JP3026671B2 - Exhaust gas combustion furnace and combustion control method for exhaust gas combustion furnace - Google Patents

Exhaust gas combustion furnace and combustion control method for exhaust gas combustion furnace

Info

Publication number
JP3026671B2
JP3026671B2 JP4071810A JP7181092A JP3026671B2 JP 3026671 B2 JP3026671 B2 JP 3026671B2 JP 4071810 A JP4071810 A JP 4071810A JP 7181092 A JP7181092 A JP 7181092A JP 3026671 B2 JP3026671 B2 JP 3026671B2
Authority
JP
Japan
Prior art keywords
combustion
exhaust gas
combustion chamber
primary
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4071810A
Other languages
Japanese (ja)
Other versions
JPH05272736A (en
Inventor
五三実 大岡
勝雄 片桐
宣明 大久保
英雄 西
悟 椋木
Original Assignee
大阪ガスエンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大阪ガスエンジニアリング株式会社 filed Critical 大阪ガスエンジニアリング株式会社
Priority to JP4071810A priority Critical patent/JP3026671B2/en
Publication of JPH05272736A publication Critical patent/JPH05272736A/en
Application granted granted Critical
Publication of JP3026671B2 publication Critical patent/JP3026671B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Incineration Of Waste (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、排ガスに含有される一
酸化炭素を燃焼処理する排ガス燃焼炉及びこの排ガス燃
焼炉の燃焼制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas furnace for burning carbon monoxide contained in exhaust gas and a method for controlling the combustion of the exhaust gas furnace.

【0002】[0002]

【従来の技術】このような排ガス燃焼炉の一例として、
キュポラの排気側に設けられるキュポラ用排ガス燃焼炉
を例に採って、以下、説明する。キュポラはコークスの
燃焼により地金を溶解し、鋳鉄溶湯を得る溶解炉である
が、この排ガス中には一酸化炭素ガスが多量に含まれて
おり、一般に排ガス燃焼炉が設けられて、これが燃焼処
理される。そして、排ガス燃焼炉から排出される燃焼排
ガスから空気予熱器等により熱回収が行われ、別途利用
される。さて従来の排ガス燃焼炉は、燃焼ゾーンと希釈
冷却ゾーンを備えて構成されていた。各ゾーンでの処理
状態について説明すると、燃焼ゾーンでは過剰空気率を
下げ理論燃焼温度に近い高温(約1,100℃)で燃焼
をおこなうとともに、このゾーンでの滞留時間を長くと
り一酸化炭素ガスの完全燃焼を図っていた。一方希釈冷
却ゾーンでは、希釈空気を投入して、後続の空気予熱器
等熱回収装置の耐熱温度である約800℃まで排ガスの
温度を低下させていた。
2. Description of the Related Art As an example of such an exhaust gas combustion furnace,
The following description will be made by taking a cupola exhaust gas combustion furnace provided on the exhaust side of the cupola as an example. Cupola is a melting furnace that obtains molten cast iron by melting coke by burning coke.This exhaust gas contains a large amount of carbon monoxide gas, and in general, an exhaust gas combustion furnace is installed. It is processed. Then, heat is recovered from the combustion exhaust gas discharged from the exhaust gas combustion furnace by an air preheater or the like, and is separately used. Now, a conventional exhaust gas combustion furnace is provided with a combustion zone and a dilution cooling zone. Explaining the treatment state in each zone, in the combustion zone, the excess air ratio is reduced, combustion is performed at a high temperature (about 1,100 ° C.) close to the theoretical combustion temperature, and the residence time in this zone is increased to increase the carbon monoxide gas. Was trying to complete combustion. On the other hand, in the dilution cooling zone, dilution air was introduced to lower the temperature of the exhaust gas to about 800 ° C., which is the heat-resistant temperature of the subsequent heat recovery device such as an air preheater.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、今日、
燃焼処理に伴い発生するNOxが、大気汚染防止等の観
点から大きな問題とされており、このような排ガス燃焼
炉から発生するNOxの減量が大きな課題である。ここ
で、上述の構成の排ガス燃焼炉では、希釈冷却ゾーンに
おいては、排ガス温度が800℃に低下しているためN
Oxの発生は殆どないものの、燃焼ゾーンでは、処理温
度が高い等の燃焼状態、滞留時間等の関係から、高レベ
ルのNOxの発生を回避することができなかった。従っ
て本発明の目的は、排ガス燃焼炉より排出される排ガス
に含有されるNOxを低レベルに抑制することが可能な
排ガス燃焼炉とこの排ガス燃焼炉の燃焼制御方法を得る
ことにある。
However, today,
NOx generated by the combustion treatment is regarded as a major problem from the viewpoint of air pollution prevention and the like, and reduction of NOx generated from such an exhaust gas combustion furnace is a major problem. Here, in the exhaust gas combustion furnace having the above-described configuration, in the dilution cooling zone, since the exhaust gas temperature has decreased to 800 ° C.,
Although there was almost no generation of Ox, the generation of high levels of NOx could not be avoided in the combustion zone due to the combustion state such as a high processing temperature and the residence time. Accordingly, an object of the present invention is to provide an exhaust gas combustion furnace capable of suppressing NOx contained in exhaust gas discharged from the exhaust gas combustion furnace to a low level, and a method of controlling the combustion of the exhaust gas combustion furnace.

