1 (en) incineration device
JP3217575B2 (en) Combustion method
CN110425548A (en) Chemical industry saliferous raffinate incineration system and its burning process
KR20070019924A (en) Nozzle arrangement method and exhaust processing equipment of selective non-catalytic reduction
RU2370701C1 (en) Vertical prismatic furnace and method of its operation
JP3026671B2 (en) Exhaust gas combustion furnace and combustion control method for exhaust gas combustion furnace
JP4636611B2 (en) Boiler equipment
JP2001304502A (en) Method for preventing corrosion of boiler tube and structure of boiler tube
CN211823775U (en) Chain grate-rotary kiln-circular cooler with ultralow emission
JP3712527B2 (en) Method for reducing NOx in coke oven combustion exhaust gas
JPS6243084B2 (en)
JPH0249444Y2 (en)
JPH08254301A (en) Furnace wall structure for fluidized bed boiler
CN216384208U (en) RTO + SCR combined treatment process device
SU945616A1 (en) Fluidized-bed furnace
JP4070698B2 (en) Exhaust gas supply method and backfire prevention device
RU1802266C (en) Burner assembly
JPS6122114A (en) Fluidized bed incinerator
SU1359619A1 (en) Gas distributing water-cooled grate
JPS5934246B2 (en) Method for treating ammonia-containing substances in a fluidized bed combustion furnace
JP4131527B2 (en) Method and apparatus for reducing nitrogen oxides
CN115654513A (en) Tail gas incineration device and method
JPH031564B2 (en)

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980929

LAPS Cancellation because of no payment of annual fees