JPH031564B2 - - Google Patents

Info

Publication number
JPH031564B2
JPH031564B2 JP58229711A JP22971183A JPH031564B2 JP H031564 B2 JPH031564 B2 JP H031564B2 JP 58229711 A JP58229711 A JP 58229711A JP 22971183 A JP22971183 A JP 22971183A JP H031564 B2 JPH031564 B2 JP H031564B2
Authority
JP
Japan
Prior art keywords
furnace
coal
partial combustion
combustion
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58229711A
Other languages
Japanese (ja)
Other versions
JPS60122809A (en
Inventor
Kunpei Ozaki
Chikatoshi Kurata
Kenichi Fujii
Ko Dewa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP22971183A priority Critical patent/JPS60122809A/en
Publication of JPS60122809A publication Critical patent/JPS60122809A/en
Publication of JPH031564B2 publication Critical patent/JPH031564B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C3/00Combustion apparatus characterised by the shape of the combustion chamber
    • F23C3/006Combustion apparatus characterised by the shape of the combustion chamber the chamber being arranged for cyclonic combustion
    • F23C3/008Combustion apparatus characterised by the shape of the combustion chamber the chamber being arranged for cyclonic combustion for pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C5/00Disposition of burners with respect to the combustion chamber or to one another; Mounting of burners in combustion apparatus

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、微粉炭焚き低NOx燃焼装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a pulverized coal-fired low NO x combustion device.

(従来の技術) 従来、第1図に示すようなボイラ炉などの工業
炉1においては、その外周下部に、第1主バーナ
2と第2主バーナ3とを設置し、それぞれに微粉
炭供給管4と空気供給管5とを連通させることに
より、微粉炭供給口6と空気供給口7とを設けて
微粉炭を燃焼させるように構成しているが、炉内
の主バーナ燃焼域aにおける燃焼ガスが、酸素過
剰燃焼にもとづくものであるため、そのガス中に
NOxを含み、したがつて、これらのNOxを炉外
に排出する前に炉内で処理するように、オーバフ
アイヤエア供給口8の上部に、脱硝バーナ9を設
置するとともに、脱硝バーナ9の上部に、アフタ
エア供給口10を配して対処してある。
(Prior Art) Conventionally, in an industrial furnace 1 such as a boiler furnace as shown in FIG. 1, a first main burner 2 and a second main burner 3 are installed at the lower part of the outer periphery, and pulverized coal is supplied to each of them. By communicating the pipe 4 and the air supply pipe 5, a pulverized coal supply port 6 and an air supply port 7 are provided to burn the pulverized coal. Since the combustion gas is based on oxygen-excess combustion, there are
A denitrification burner 9 is installed above the overfire air supply port 8, and a denitrification burner 9 is installed above the overfire air supply port 8 to treat NOx in the furnace before discharging it outside the furnace. An after-air supply port 10 is disposed above the air conditioner 9 to cope with the problem.

この脱硝バーナ9には、第2図のように、微粉
炭供給管4と空気供給管5とが連通され、それぞ
れに微粉炭供給口6と空気供給口7とが設けら
れ、微粉炭を理論燃焼必要空気量(当量)以下の
割合とした空気とともに炉内に導入し、それを未
燃燃料として第1図に示す主バーナ燃焼域aで発
生する燃焼ガスと反応させることにより、未燃燃
料存在還元域bにおいて次の反応を得るようにし
てある。
As shown in FIG. 2, this denitrification burner 9 is connected to a pulverized coal supply pipe 4 and an air supply pipe 5, each of which is provided with a pulverized coal supply port 6 and an air supply port 7. By introducing air into the furnace at a ratio below the required air amount (equivalent) for combustion and reacting it with the combustion gas generated in the main burner combustion zone a shown in Figure 1 as unburned fuel, unburned fuel is produced. The following reaction is obtained in the existing reduction zone b.

NO+HC*→N・R ……() ここで、NOは、主バーナ燃焼域aから上昇し
てくるもの。HC*は、活性炭化水素で脱硝バー
ナ9での不完全燃焼により発生する。N・Rは、
たとえば、HCNまたはNH3などの窒素化合物を
いう。
NO + HC * → N・R ... () Here, NO is what rises from the main burner combustion area a. HC * is activated hydrocarbon and is generated by incomplete combustion in the denitrification burner 9. N.R.
For example, refers to nitrogen compounds such as HCN or NH3 .

