JPH04161708A - Gas burner - Google Patents

Gas burner

Info

Publication number
JPH04161708A
JPH04161708A JP2288183A JP28818390A JPH04161708A JP H04161708 A JPH04161708 A JP H04161708A JP 2288183 A JP2288183 A JP 2288183A JP 28818390 A JP28818390 A JP 28818390A JP H04161708 A JPH04161708 A JP H04161708A
Authority
JP
Japan
Prior art keywords
combustion
fuel
air
gas
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2288183A
Other languages
Japanese (ja)
Inventor
Mitsuo Imamura
今村 三夫
Yoshio Matsuo
松尾 宣雄
Hiroshi Ichiyanagi
宏 一柳
Masayuki Matsuda
松田 正行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2288183A priority Critical patent/JPH04161708A/en
Publication of JPH04161708A publication Critical patent/JPH04161708A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable partial combustion in a catalyst layer for combustion and reduce the amount of NOx by carrying out the self-circulation of combustion gas to be mixed with primary fuel and increasing a temperature of the resultant mixed gas to a level suitable for catalytic combustion. CONSTITUTION:Vapor phase combustion by secondary fuel is first carried out, the self-circulation of a combustion gas at a high temperature is performed to be mixed with air 15, and a temperature of the resultant mixed gas 17 is increased to a level required for catalytic combustion. Since a mixed gas flow passage 41 is provided with an air inlet port 12 at a portion thereof, to which air is fed, and which is formed into a throttled shape, a negative pressure is caused at this portion, and combustion exhaust gas 16 in a furnace flows thereinto from an opening of a furnace wall 32 through an exhaust gas circulation passage 11, thus the circulation of exhaust gas is achieved. When a load level at the furnace becomes higher and a temperature of the mixed gas 17 reaches a level (300 deg.C or above for a propane and 450 deg.C or above for a methane) suitable for catalytic combustion, a feed valve 28 for primary fuel is opened by a signal from a temperature setter 22, whereby the air and the combustion exhaust gas flow to a catalyst layer 9 for combustion as the mixed gas for primary fuel.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は、燃焼装置に係り、特に排ガス中の窒素酸化物
を低減するのに好適なガスバーナに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a combustion device, and particularly to a gas burner suitable for reducing nitrogen oxides in exhaust gas.

(従来の技術〕 近年、燃焼生成物による環境汚染が世界的な問題として
クローズアップされている。その中で窒素酸化物(以下
NOxという)に対しては、これまで脱硝装置の設置、
又は低NOxバーナと称される比較的NOxの発生が少
いバーナの採用等により対策がなされており、現状の技
術レベルでは、NOxの低減がほぼ限界に達している。
(Conventional technology) In recent years, environmental pollution caused by combustion products has been attracting attention as a global problem.In order to deal with nitrogen oxides (hereinafter referred to as NOx), up until now, the installation of denitrification equipment,
Alternatively, countermeasures have been taken, such as by adopting burners that generate relatively little NOx, called low NOx burners, but with the current technological level, NOx reduction has almost reached its limit.

従来のNOx低減方式について説明する。A conventional NOx reduction method will be explained.

NOxの発生の抑制方式としては、脱硝装置を設置し、
還元剤により燃焼で発生したNOxを直接N2に還元す
る。又は燃料を燃焼する際に発生するNOxを抑制する
。すなわち(a)燃焼反応域でのO3濃度を低くする。
As a method of suppressing the generation of NOx, a denitrification device is installed,
The reducing agent directly reduces NOx generated during combustion to N2. Or suppress NOx generated when burning fuel. That is, (a) the O3 concentration in the combustion reaction zone is lowered.

(b)火炎温度を低くする。(b) Lower the flame temperature.

(Q)燃焼反応物の高温での滞留時間を短くする。(Q) Shorten the residence time of combustion reactants at high temperatures.

等が燃焼反応自体において、NOx発生を抑制する基本
原理である。
etc. are the basic principles for suppressing NOx generation in the combustion reaction itself.

低NOxバーナでは、前記の基本原理(a)、(b)、
(C)の組合せにより、数多くのバーナが提案され、実
用化されているが、大きく分類すると以下の3方式であ
る。
In the low NOx burner, the basic principles (a), (b),
Many burners have been proposed and put into practical use based on the combination (C), but they can be broadly classified into the following three types.