【0004】[0004]

【課題を解決するための手段】上記の目的を達成するた
めの本願の排ガス燃焼炉の特徴構成は、処理対象の排ガ
スが流入して一次燃焼処理される一次燃焼室と、一次燃
焼室で処理された排ガスが二次燃焼処理される二次燃焼
室とを備え、一次燃焼室から前記二次燃焼室へ排ガスが
移流する連結流路に、一次燃焼室から二次燃焼室への熱
放射を防止し、一次燃焼室へ輻射熱を反射する輻射熱反
射面を備えるとともに、連結流路の流路断面積を絞る絞
り部を設け、連結流路に二次燃焼空気を供給する二次燃
焼空気供給手段を、前記絞り部に備えたことにある。さ
らに、本願の排ガス燃焼炉の燃焼制御方法の特徴手段
は、上記の排ガス燃焼炉の燃焼制御にあたり、一次燃焼
室に供給する一次燃焼空気の量を、排ガスに含有される
一酸化炭素量の理論燃焼空気量の60〜80%に制御
し、一次燃焼室内の温度を900℃近傍に維持して一次
燃焼処理をおこなうとともに、二次燃焼室において、残
余の一酸化炭素に対して理論燃焼空気量以上の二次燃焼
空気を供給して、残余の一酸化炭素を二次燃焼処理する
ことにある。そして、それらの作用・効果を以下に説明
する。
In order to achieve the above object, the exhaust gas combustion furnace according to the present invention is characterized by a primary combustion chamber in which exhaust gas to be treated flows in and a primary combustion process is performed, and a primary combustion chamber for treating the primary combustion chamber. And a secondary combustion chamber in which the exhaust gas is subjected to a secondary combustion process.In the connection passage where the exhaust gas flows from the primary combustion chamber to the secondary combustion chamber, heat radiation from the primary combustion chamber to the secondary combustion chamber is provided. Secondary combustion air supply means for preventing and providing a radiant heat reflecting surface for reflecting radiant heat to the primary combustion chamber, providing a throttle portion for narrowing a flow path cross-sectional area of the connection flow path, and supplying secondary combustion air to the connection flow path Is provided in the throttle section. Further, the characteristic means of the combustion control method for an exhaust gas combustion furnace according to the present invention is characterized in that, in the combustion control of the above-described exhaust gas combustion furnace, the amount of primary combustion air supplied to the primary combustion chamber is reduced by the theoretical amount of carbon monoxide contained in the exhaust gas. The primary combustion process is performed while controlling the temperature in the primary combustion chamber at around 900 ° C. by controlling the combustion air amount to 60 to 80% of the amount of combustion air, and the theoretical combustion air amount with respect to the remaining carbon monoxide in the secondary combustion chamber. The secondary combustion air is supplied to perform secondary combustion processing on the remaining carbon monoxide. Then, the operation and effect thereof will be described below.

【0005】[0005]