上記N・Rが生成された後の段階では、アフタ
エア供給口10から供給されたエアによつて酸化
処理され、燃焼完結域cにおいて、まず、次の反
応を得る。
At the stage after the above-mentioned N.R is generated, it is oxidized by the air supplied from the after-air supply port 10, and in the combustion completion zone c, the following reaction is first obtained.

N・R+O2→NO ……() さらに、上式のN・RとNOとが反応すること
により、 N・R+NO→N2 ……() のようにNOが消滅し、炉外にできるだけNOが
排出されないようにしてある。
N・R+O 2 →NO ……() Furthermore, due to the reaction between N・R and NO in the above equation, NO disappears as shown in N・R+NO→N 2 …(), and as much NO as possible is removed from the furnace. is prevented from being emitted.

ところが、従来の脱硝バーナ9は、第2図にそ
の要部を示すように、工業炉1の炉壁に直後、設
置され、つまり、微粉炭供給口6が直接、炉内に
のぞむため、途中で燃焼が行われず、炉内で、初
めて燃焼が行われる、いわゆる炉内燃焼方式とな
つている。
However, the conventional denitrification burner 9, as shown in FIG. This is the so-called in-furnace combustion method, in which combustion does not take place inside the furnace, but instead takes place inside the furnace.

したがつて、こうした炉内燃焼方式によれば、
脱硝燃料燃焼域11では、熱放散を伴う比較的低
温の火炎が形成されるため、その燃焼は活発化せ
ず、供給される空気が完全に消費されない状態と
なつて、その燃焼域11および未燃燃料存在還元
域bにO2が比較的多く残る結果となる。
Therefore, according to this in-furnace combustion method,
In the denitrification fuel combustion zone 11, a relatively low-temperature flame with heat dissipation is formed, so the combustion does not become active and the supplied air is not completely consumed. This results in a relatively large amount of O 2 remaining in the fuel-existing reduction zone b.

上記O2が多く残る結果、未燃燃料存在還元域
bが脱硝のための還元性雰囲気となるべきところ
が、脱硝能力に乏しい酸化性雰囲気となり、その
ために、活性炭化水素HC*の発生量が少なくな
り、()式の反応が進まず、脱硝作用は不十分
になる。
As a result of the above-mentioned large amount of O 2 remaining, the reduction zone b where unburned fuel should be a reducing atmosphere for denitrification becomes an oxidizing atmosphere with poor denitrification ability, and as a result, the amount of activated hydrocarbon HC * generated is small. Therefore, the reaction of formula () does not proceed, and the denitrification effect becomes insufficient.

このことは、未燃燃料存在還元域bが酸化性雰
囲気であることに起因するほか、上記還元域bが
脱硝燃料燃焼域11の拡がりにより、圧迫されて
狭い燃焼域を呈することにも起因する。
This is not only due to the fact that the unburned fuel existing reduction zone b is an oxidizing atmosphere, but also because the reduction zone b is compressed by the expansion of the denitrified fuel combustion zone 11 and presents a narrow combustion zone. .

また、上述のように、脱硝燃料燃焼域11では
十分な燃焼が行われないため、燃え残りによるチ
ヤー(石炭粒)が多く発生し、しかも、主バーナ
燃焼域aにおいて発生するチヤーを未燃燃料存在
還元域bにおいて燃焼してガス化するにも、O2
濃度が低く、しかも上記低温化した雰囲気のもと
では、いま一つ効果的なガス化が行えず、したが
つて、次の段階で、アフタエアを供給して完全燃
焼を図ろうとしても、あらかじめ、完全ガス化さ
れていないため、完全燃焼には至らず、多くのチ
ヤーが炉外にそのまま排出される結果となつてい
た。
In addition, as mentioned above, since sufficient combustion is not performed in the denitrification fuel combustion zone 11, a lot of coal particles (coal grains) are generated due to unburned remains. Even when it is burned and gasified in the existing reduction zone b, O 2
In the low-concentration and low-temperature atmosphere described above, gasification cannot be performed effectively, and therefore, even if you try to achieve complete combustion by supplying afterair in the next step, However, since complete gasification was not achieved, complete combustion was not achieved, resulting in a large amount of char being discharged directly from the furnace.