(イ)自己再循環バーナ・・・バーナの燃焼排ガスの一
部を燃料の高速噴射のエゼクタ効果を利用し、再循環す
る方式6 (ロ)火炎冷却促進式バーナ・・・燃料と空気との急速
均一混合と伝熱面への効率的熱放散により、火炎温度の
低下と滞留時間の短縮とをはかる。
(a) Self-recirculating burner: A method in which part of the combustion exhaust gas from the burner is recirculated by utilizing the ejector effect of high-speed fuel injection 6. (b) Flame cooling accelerated burner: A method that recirculates part of the combustion exhaust gas of the burner by using the ejector effect of high-speed fuel injection. Rapid homogeneous mixing and efficient heat dissipation to the heat transfer surface reduce flame temperature and residence time.

(ハ)段階燃焼バーナ・・・燃焼用空気を2以上に分割
供給することにより、燃焼反応初期の0□濃度を低下さ
せる方式。
(c) Staged combustion burner: A method that reduces the 0□ concentration at the beginning of the combustion reaction by supplying combustion air in two or more parts.

一方、前記のバヘナ燃焼とは全く思想を異にする燃焼方
式として触媒にょる接媒酸化方式、いわゆる触媒燃焼方
式が知られている。触媒燃焼は、触媒成分の作用により
、燃料を酸素により直接酸化するため、窒素が反応中に
介在せず、従って、はとんどNOxを生成しない低NO
x燃焼が可能である。また触媒燃焼と気相燃焼とを組合
せ低NOx化をはかる方式も提案されている。
On the other hand, a catalytic oxidation method using a catalyst, the so-called catalytic combustion method, is known as a combustion method that is completely different in concept from the above-mentioned Bahena combustion. Catalytic combustion oxidizes fuel directly with oxygen through the action of catalyst components, so nitrogen does not intervene during the reaction, and therefore, it is a low NOx combustion system that hardly generates NOx.
x combustion is possible. Also, a method has been proposed in which catalytic combustion and gas phase combustion are combined to reduce NOx.

第3図は触媒燃焼式バーナを示し、−段目を触媒燃焼式
とし、二段目を気相燃焼方式としたものであるが、一次
燃料供給管lがら供給する一次燃料は、全て燃焼触媒層
9で燃焼させ、そこで発生した酸素を充分に含有した6
00−1000℃の燃焼ガス中に、二次燃料管6を通し
二次燃料を噴射して、気相燃焼させ、NOxの発生を抑
制する方式である。そして混合気道路41に、ファン3
0からの空気を空気ヒータ31等で加熱して供給し、混
合気を予熱するようになっている。
Figure 3 shows a catalytic combustion type burner, in which the -stage is a catalytic combustion type and the second stage is a gas phase combustion type, but all of the primary fuel supplied from the primary fuel supply pipe is catalyzed. 6 which was combusted in layer 9 and contained sufficient oxygen generated there.
This is a system in which secondary fuel is injected into combustion gas at 00-1000°C through a secondary fuel pipe 6 to cause gas phase combustion and suppress the generation of NOx. And on the mixture road 41, fan 3
Air from 0 is heated by an air heater 31 or the like and supplied to preheat the air-fuel mixture.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の触媒燃焼式のガスバーナにあっては、一次燃料と
空気との混合気を燃焼触媒層の前流において、触媒燃焼
着火温度以上の温度に、電気ヒータ等の空気予熱器を用
いて加熱する必要がある。
In conventional catalytic combustion type gas burners, the mixture of primary fuel and air is heated upstream of the combustion catalyst layer to a temperature higher than the catalytic combustion ignition temperature using an air preheater such as an electric heater. There is a need.

また燃焼触媒層で単位体積当りに燃焼できる混合気の体
積(Sv値)が制限されるため、バーナの燃焼量を大き
くするには、燃焼触媒層の設置面積を大きくする必要が
あり1通常の燃焼触媒層を使用しない低NOxバーナに
比較し、非常に大きくなる。
In addition, since the volume (Sv value) of the air-fuel mixture that can be combusted per unit volume in the combustion catalyst layer is limited, in order to increase the combustion amount of the burner, it is necessary to increase the installation area of the combustion catalyst layer. This is significantly larger than a low NOx burner that does not use a combustion catalyst layer.

本発明の目的は、燃焼触媒層の低NOx燃焼という利点
を活用して、電気ヒータ等の空気予熱器を不必要とし、
装置を簡略化するとともに運転経費を削減する。そして
燃焼量が大きくなっても、通常の低NOxバーナと同程
度のバーナ開口部を有するガスバーナを提供することに
ある。
The purpose of the present invention is to utilize the advantage of low NOx combustion of the combustion catalyst layer to eliminate the need for an air preheater such as an electric heater.
Simplify equipment and reduce operating costs. Another object of the present invention is to provide a gas burner that has a burner opening comparable to that of a normal low NOx burner even if the combustion amount becomes large.