【作用】この排ガス燃焼炉では、一次、二次燃焼室を備
えた二段燃焼方式が採用されるとともに、輻射熱反射
面、絞り部を設けて低NOx化が図られている。即ち、
熱放射防止面の効果により一次燃焼室内からの熱放射を
防止し、輻射熱を反射することによって、室内の燃焼温
度が保持され、一次燃焼室内に於ける燃焼の安定性を高
めると共に、燃焼の完結が速くなり、滞留時間を短くす
ることが可能となる。よって、この室を従来より低温の
状態に保っても、所望の処理が可能となる。さらに、絞
り部に二次燃焼空気供給手段を設けることにより、断面
積が狭められている連結流路に二次燃焼空気が供給され
るため、いわゆるベンチュリ管効果により、排ガスと二
次燃焼空気との混合が十分に行われ、二次燃焼室の燃焼
においても、燃焼の完結が促進され滞留時間が短くな
る。従って、これらの要因だけからもNOxの低減効果
を得ることができる。
In this exhaust gas combustion furnace, a two-stage combustion system having primary and secondary combustion chambers is employed, and a radiant heat reflecting surface and a throttle portion are provided to reduce NOx. That is,
The effect of the heat radiation prevention surface prevents heat radiation from the primary combustion chamber and reflects the radiant heat to maintain the combustion temperature in the room, improve the stability of combustion in the primary combustion chamber, and complete the combustion And the residence time can be shortened. Therefore, desired processing can be performed even if this chamber is kept at a lower temperature than before. Further, by providing the secondary combustion air supply means in the throttle section, secondary combustion air is supplied to the connection flow path having a reduced cross-sectional area, so that the exhaust gas and the secondary combustion air are Are sufficiently mixed, and also in the combustion in the secondary combustion chamber, the completion of the combustion is promoted and the residence time is shortened. Therefore, the effect of reducing NOx can be obtained only from these factors.

【0006】さらにこの排ガス燃焼炉を使用する場合
に、一次燃焼室において、全一酸化炭素量の60〜80
%の一酸化炭素燃焼を900℃程度でおこなうように
し、二次燃焼室において残余の一酸化炭素燃焼をおこな
うようにすると、一次燃焼室内は還元性雰囲気となると
ともに、従来より低温で運転されることとなる。従っ
て、排ガス燃焼炉の構成から、さらに燃焼方法の適切な
選択により、過剰空気率の低減、低い燃焼温度の選択、
燃焼ガスの高温温度域での滞留時間の低減等、NOx低
減に有効な条件を満足させることが容易となるため、さ
らに、低NOxな運転が可能となる。
Further, when this exhaust gas combustion furnace is used, the total amount of carbon monoxide in the primary combustion chamber is 60 to 80%.
% Combustion at about 900 ° C. and the remaining carbon monoxide combustion in the secondary combustion chamber, the primary combustion chamber becomes a reducing atmosphere and operates at a lower temperature than before. It will be. Therefore, from the configuration of the exhaust gas combustion furnace, further by appropriate selection of the combustion method, reduction of excess air ratio, selection of low combustion temperature,
Since it becomes easy to satisfy the conditions effective for NOx reduction, such as a reduction in the residence time of the combustion gas in a high temperature range, a low NOx operation can be further achieved.

【0007】[0007]

【発明の効果】従って、排ガス燃焼炉より排出される排
ガスに含有されるNOxを低レベルに抑制することが可
能な排ガス燃焼炉とこの排ガス燃焼炉の燃焼制御方法を
得ることができた。
Accordingly, an exhaust gas combustion furnace capable of suppressing NOx contained in exhaust gas discharged from an exhaust gas combustion furnace to a low level and a combustion control method for the exhaust gas combustion furnace can be obtained.

【0008】[0008]

【実施例】本願の排ガス燃焼炉1及びその燃焼制御方法
の実施例を図面に基づいて説明する。図3にはこの排ガ
ス燃焼炉1を備えたキュポラ排ガス系の構成が示されて
いる。即ちこのキュポラ排ガス系は、図示するようにキ
ュポラ3、サイクロン4、本願の排ガス燃焼炉1、空気
予熱器5、廃熱ボイラ6、ガス冷却器7、バグフィルタ
ー8、集塵ファン9、煙突10等を備えて構成されてい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of an exhaust gas combustion furnace 1 of the present application and a combustion control method thereof will be described with reference to the drawings. FIG. 3 shows a configuration of a cupola exhaust gas system including the exhaust gas combustion furnace 1. That is, as shown, the cupola exhaust gas system includes a cupola 3, a cyclone 4, an exhaust gas combustion furnace 1, an air preheater 5, a waste heat boiler 6, a gas cooler 7, a bag filter 8, a dust collecting fan 9, a chimney 10 And the like.