また、微粉炭中には、通常10%ないし20%程度
の灰分が含まれているので、この灰分の排出を円
滑に行つて、工業炉の損傷を未然に防止する必要
がある。
Furthermore, since pulverized coal usually contains about 10% to 20% ash, it is necessary to smoothly discharge this ash to prevent damage to industrial furnaces.

(発明の目的) この発明は、上記課題に鑑みてなされたもので
あつて、NOxとチヤーの排出抑制を図り得ると
ともに、微粉炭中の灰分の排出を円滑に行い得る
微粉炭焚き低NOx燃焼装置を提供することを目
的とする。
(Object of the Invention) The present invention has been made in view of the above-mentioned problems, and is a pulverized coal-fired low NO x aims to provide combustion equipment.

(発明の構成) 上記目的を達成するため、この発明では、工業
炉の主バーナとアフタエア供給口との間に対応す
る外周部に、石炭部分燃焼炉を突設するととも
に、石炭部分燃焼炉の内部に、工業炉内に対しガ
ス導入口を介して連通する部分燃焼室を形成し、
かつ石炭部分燃焼炉の突出する外端部に、部分燃
焼室を連通する上記脱硝バーナを設置し、石炭部
分燃焼炉の中途に溶解灰をせき止めるバツフルを
設け、このバツフルの上流に溶解灰を石炭部分燃
焼炉から取り出す取出孔を設け、脱硝バーナの空
気供給口を、単位時間当りに供給される微粉炭量
に対し設定される理論燃焼必要空気量の50ないし
80%の空気量が単位時間当りに供給されるように
設定した。
(Structure of the Invention) In order to achieve the above object, in this invention, a coal partial combustion furnace is protruded from the outer periphery corresponding to between the main burner and the after air supply port of the industrial furnace, and the coal partial combustion furnace is provided with a coal partial combustion furnace. A partial combustion chamber is formed inside which communicates with the inside of the industrial furnace via a gas inlet,
In addition, the denitrification burner communicating with the partial combustion chamber is installed at the protruding outer end of the coal partial combustion furnace, and a buttful is provided in the middle of the coal partial combustion furnace to hold back the molten ash, and upstream of this buttful, the molten ash is collected from the coal. A take-out hole is provided to take out the part-combustion furnace, and the air supply port of the denitrification burner is connected to the air supply port of the denitrification burner, which is set at 50 to 50% of the theoretical air amount required for combustion, which is set for the amount of pulverized coal supplied per unit time.
It was set so that 80% of the air amount was supplied per unit time.

(実施例) 以下、この発明の実施例を添付図面にもとづい
て説明する。
(Example) Hereinafter, an example of the present invention will be described based on the accompanying drawings.

第3図はその一例を示し、図示しない構成部分
は、第1図の従来型と同様に構成され、図におい
て、12は筒形の石炭部分燃焼炉で、工業炉1の
第2主バーナ3とアフタエア供給口10間に対応
する外周部に突設され、その基端には、工業炉1
と連通するガス導入口13が形成される一方、突
出する外端には、脱硝バーナ9が連通して設けら
れている。この炉外燃焼方式として構成した石炭
部分燃焼炉12は耐火断熱材でもつて形成され、
ガス導入口13側が下部となるように傾斜状をな
して設けてある。
FIG. 3 shows an example of this, and the components not shown are constructed in the same way as the conventional type shown in FIG. and the after air supply port 10, and the industrial furnace 1 is provided at the base end thereof.
A gas inlet 13 is formed to communicate with the denitrification burner 9, and a denitrification burner 9 is provided at the protruding outer end. The coal partial combustion furnace 12 configured as this outside combustion method is made of a fireproof and insulating material,
It is provided in an inclined shape so that the gas inlet 13 side is at the bottom.