〔課題を解決するための手段〕[Means to solve the problem]

前記の目的を達成するため1本発明に係るガスバーナは
、燃料を一次燃料と二次燃料とに分割し、一次燃料を燃
焼触媒層で触媒燃焼させがっ二次燃料を気相燃焼させる
ガスバーナにおいて、燃焼触媒層のほぼ中心を貫通しか
つ先端がら二次燃料を噴射して燃焼させる二次燃料管と
、二次燃料管の外周に設けられ空気を導入して燃焼ガス
を循環させるとともに導入した一次燃料と混合してその
混合気を所定温度に昇温させる循環手段とよりなる構成
とする。
In order to achieve the above object, 1 the gas burner according to the present invention is a gas burner that divides fuel into primary fuel and secondary fuel, catalytically burns the primary fuel in a combustion catalyst layer, and burns the secondary fuel in a gas phase. , a secondary fuel pipe that penetrates almost the center of the combustion catalyst layer and injects secondary fuel from the tip for combustion, and a secondary fuel pipe that is installed around the outer circumference of the secondary fuel pipe to introduce air to circulate combustion gas and introduce it. The air-fuel mixture is configured to include a circulation means that mixes the mixture with the primary fuel and raises the temperature of the mixture to a predetermined temperature.

そして循環手段は、燃焼触媒層と連通しがっ一次燃料を
導入させる混合気通路と、混合気通路の外周に設けられ
この混合気通路に燃焼ガスを循環する排ガス循環路と、
排ガス循環路の外周に設けられ燃焼ガスを空気運動量に
より混合気通路に吸引する空気ノズルを備えた空気通路
とにより形成される構成である。
The circulation means includes a mixture passage that communicates with the combustion catalyst layer and introduces the primary fuel, and an exhaust gas circulation passage that is provided on the outer periphery of the mixture passage and circulates combustion gas to the mixture passage.
This is a configuration formed by an air passage provided on the outer periphery of the exhaust gas circulation path and equipped with an air nozzle that sucks combustion gas into the mixture passage using air momentum.

また混合気通路に、混合気の温度がそれぞれの燃料に応
じて定まる設定温度に達した際、開口されて一次燃料を
供給する供給弁を付設しである構成とする。
Further, the air-fuel mixture passage is provided with a supply valve that opens to supply primary fuel when the temperature of the air-fuel mixture reaches a set temperature determined according to each fuel.

さらに燃焼触媒層は、一次燃料を部分燃焼させる構成で
ある。
Further, the combustion catalyst layer is configured to partially combust the primary fuel.

〔作用〕[Effect]

本発明のガスバーナによれば、燃焼排ガスの循環は、バ
ーナの中央部に空気通路に接続する混合気通路を設け、
空気の流入口の面積を後流側より小さくし、流速を増加
させることによって、負圧部を生ぜしめる6そして混合
気通路の外周に、排ガス循環路を設け、空気の流動によ
り生ずる負圧部に排ガス循環路の開口を設けることによ
って。
According to the gas burner of the present invention, circulation of the combustion exhaust gas is achieved by providing a mixture passageway connected to the air passageway in the center of the burner;
By making the area of the air inflow port smaller than that of the downstream side and increasing the flow velocity, a negative pressure section is created.6 And an exhaust gas circulation path is provided around the outer periphery of the mixture passage to create a negative pressure section created by the flow of air. by providing an opening in the exhaust gas circulation path.

混合気通路へ燃焼排ガスが循環されるため、空気を予熱
する予熱器を設置する必要がなくなる。
Since the combustion exhaust gas is circulated to the mixture passage, there is no need to install a preheater to preheat the air.

また、燃焼触媒層の前流側へ供給する一次燃料を部分燃
焼するようにしたため、触媒燃焼のSv値の増加により
燃焼触媒層の設置面積が小さくなる。
Furthermore, since the primary fuel supplied to the upstream side of the combustion catalyst layer is partially combusted, the installation area of the combustion catalyst layer becomes smaller due to an increase in the Sv value of catalytic combustion.

〔実施例〕〔Example〕

本発明の一実施例を第1図を参照しながら説明する。 An embodiment of the present invention will be described with reference to FIG.

第1図に示すように、燃料は、共通の燃料供給管により
供給され、バーナとの接続口前で−へ燃料供給管1と二
次燃料供給管5とに分岐される。
As shown in FIG. 1, fuel is supplied through a common fuel supply pipe and is branched into a fuel supply pipe 1 and a secondary fuel supply pipe 5 before the connection port with the burner.