【0009】次に、排ガス燃焼炉1の構成及びその作用
について説明する。図1にはこの排ガス燃焼炉1の縦断
面図が、図2には炉に設けられた絞り部11の横断面図
が示されている。先ずこの排ガス燃焼炉1の概略構成及
び能力について、箇条書きする。 形式:円筒立型2段燃焼式 排ガス条件: 排ガス量 19,000 Nm3/H 排ガス温度 500 ℃ 一酸化炭素濃度 16 % 燃焼方式:燃焼ゾーンに一次燃焼室12、二次燃焼室1
3を備えた二段燃焼方式 一次燃焼要件 排ガス中に含有される一酸化炭素量の70〜80%を燃
焼処理 燃焼温度 900±20℃ 二次燃焼要件 残余の一酸化炭素の完全燃焼を燃焼処理 燃焼温度 870±20℃ 希釈要件 二次燃焼後において希釈空気を投入し燃焼炉出温度で7
80±20℃とする。 付属バーナ: 本体パイロットバーナ14(20×104Kcal/H) 常時点火 補助バーナ(図示せず)(200×104Kcal/H) 起動時の炉体昇温用
Next, the structure and operation of the exhaust gas combustion furnace 1 will be described. FIG. 1 is a longitudinal sectional view of the exhaust gas combustion furnace 1, and FIG. 2 is a transverse sectional view of a throttle unit 11 provided in the furnace. First, the general configuration and capacity of the exhaust gas combustion furnace 1 will be described in a bulleted manner. Exhaust gas condition: Exhaust gas amount 19,000 Nm 3 / H Exhaust gas temperature 500 ° C Carbon monoxide concentration 16% Combustion method: Primary combustion chamber 12 and secondary combustion chamber 1 in combustion zone
Primary combustion requirement Combustion treatment of 70-80% of the amount of carbon monoxide contained in exhaust gas Combustion temperature 900 ± 20 ° C Secondary combustion requirement Combustion treatment of complete combustion of residual carbon monoxide Combustion temperature 870 ± 20 ° C Dilution requirement After the secondary combustion, dilute air is charged and the combustion furnace exit temperature is 7
80 ± 20 ° C. Attached burner: Main body pilot burner 14 (20 × 10 4 Kcal / H) Constant ignition Auxiliary burner (not shown) (200 × 10 4 Kcal / H) For heating the furnace body at startup

【0010】次に排ガス燃焼炉1の構成の詳細について
説明する。この燃焼炉1は、鋼板製外殻にレンガ若しく
はキャスタルブル耐火材を内張りして成る空塔として構
成され、図示するように、キュポラ3からの排ガスが流
入する排ガス入口15から順に、一次燃焼室12、連結
流路16、二次燃焼室13、希釈室17を備えて構成さ
れている。そして、この一次燃焼室12に対してこの部
位に一次燃焼空気を供給する一次燃焼空気供給手段とし
ての一次燃焼空気吹き込みノズル18が備えられるとと
もに、本体パイロットバーナ14、及び補助バーナ(図
示せず)が備えられている。
Next, the configuration of the exhaust gas combustion furnace 1 will be described in detail. The combustion furnace 1 is configured as an empty tower having a steel plate shell lined with brick or castable refractory material. As shown in the figure, a primary combustion chamber is sequentially arranged from an exhaust gas inlet 15 into which exhaust gas from the cupola 3 flows. 12, a connection flow path 16, a secondary combustion chamber 13, and a dilution chamber 17 are provided. The primary combustion chamber 12 is provided with a primary combustion air blowing nozzle 18 as primary combustion air supply means for supplying primary combustion air to this portion, and also includes a main body pilot burner 14 and an auxiliary burner (not shown). Is provided.

【0011】前述の一次燃焼室12と二次燃焼室13と
の間には絞り部11が設けられており、炉壁部を室側に
張り出すことにより、連結流路16の流路断面積が一次
燃焼室12の流路断面積の半分とされている。さらに、
この絞り部11の下方側のリング状の面が輻射熱反射面
11aとして働く。この絞り部11を構成する突出部の
内周面11bには二次燃焼用の二次燃焼空気を、連結流
路16を介して二次燃焼室13に供給する二次燃焼空気
供給手段としての二次燃焼空気へッダー19およびこれ
に直結する二次燃焼空気吹出しノズル20が開口されて
いる。ここで、この二次燃焼空気吹出しノズル20は、
図2に示すように、周方向で12個設けられるととも
に、その吹出し方向が、炉の縦方向では水平に、径方向
に対して各々10度の傾きを持って備えられている。こ
の構成を採用することにより、二次燃焼空気は渦状態で
導入され、良好な混合がおこなわれる。
A throttle portion 11 is provided between the primary combustion chamber 12 and the secondary combustion chamber 13. Is half of the cross-sectional area of the flow passage of the primary combustion chamber 12. further,
The ring-shaped surface on the lower side of the aperture portion 11 functions as a radiation heat reflecting surface 11a. A secondary combustion air supply means for supplying secondary combustion air for secondary combustion to the secondary combustion chamber 13 through the connection flow path 16 is provided on the inner peripheral surface 11b of the protrusion constituting the throttle portion 11. A secondary combustion air header 19 and a secondary combustion air blowing nozzle 20 directly connected to the header 19 are opened. Here, the secondary combustion air blowing nozzle 20 is
As shown in FIG. 2, twelve are provided in the circumferential direction, and the blowing directions are provided horizontally in the longitudinal direction of the furnace and at an inclination of 10 degrees with respect to the radial direction. By employing this configuration, the secondary combustion air is introduced in a vortex state, and good mixing is performed.