この石炭部分燃焼炉12内には、脱硝バーナ9
とガス導入口13との間に対応して、部分燃焼室
14が形成されており、この場合、石炭部分燃焼
炉12は、発生する灰を高温で旋回するガス流に
より溶融して、その溶融灰を燃焼ガスに同伴させ
ないサイクロン方式とされている。
Inside this coal partial combustion furnace 12, a denitrification burner 9 is installed.
A partial combustion chamber 14 is formed between the coal partial combustion furnace 12 and the gas inlet 13, and in this case, the coal partial combustion furnace 12 melts the generated ash with a gas flow swirling at high temperature. It is said to be a cyclone method that does not entrain ash into the combustion gas.

ここで、脱硝バーナ9の空気供給口7からの空
気は、微粉炭に対し、次のように、その空気比が
設定されている。つまり、単位時間当りに供給さ
れる微粉炭を完全燃焼させるに必要な空気供給量
を理論燃焼必要空気量(当量)とした場合、空気
供給量/理論燃焼必要空気量、つまり、ここでい
う空気比を0.5〜0.8としてある。
Here, the air ratio of the air from the air supply port 7 of the denitrification burner 9 to the pulverized coal is set as follows. In other words, if the amount of air supply required to completely burn pulverized coal supplied per unit time is the theoretical amount of air required for combustion (equivalent amount), then the amount of air supplied/the amount of air required for theoretical combustion, that is, the air The ratio is set at 0.5 to 0.8.

上記空気比の上限値0.8を超えると、NOxの分
解に最も有効な活性炭化水素の発生がほとんどな
く、また、空気比の下限値0.5未満であると、上
記チヤーが著しく増大するので、好ましくない。
If the air ratio exceeds the upper limit of 0.8, there is almost no generation of activated hydrocarbons, which are most effective for decomposing NO do not have.

20はバツフルで、石炭部分燃焼炉12の中途
に設けられて、微粉炭中の溶解炭をせき止めるも
のである。21は取出孔で、上記バツフル20の
上流に設けられ、上記溶融灰を石炭部分燃焼炉1
2から取り出すものである。
Reference numeral 20 denotes a buffer, which is provided in the middle of the coal partial combustion furnace 12 to dam the melted coal in the pulverized coal. Reference numeral 21 denotes a take-out hole, which is provided upstream of the baffle 20 to transfer the molten ash to the coal partial combustion furnace 1.
This is extracted from 2.

上記構成においては、脱硝バーナ9を介して微
粉炭と0.5〜0.8の空気比をもつ空気とが供給さ
れ、この場合、石炭部分燃焼炉12が一定の限ら
れた空間であることと、耐火断熱性をもつことに
より、部分燃焼室14内では、脱硝燃料燃焼域1
1が1700℃程度の高温燃焼域として発生する。
In the above configuration, pulverized coal and air having an air ratio of 0.5 to 0.8 are supplied via the denitrification burner 9, and in this case, the coal partial combustion furnace 12 is a certain limited space, and the fireproof insulation In the partial combustion chamber 14, the denitrified fuel combustion zone 1
1 occurs as a high-temperature combustion region of around 1700℃.

したがつて、高温燃焼に伴つて所定量の供給空
気のうち、O2分が燃焼のために、完全に消費さ
れきるとともに、空気比が0.5以上であることも
あつて、チヤーが発生する余地も少ない。こうし
て、部分燃焼室14内では、高温不完全燃焼に伴
う脱硝燃料燃焼域11では供給される石炭のほと
んどがガス化し、これらガス化したものが、ガス
導入口13から広い炉内へと急速に噴出されるた
め、大きく膨張して拡散状の未燃燃料存在還元域
bを形成することとなる。
Therefore, due to high-temperature combustion, 2 minutes of O out of the predetermined amount of supplied air is completely consumed for combustion, and since the air ratio is 0.5 or more, there is no room for chirping to occur. There are also few. In this way, in the partial combustion chamber 14, most of the supplied coal is gasified in the denitrified fuel combustion zone 11 due to high-temperature incomplete combustion, and this gasified material is rapidly transferred from the gas inlet 13 into the wide furnace. Since it is ejected, it expands greatly and forms a diffused unburned fuel existing reduction zone b.

この未燃燃料存在還元域bにおいては、上記高
温燃焼に伴い、O2もチヤーも全く存在せず、高
温で完全にガス化(CO、H2、HC*ガス)した状
態となる。
In this reduction zone b where unburned fuel exists, due to the above-mentioned high-temperature combustion, neither O 2 nor chia exists at all, and the fuel is completely gasified (CO, H 2 , HC * gas) at high temperature.