一次燃料は、バーナの一次燃料噴射流4及び一次燃料ノ
ズル3を通って、燃焼触媒層9の前流側の混合気流路4
1内へ一次燃料噴射流4として噴射される。一方、二次
燃料は、バーナ中央部の二次燃料管6を通って、二次燃
料チップ7へと導びかれ、炉内へ二次燃料噴流8として
噴射される。二次燃料チップ7の前流側に火炎14を安
定させる保炎器13をHILLでいる。ケーシングは、
外部ケーシング18、中間ケーシング19及び内部ケー
シング20により分割されており、外部ケーシング18
と中間ケーシング19との間は空気通路40を形成し、
中間ケーシング19と内部ケーシング20との間は排ガ
ス循環路11を形成し、内部ケーシング20内は、排ガ
ス(燃焼ガス)と空気あるいは排ガスと空気と一次燃料
との混合気17の混合器通1441を形成する。空気は
、空気ダクト33に導かれて空気通路40供給され、空
気通路40を通って、混合気道路41より小さく絞った
空気流入口(空気ノズル)12から混合気通路41へと
供給される。排ガスは、炉壁32に開口した排ガス循環
路11を通って、循環ガス流入口10から、混合気道路
41に流入する。燃焼触媒層9は、保炎器13の前流側
に設置される。混合気道路41に、温度設定器22が取
り付けられ。
The primary fuel passes through the primary fuel injection stream 4 of the burner and the primary fuel nozzle 3, and passes through the mixture flow path 4 on the upstream side of the combustion catalyst layer 9.
1 as a primary fuel injection stream 4. On the other hand, the secondary fuel passes through a secondary fuel pipe 6 in the center of the burner, is guided to a secondary fuel chip 7, and is injected into the furnace as a secondary fuel jet 8. A flame stabilizer 13 is provided upstream of the secondary fuel chip 7 to stabilize the flame 14. The casing is
It is divided into an outer casing 18, an intermediate casing 19 and an inner casing 20, and the outer casing 18
and the intermediate casing 19 form an air passage 40,
An exhaust gas circulation path 11 is formed between the intermediate casing 19 and the inner casing 20, and a mixer passage 1441 for a mixture 17 of exhaust gas (combustion gas) and air or exhaust gas, air, and primary fuel is formed in the inner casing 20. Form. Air is guided to the air duct 33 and supplied to the air passage 40, and then, through the air passage 40, is supplied to the mixture passage 41 from the air inlet (air nozzle) 12 which is narrower than the mixture road 41. The exhaust gas passes through the exhaust gas circulation path 11 opened in the furnace wall 32 and flows into the mixture road 41 from the circulation gas inlet 10 . The combustion catalyst layer 9 is installed on the upstream side of the flame stabilizer 13. A temperature setting device 22 is attached to the mixture road 41.

それぞれの燃料に応じて定まる設定温度まで混合気17
の温度が上昇すると、一次燃料供給管1に設置しである
一次燃料の供給弁28を開口する。
Mixture 17 to the set temperature determined according to each fuel.
When the temperature rises, the primary fuel supply valve 28 installed in the primary fuel supply pipe 1 is opened.

一次燃料と二次燃料の合計した燃料量は、燃料設定器2
3からの信号により、燃料制限弁27で調節される。空
気流量は、燃料流量計24及び空気流量計25に接続す
る。空燃比設定器26からの信号により、空気制御ダン
パ29で調節される。
The total fuel amount of primary fuel and secondary fuel is determined by the fuel setting device 2.
3, the fuel restriction valve 27 is regulated. The air flow rate is connected to a fuel flow meter 24 and an air flow meter 25. The air-fuel ratio is adjusted by the air control damper 29 based on the signal from the air-fuel ratio setter 26.

従来の触媒燃焼式バーナでは、最初に燃焼触媒層で燃焼
を行うため、空気予熱器で混合気の温度を触媒燃焼に必
要な温度になるまで予熱していたが、本発明によるガス
バーナは、まず二次燃料による気相燃焼を行い、高温の
燃焼ガスを自己循環させ、空気15に混合させて混合気
17の温度を触媒燃焼に必要な温度まで昇温する。
In conventional catalytic combustion type burners, combustion is first performed in the combustion catalyst layer, so the temperature of the air-fuel mixture is preheated by an air preheater until it reaches the temperature required for catalytic combustion. Gas-phase combustion is performed using secondary fuel, and high-temperature combustion gas is self-circulated and mixed with air 15 to raise the temperature of air-fuel mixture 17 to the temperature required for catalytic combustion.

排ガスの循環は、混合気流路41に空気を供給する部分
を絞って空気流入口12を形成いるため。
The exhaust gas is circulated by constricting the part that supplies air to the mixture flow path 41 to form the air inlet 12.