【0012】二次燃焼室13と希釈室17との間には、
希釈空気を供給する希釈空気吹出しノズル21が設けら
れている。そしてさらに、この希釈室17の頂部の排ガ
スを横方向に送りだすガス出口22が設けられている。
[0012] Between the secondary combustion chamber 13 and the dilution chamber 17,
A dilution air blowing nozzle 21 for supplying dilution air is provided. Further, a gas outlet 22 for sending out the exhaust gas at the top of the dilution chamber 17 in the lateral direction is provided.

【0013】絞り部11の絞り高さは、輻射熱を反射す
ることにより一次燃焼において燃焼温度を保持し燃焼の
完結を速め滞留時間を短縮する、絞り部11により燃焼
熱の上方への放射を防ぐ、二次燃焼において燃焼の完結
を速め滞留時間を短縮する、絞り部11によるいわゆる
ベンチュリー管効果により排ガスと燃焼空気との充分な
る混合を図る等の目的のため、一次燃焼室12の内径を
1、絞り部11の内径をD2とするとD2 2/D1 2≦1/
2に設定されている。
The throttle height of the throttle portion 11 reflects the radiant heat to maintain the combustion temperature in the primary combustion, thereby speeding up the completion of combustion and shortening the residence time. The throttle portion 11 prevents the emission of combustion heat upward. The inner diameter of the primary combustion chamber 12 is set to D for the purpose of shortening the residence time by accelerating the completion of combustion in the secondary combustion, and achieving sufficient mixing of the exhaust gas and the combustion air by the so-called Venturi tube effect by the throttle unit 11. 1, when the inner diameter of the narrowed portion 11, D 2 D 2 2 / D 1 2 ≦ 1 /
It is set to 2.

【0014】以上が、本排ガス燃焼炉1の主な構成であ
るが、以下にその運転状況及び、NOx低減状況につい
て説明する。 一次燃焼状況 ガス入口15より導入されるキュポラ排ガスに、一次燃
焼空気が吹込まれ、本体パイロットバーナ14により着
火され、一次燃焼室12で燃焼される。ここで、一次燃
焼における一酸化炭素燃焼量は全一酸化炭素量の60〜
80%となるように、一次燃焼空気量を理論燃焼空気量
の60〜80%に制御される。この燃焼状態において
は、過剰酸素は存在しないため、一次燃焼室12内には
残存一酸化炭素により還元性雰囲気が形成される。また
燃焼温度は、理論燃焼温度約1,100℃を下回る約9
00℃と低く維持される。そして、絞り部11に設けら
れているリング状の熱放射防止面11aの効果により上
方への熱放射が妨げられ、燃焼温度が保持され、一次燃
焼室12内に於ける燃焼の安定性を高めると共に、燃焼
の完結が速くなり、滞留時間が短くなる。この様な要因
から、一次燃焼におけるNOxは低レベルに抑制され
る。
The main configuration of the exhaust gas combustion furnace 1 has been described above. The operation state and the NOx reduction state will be described below. Primary combustion state Primary combustion air is blown into cupola exhaust gas introduced from the gas inlet 15, ignited by the main body pilot burner 14, and burned in the primary combustion chamber 12. Here, the amount of carbon monoxide burned in the primary combustion is 60 to the total amount of carbon monoxide.
The primary combustion air amount is controlled to be 60 to 80% of the theoretical combustion air amount so as to be 80%. In this combustion state, since there is no excess oxygen, a reducing atmosphere is formed in the primary combustion chamber 12 by the residual carbon monoxide. The combustion temperature is about 9 which is lower than the theoretical combustion temperature of about
It is kept as low as 00 ° C. The upward heat radiation is prevented by the effect of the ring-shaped heat radiation preventing surface 11a provided in the throttle portion 11, the combustion temperature is maintained, and the stability of combustion in the primary combustion chamber 12 is enhanced. At the same time, the completion of combustion is faster, and the residence time is shorter. Due to such factors, NOx in the primary combustion is suppressed to a low level.