したがつて、未燃燃料存在還元域bでは、O2
がなく、しかも空気比が0.8以下であることもあ
つて、活性炭化水素HC*で充満した拡張領域と
なるので、強力な脱硝還元能力をもつものとな
り、これにより、主バーナ燃焼域aにおいて発生
し上昇する燃焼ガス中のNOが、上式()の反
応をもつて効率的に分解され、他のN・R化合物
を目的どおり得ることとなる。
Therefore, in the reduction zone b where unburned fuel exists, O 2
Moreover, since the air ratio is less than 0.8, it becomes an expanded area filled with activated hydrocarbons HC * , so it has a strong denitrification and reduction ability. NO in the rising combustion gas is efficiently decomposed by the reaction of the above formula (), and other N/R compounds are obtained as desired.

こうして、NOが完全に還元された形となると
ともに、完全ガス化されているので、アフタエア
供給口10からの供給エアによつて上式()の
ように反応し、その結果としてのNOが、燃焼完
結域cにおいて上式()のように、上記N・R
と反応するため、N2に無害化脱硝された形のガ
スが炉外に取り出されることとなる。
In this way, since NO is in a completely reduced form and completely gasified, it reacts as shown in the above equation () by the air supplied from the after-air supply port 10, and the resulting NO is In the combustion completion region c, as in the above formula (), the above N・R
As a result, the denitrified gas, which has been rendered harmless to N2 , is taken out of the furnace.

また、主バーナ燃焼域aにおいても若干発生す
ることが予想されるチヤーも、アフタエアの供給
に伴つて完全に消滅し、したがつて、炉外へのチ
ヤーの排出は、全体としてほとんどないこととな
る。
Furthermore, the chir that is expected to occur to some extent in the main burner combustion zone a disappears completely with the supply of after air, and therefore there is almost no chir discharged outside the furnace as a whole. Become.

ところで、石炭部分燃焼炉12の炉内温度が著
しく高くなるので、微粉炭中に通常10%ないし20
%含まれる灰分が完全に溶融するのに対し、この
発明は、高温の石炭部分燃焼炉12内の中途に溶
融灰せき止め用のバツフル20を設けて、溶融灰
をせき止め、このバツフル20の上流側に取出孔
21を設けたから、上記溶融灰が高温に保たれて
いる間に溶融灰を石炭部分燃焼炉12外に取り出
すことができる。したがつて、灰分の排出を円滑
に行うことができる。
By the way, since the temperature inside the coal partial combustion furnace 12 becomes extremely high, pulverized coal usually contains 10% to 20%
% of ash is completely melted.In contrast, this invention provides a buffer 20 for damming up molten ash in the middle of the high-temperature coal partial combustion furnace 12 to dam up the molten ash. Since the extraction hole 21 is provided in the coal partial combustion furnace 12, the molten ash can be taken out of the coal partial combustion furnace 12 while the molten ash is kept at a high temperature. Therefore, ash can be smoothly discharged.

また、石炭部分燃焼炉12を、サイクロン方式
としておけば、それら溶融灰は、ガスによる強い
旋回流を受けて炉壁面に付着する。このことか
ら、溶融灰を、石炭部分燃焼炉12の内壁に付着
させ、いわゆるセルフコーテイング作用により、
上記耐火物断熱材の代役としてもよい。
Further, if the coal partial combustion furnace 12 is of a cyclone type, the molten ash receives a strong swirling flow caused by the gas and adheres to the furnace wall surface. From this, the molten ash is allowed to adhere to the inner wall of the coal partial combustion furnace 12, and due to the so-called self-coating effect,
It may also be used as a substitute for the above refractory insulation material.

勿論、上記石炭部分燃焼炉12は、サイクロン
方式としないこともある。
Of course, the coal partial combustion furnace 12 may not be of the cyclone type.

(発明の効果) 以上説明したように、この発明によれば、工業
炉の主バーナとアフタエア供給口との間に対応す
る外周部に、石炭部分燃焼炉を突設するととも
に、石炭部分燃焼炉の内部に、工業炉内に対し、
ガス導入口を介して連通する部分燃焼室を形成
し、かつ石炭部分燃焼炉の突出する外端部に、部
分燃焼室と連通する上記脱硝バーナを設置した炉
外燃焼方式を採用し、上記脱硝バーナの空気供給
口を、単位時間当りに供給される微粉炭量に対し
設定される理論燃焼必要空気量の50ないし80%の
空気量が単位時間当りに供給されるように設定し
たのでNOxおよびチヤーのほとんどが存在しな
い状態のガスが工業炉外へ排出されることとな
り、これがごく簡単な構造をもつて実現できるよ
うになつた。また、石炭部分燃焼炉内の中途に溶
融灰せき止め用のバツフルを設けて溶融灰をせき
止め、このバツフルの上流側に取出孔を設けたか
ら、溶融灰が高温に保たれている状態で溶融灰を
石炭部分燃焼炉外へ取り出すことができるので、
灰分の排出を円滑におこなうことができる。
(Effects of the Invention) As explained above, according to the present invention, a coal partial combustion furnace is provided protruding from the outer peripheral portion corresponding to between the main burner and the after air supply port of an industrial furnace, and a coal partial combustion furnace is provided. Inside the industrial furnace,
An outside-furnace combustion method is adopted in which a partial combustion chamber is formed that communicates with the partial combustion chamber through a gas inlet, and the denitrification burner that communicates with the partial combustion chamber is installed at the protruding outer end of the coal partial combustion furnace. The air supply port of the burner was set so that an air amount of 50 to 80% of the theoretical combustion air amount set for the amount of pulverized coal supplied per unit time was supplied per unit time, so NO x The gas in a state where most of the chir is not present is now discharged outside the industrial furnace, and this can now be achieved with a very simple structure. In addition, a buttful for damming up molten ash was installed in the middle of the coal partial combustion furnace to dam up the molten ash, and a take-out hole was provided upstream of this buttfull, so the molten ash could be removed while the molten ash was kept at a high temperature. Coal can be taken out of the partial combustion furnace, so
Ash can be smoothly discharged.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来形燃焼装置の一例を示す略示図、
第2図はその要部拡大図、第3図はこの発明の一
実施例を示す要部拡大図である。 1……工業炉、2,3……主バーナ、6……微
粉炭供給口、7……空気供給口、9……脱硝バー
ナ、10……アフタエア供給口、12……石炭部
分燃焼炉、13……ガス導入口、14……部分燃
焼室、20……バツフル、21……取出孔。
FIG. 1 is a schematic diagram showing an example of a conventional combustion device;
FIG. 2 is an enlarged view of the main part thereof, and FIG. 3 is an enlarged view of the main part showing one embodiment of the present invention. 1... Industrial furnace, 2, 3... Main burner, 6... Pulverized coal supply port, 7... Air supply port, 9... Denitration burner, 10... After air supply port, 12... Coal partial combustion furnace, 13...Gas inlet, 14...Partial combustion chamber, 20...Batsuful, 21...Takeout hole.

Claims (1)