【0015】二次燃焼状況 一次燃焼後、二次燃焼空気が絞り部11の内部に設けら
れた二次燃焼空気へッダー19およびこれに直結する複
数個の二次燃焼空気吹出ノズル20から吹込まれ、二次
燃焼室13において残存する一酸化炭素(全一酸化炭素
量に対し20〜40%)が燃焼される。ここで、燃焼温
度は一次燃焼温度(約900℃)を若干下回るところで
制御される。二次燃焼においては絞り部11により断面
積がせばめられ排ガス流速が速くなっているところに、
絞り部先端から二次燃焼空気が吹き込まれることとな
り、いわゆるベンチュリ管効果により、排ガスと二次燃
焼空気との混合が十分に行われ、残存一酸化炭素の完全
燃焼がおこなわれる。従って、燃焼の完結が促進され滞
留時間が短くなりNOxの発生が抑制される。
Secondary combustion condition After the primary combustion, secondary combustion air is blown from the secondary combustion air header 19 provided inside the throttle portion 11 and a plurality of secondary combustion air blowing nozzles 20 directly connected thereto. The remaining carbon monoxide (20 to 40% of the total carbon monoxide amount) is burned in the secondary combustion chamber 13. Here, the combustion temperature is controlled at a temperature slightly lower than the primary combustion temperature (about 900 ° C.). In the secondary combustion, where the cross-sectional area is shrunk by the throttle portion 11 and the exhaust gas flow rate is fast,
The secondary combustion air is blown from the tip of the throttle portion, and the exhaust gas and the secondary combustion air are sufficiently mixed by the so-called Venturi tube effect, and the residual carbon monoxide is completely burned. Therefore, the completion of combustion is promoted, the residence time is shortened, and the generation of NOx is suppressed.

【0016】希釈冷却状況 二次燃焼室13による残存一酸化炭素の燃焼が完了した
後、燃焼排ガス中に希釈空気を希釈空気吹出しノズル2
1から吹き込み、排ガス温度を後続の空気予熱器5等の
熱回収装置の耐熱温度である800℃に低下させる。
尚、この温度においてはNOxの発生は殆どない。
After the combustion of the residual carbon monoxide in the secondary combustion chamber 13 is completed, dilution air is added to the dilution air in the combustion exhaust gas.
1 to lower the temperature of the exhaust gas to 800 ° C., which is the heat-resistant temperature of the heat recovery device such as the air preheater 5 that follows.
At this temperature, there is almost no generation of NOx.

【0017】以下に、説明した排ガス燃焼炉1の運転状
況を説明する。各ガスに対するデータを表1に示した。
The operation of the exhaust gas combustion furnace 1 will be described below. The data for each gas is shown in Table 1.

【0018】[0018]

【表1】 [Table 1]

【0019】結果、一酸化炭素に対する処理が充分完了
していることがわかる。さらに、このような運転条件に
於けるNOx低減の効果について説明すると、燃焼ゾー
ンと希釈ゾーンとを備えた従来型の排ガス燃焼炉が採用
する1段燃焼方式に於けるNOx発生量が、120pp
m(O2:0%換算値)程度であるのに対して、本発明
による一次燃焼と二次燃焼の区切部に絞り部11を設
け、絞り部先端から二次空気を吹出させる2段燃焼方式
に於いては、NOx発生量は約45ppm(O2:0%
換算値)となり、半分以下に低減された。
As a result, it is understood that the treatment for carbon monoxide has been sufficiently completed. Further, the effect of reducing NOx under such operating conditions will be described. The NOx generation amount in a single-stage combustion system employed in a conventional exhaust gas combustion furnace having a combustion zone and a dilution zone is 120 pp.
m (O 2 : 0% conversion value), a two-stage combustion in which a throttle portion 11 is provided at a partition between primary combustion and secondary combustion according to the present invention, and secondary air is blown out from the tip of the throttle portion. In this method, the amount of NOx generated is about 45 ppm (O 2 : 0%
(Converted value), which is less than half.

【0020】上記の実施例においては、排ガス燃焼炉1
を立型に形成したが、これは横置型等任意に構成するこ
とが可能である。さらに、二次燃焼空気供給手段につい
ては、二次燃焼空気へッダー19を外殻外に配設し、こ
れに直結する複数個の二次空気吹出ノズル20のみを内
蔵する構造としても良い。
In the above embodiment, the exhaust gas combustion furnace 1
Is formed in a vertical shape, but this can be arbitrarily configured such as a horizontal type. Further, the secondary combustion air supply means may have a structure in which a secondary combustion air header 19 is provided outside the outer shell and only a plurality of secondary air blowing nozzles 20 directly connected to the secondary combustion air header 19 are built therein.

【0021】尚、特許請求の範囲の項に図面との対照を
便利にするために符号を記すが、該記入により本発明は
添付図面の構成に限定されるものではない。
In the claims, reference numerals are provided for convenience of comparison with the drawings, but the present invention is not limited to the configuration shown in the attached drawings.

【図面の簡単な説明】[Brief description of the drawings]

【図1】排ガス燃焼炉の縦断面図FIG. 1 is a longitudinal sectional view of an exhaust gas combustion furnace.

【図2】絞り部の横断面図FIG. 2 is a cross-sectional view of a throttle section.

【図3】キュポラ排ガス処理系の全体フロー図FIG. 3 is an overall flow chart of a cupola exhaust gas treatment system.

【符号の説明】[Explanation of symbols]

1 排ガス燃焼炉 11 絞り部 11a 輻射熱反射面 12 一次燃焼室 13 二次燃焼室 16 連結流路 19 二次燃焼空気供給手段 20 二次燃焼空気供給手段 DESCRIPTION OF SYMBOLS 1 Exhaust gas combustion furnace 11 Throttle part 11a Radiation heat reflection surface 12 Primary combustion chamber 13 Secondary combustion chamber 16 Connection flow path 19 Secondary combustion air supply means 20 Secondary combustion air supply means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西 英雄 大阪府大阪市東成区中道1丁目4番2号 大阪ガスエンジニアリング株式会社内 (72)発明者 椋木 悟 大阪府大阪市東成区中道1丁目4番2号 大阪ガスエンジニアリング株式会社内 (56)参考文献 特開 平3−17416(JP,A) 特開 平5−196218(JP,A) 特開 昭63−315821(JP,A) (58)調査した分野(Int.Cl.7,DB名) F23G 7/06 ZAB F23G 5/00 ZAB F23G 5/14 ZAB F23G 5/50 ZAB ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hideo Nishi 1-4-2 Nakamichi, Higashinari-ku, Osaka-shi, Osaka Inside Osaka Gas Engineering Co., Ltd. No.4-2, Osaka Gas Engineering Co., Ltd. (56) References JP-A-3-17416 (JP, A) JP-A-5-196218 (JP, A) JP-A-63-315821 (JP, A) ( 58) Field surveyed (Int.Cl. 7 , DB name) F23G 7/06 ZAB F23G 5/00 ZAB F23G 5/14 ZAB F23G 5/50 ZAB

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 排ガスに含有される一酸化炭素を燃焼処
理する排ガス燃焼炉であって、 処理対象の排ガスが流入して一次燃焼処理される一次燃
焼室(12)と、前記一次燃焼室(12)で処理された
排ガスが二次燃焼処理される二次燃焼室(13)とを備
え、 前記一次燃焼室(12)から前記二次燃焼室(13)へ
排ガスが移流する連結流路(16)に、前記一次燃焼室
(12)から前記二次燃焼室(13)への熱放射を防止
し、一次燃焼室へ輻射熱を反射する輻射熱反射面(11
a)を備えるとともに、前記連結流路(16)の流路断
面積を絞る絞り部(11)を設け、 前記連結流路(16)に二次燃焼空気を供給する二次燃
焼空気供給手段(19)(20)を、前記絞り部(1
1)に備えた排ガス燃焼炉。
An exhaust gas combustion furnace for combusting carbon monoxide contained in exhaust gas, comprising: a primary combustion chamber (12) in which an exhaust gas to be treated flows in and undergoes a primary combustion process; A secondary combustion chamber (13) in which the exhaust gas treated in (12) is subjected to secondary combustion processing, and a connecting flow path () through which the exhaust gas flows from the primary combustion chamber (12) to the secondary combustion chamber (13). 16) a radiant heat reflecting surface (11) for preventing heat radiation from the primary combustion chamber (12) to the secondary combustion chamber (13) and reflecting radiant heat to the primary combustion chamber.
a) and a throttle section (11) for reducing the cross-sectional area of the connection flow path (16), and a secondary combustion air supply means (2) for supplying secondary combustion air to the connection flow path (16). 19) and (20) with the throttle unit (1)
Exhaust gas combustion furnace provided in 1).
【請求項2】 前記連結流路(16)の断面積が、前記
一次燃焼室(12)の流路断面積の半分以下である請求
項1記載の排ガス燃焼炉。
2. The exhaust gas combustion furnace according to claim 1, wherein a cross-sectional area of the connecting flow passage is not more than half of a cross-sectional area of the primary combustion chamber.
【請求項3】 請求項1記載の排ガス燃焼炉(1)の燃
焼制御方法であって、 一次燃焼室(12)に供給する一次燃焼空気の量を、排
ガスに含有される一酸化炭素量の理論燃焼空気量の60
〜80%に制御し、前記一次燃焼室(12)内の温度を
900℃近傍に維持して一次燃焼処理をおこなうととも
に、 二次燃焼室(13)において、残余の一酸化炭素に対し
て理論燃焼空気量以上の二次燃焼空気を供給して、前記
残余の一酸化炭素を二次燃焼処理する排ガス燃焼炉の燃
焼制御方法。
3. The combustion control method for an exhaust gas combustion furnace (1) according to claim 1, wherein the amount of primary combustion air supplied to the primary combustion chamber (12) is reduced by the amount of carbon monoxide contained in the exhaust gas. 60 of theoretical combustion air volume
The primary combustion process is performed while maintaining the temperature in the primary combustion chamber (12) at around 900 ° C., and the remaining carbon monoxide is theoretically reduced in the secondary combustion chamber (13). A combustion control method for an exhaust gas combustion furnace, wherein secondary combustion air is supplied in an amount equal to or greater than a combustion air amount, and the remaining carbon monoxide is subjected to secondary combustion processing.
JP4071810A 1992-03-30 1992-03-30 Exhaust gas combustion furnace and combustion control method for exhaust gas combustion furnace Expired - Lifetime JP3026671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4071810A JP3026671B2 (en) 1992-03-30 1992-03-30 Exhaust gas combustion furnace and combustion control method for exhaust gas combustion furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4071810A JP3026671B2 (en) 1992-03-30 1992-03-30 Exhaust gas combustion furnace and combustion control method for exhaust gas combustion furnace