【特許請求の範囲】[Claims] 1 微粉炭供給口と空気供給口とを設けた主バー
ナと脱硝バーナとが、脱硝バーナを上部として工
業炉の外周部に設置されるとともに、上記脱硝バ
ーナの上方に、アフタエア供給口が設けられた微
粉炭焚き低NOx燃焼装置において、上記工業炉
の主バーナとアフタエア供給口との間に対応する
外周部に、石炭部分燃焼炉を突設するとともに、
石炭部分燃焼炉の内部に、工業炉内に対しガス導
入口を介して連通する部分燃焼室を形成し、かつ
石炭部分燃焼炉の突出する外端部に、部分燃焼室
と連通する上記脱硝バーナを設置し、石炭部分燃
焼炉の中途に溶融灰をせき止めるバツフルを設
け、このバツフルの上流に溶融灰を石炭部分燃焼
炉から取り出す取出孔を設け、脱硝バーナの空気
供給口を、単位時間当りに供給される微粉炭量に
対し設定される理論燃焼必要空気量の50%ないし
80%の空気量が単位時間当りに供給されるように
設定したことを特徴とする微粉炭焚き低いNOx
燃焼装置。
1. A main burner and a denitrification burner provided with a pulverized coal supply port and an air supply port are installed on the outer periphery of an industrial furnace with the denitrification burner on top, and an after air supply port is provided above the denitrification burner. In the pulverized coal-fired low NO x combustion equipment, a coal partial combustion furnace is provided protruding from the outer periphery corresponding to between the main burner and the after air supply port of the industrial furnace, and
A partial combustion chamber that communicates with the inside of the industrial furnace through a gas inlet is formed inside the coal partial combustion furnace, and the denitrification burner that communicates with the partial combustion chamber is provided at a protruding outer end of the coal partial combustion furnace. A buffer is installed in the middle of the coal partial combustion furnace to hold up the molten ash, an extraction hole is provided upstream of this buffer to take out the molten ash from the coal partial combustion furnace, and the air supply port of the denitrification burner is 50% or more of the theoretical required combustion air amount set for the amount of pulverized coal supplied
Pulverized coal-fired low NO x characterized by 80% air volume being supplied per unit time
Combustion device.
JP22971183A 1983-12-05 1983-12-05 Low nox combustion device burning fine coal powder Granted JPS60122809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22971183A JPS60122809A (en) 1983-12-05 1983-12-05 Low nox combustion device burning fine coal powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22971183A JPS60122809A (en) 1983-12-05 1983-12-05 Low nox combustion device burning fine coal powder

Publications (2)

Publication Number Publication Date
JPS60122809A JPS60122809A (en) 1985-07-01
JPH031564B2 true JPH031564B2 (en) 1991-01-10

Family

ID=16896496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22971183A Granted JPS60122809A (en) 1983-12-05 1983-12-05 Low nox combustion device burning fine coal powder

Country Status (1)

Country Link
JP (1) JPS60122809A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0717928Y2 (en) * 1988-10-26 1995-04-26 川崎重工業株式会社 Structure of cyclone combustion furnace connection with L-shaped duct
JP2523756Y2 (en) * 1990-04-18 1997-01-29 川崎重工業株式会社 Combustion ash melting equipment
CN101532662B (en) * 2008-03-14 2013-01-02 烟台龙源电力技术股份有限公司 Method for reducing nitrogen oxides by coal dust boiler of internal combustion burner

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58145810A (en) * 1982-02-22 1983-08-31 Babcock Hitachi Kk Combustion of coal

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6137927Y2 (en) * 1981-06-16 1986-11-04

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58145810A (en) * 1982-02-22 1983-08-31 Babcock Hitachi Kk Combustion of coal

Also Published As

Publication number Publication date
JPS60122809A (en) 1985-07-01

Similar Documents

Publication Publication Date Title
JP3296974B2 (en) Direct reduction method and rotary bed furnace
US5133950A (en) Reducing N2 O emissions when burning nitrogen-containing fuels in fluidized bed reactors
AU548115B2 (en) Combustion method and apparatus therefor
US5103773A (en) Fluid bed furnace
US5043150A (en) Reducing emissions of N2 O when burning nitrogen containing fuels in fluidized bed reactors
US4523532A (en) Combustion method
JP2007139266A (en) Boiler device, and its operation method
JPH031564B2 (en)
JP2002031312A (en) EQUIPMENT AND METHOD FOR LOW-NOx COMBUSTION IN REFUSE GASIFYING AND MELTING FACILITY
JPS5821163B2 (en) Fluidized bed combustion control method
JPH0323804B2 (en)
JPS6131363B2 (en)
JPS6287707A (en) Nox control combustion method
JP2781684B2 (en) Two-stage combustion method
JP2895061B2 (en) Combustion method for boiler combustion device
JPS59167608A (en) Fluidized-bed combustion device
JPH0343526B2 (en)
JPS58120004A (en) Two-staged combustion
JPS6151201B2 (en)
JPS5986806A (en) Fluidized-bed combustion method for coal and the like
JPH06294503A (en) Combustion
CN1073507A (en) A kind of pulverized-coal fired boiler desulfurizing combustion that is used for
JPH04203801A (en) Fluidized bed combustion device and controlling method therefor
JPS5913643B2 (en) Fluidized bed combustion control method
JPH07117202B2 (en) Combustion method and combustion apparatus for boiler with pre-combustion chamber