Publications (2)

Publication Number Publication Date
JPH05272736A JPH05272736A (en) 1993-10-19
JP3026671B2 true JP3026671B2 (en) 2000-03-27

Family

ID=13471298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4071810A Expired - Lifetime JP3026671B2 (en) 1992-03-30 1992-03-30 Exhaust gas combustion furnace and combustion control method for exhaust gas combustion furnace

Country Status (1)

Country Link
JP (1) JP3026671B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005003285A (en) * 2003-06-12 2005-01-06 Nippon Steel Corp Combustion chamber for waste melting equipment
JP5001643B2 (en) * 2006-12-27 2012-08-15 三菱重工業株式会社 Fuel cell system with exhaust fuel combustor
JP2013155956A (en) * 2012-01-31 2013-08-15 Kobelco Eco-Solutions Co Ltd Furnace and method of two-stage combustion
JP6642528B2 (en) * 2013-07-25 2020-02-05 e−ツール株式会社 Recovery method of useful precious metals etc. using heat treatment furnace
CN108411737B (en) * 2018-05-08 2023-11-14 福建省铁拓机械股份有限公司 Combustion chamber of asphalt mixture thermal regeneration equipment

Also Published As

Publication number Publication date
JPH05272736A (en) 1993-10-19

Similar Documents

Publication Publication Date Title
JP3296974B2 (en) Direct reduction method and rotary bed furnace
US4496306A (en) Multi-stage combustion method for inhibiting formation of nitrogen oxides
US4367686A (en) Method for operating a coal dust furnace and a furnace for carrying out the method
JP3026671B2 (en) Exhaust gas combustion furnace and combustion control method for exhaust gas combustion furnace
JPH0842813A (en) Operating method of furnace
US6793486B2 (en) Burner for non-symmetrical combustion and method
US3022057A (en) Direct-heating oven
JP2642568B2 (en) Secondary combustion method of refuse incinerator
JP3359312B2 (en) Removal method of dioxins in waste incinerator
JP2799524B2 (en) Water tube boiler
JPH07233920A (en) Burning method for oxygen burner
JPS6122114A (en) Fluidized bed incinerator
JP3212002B2 (en) Low-nitrogen oxide alternating combustion method
JPS6176814A (en) Low nox combustion
JPH06257723A (en) Oxygen burner
JP2005265390A (en) Combustion air blowing method for combustion melting furnace, and combustion melting furnace
EP0696707B1 (en) A regenerative burner combustion system and method of combustion
JPH04161708A (en) Gas burner
JP2647461B2 (en) Thermal baking equipment
JPH0722572Y2 (en) NOx recovery furnace wall temperature control device
JPS58102008A (en) Starting of fluidized bed boiler
JP2657728B2 (en) Fluidized bed incinerator
JPH0139003B2 (en)
JPH0788510B2 (en) Coke dry fire extinguishing equipment
CN115654513A (en) Tail gas incineration device and method