負圧を生じ、この部分に炉壁32の開口より、排ガス循
環路11を通って炉内の燃焼排ガス16が流れ込んでく
ることにより達成される。炉の負荷が上昇し、混合気1
7の温度が触媒燃焼に適した温度(プロパンの場合は、
300℃以上、メタンの場合は450℃以上)となった
時、温度設定器22の信号により、一次燃料の供給弁2
8を開くことにより、燃焼触媒層9に空気と燃焼排ガス
とが一次燃料の混合気として流れる。一方、バーナ口を
通常の触媒燃焼より小さくするためsv値を大きくして
いるため、燃焼触媒層では、燃料は完全に燃焼せず、−
酸化炭素及び水素等の還元性ガスが未燃分として多く排
出されるが、その後の二次燃料の燃焼により完全燃焼す
る。
This is achieved by creating a negative pressure and causing the combustion exhaust gas 16 in the furnace to flow into this area through the exhaust gas circulation path 11 from the opening in the furnace wall 32. Furnace load increases and mixture 1
Temperature 7 is the temperature suitable for catalytic combustion (in the case of propane,
300°C or higher (450°C or higher in the case of methane), the primary fuel supply valve 2 is activated by a signal from the temperature setting device 22.
By opening 8, air and combustion exhaust gas flow into the combustion catalyst layer 9 as a mixture of primary fuel. On the other hand, since the sv value is increased to make the burner port smaller than normal catalytic combustion, the fuel is not completely combusted in the combustion catalyst layer, and -
Although a large amount of reducing gases such as carbon oxide and hydrogen are emitted as unburned components, complete combustion occurs due to the subsequent combustion of the secondary fuel.

実験の一例を説明する。燃料としてのプロパンガスを用
い、一次燃料と二次燃料との比率を3oニア0とし、触
媒燃焼のSv値を20 X 10’h−”(n?N混合
ガス/触媒rd/h)とした場合、燃焼触媒層における
プロパンガスの燃焼率は約50%強であった0通常はプ
ロパンガスを100%燃焼させる場合に、Sv値は約5
X10’h−”以下である。
An example of an experiment will be explained. Propane gas was used as the fuel, the ratio of primary fuel and secondary fuel was 3o near 0, and the Sv value of catalytic combustion was 20 x 10'h-" (n?N mixed gas/catalyst rd/h). In this case, the combustion rate of propane gas in the combustion catalyst layer was about 50% or more.Normally, when propane gas is combusted 100%, the Sv value is about 5.
X10'h-'' or less.

NOxの発生量は、第2図に示す通りである。The amount of NOx generated is as shown in FIG.

従来の触媒燃焼Bで、燃焼ガス温度950℃以下でNO
xを発生していないのは、燃焼触媒層のみの燃焼のため
であり、950℃以上でNOx発生量が増加しているの
は、二次燃料比率の増加によるものである。本発明によ
るガスバーナは1図に示すように、高温では、従来の触
媒燃焼式バーナよりNOxの発生量が少ないという結果
が得られた。
With conventional catalytic combustion B, NO is produced when the combustion gas temperature is below 950°C.
The reason why no x is not generated is due to the combustion of only the combustion catalyst layer, and the reason why the amount of NOx generated increases at 950° C. or higher is due to the increase in the secondary fuel ratio. As shown in Figure 1, the gas burner according to the present invention produced less NOx at high temperatures than the conventional catalytic combustion burner.

本発明によれば、バーナ起動は、二次燃料から点火し、
その高温の燃焼排ガスをバーナ燃焼部の前流側に自己循
環させることにより、触媒を通過させる燃焼用空気を含
む混合気の温度を触媒燃焼:  に適した温度とするこ
とができ、空気予熱器は不要となる。燃焼ガスの循環は
、燃焼用空気の運動量により行われる。
According to the invention, the burner start-up ignites from the secondary fuel;
By self-circulating the high-temperature combustion exhaust gas to the upstream side of the burner combustion section, the temperature of the mixture containing combustion air passing through the catalyst can be adjusted to a temperature suitable for catalytic combustion. becomes unnecessary. Circulation of the combustion gases is effected by the momentum of the combustion air.

従来の触媒燃焼式バーナでは、燃焼触媒層を通過させる
一次燃料をほぼ100%燃焼させる方式としていたのに
対し、Sv値を約4倍大きくし、一次燃料の燃焼触媒層
における部分燃焼を許容することによって、設置する燃
焼触媒層の面積を約1/2以下に小さくできる。
Conventional catalytic combustion burners burn almost 100% of the primary fuel that passes through the combustion catalyst layer, but the Sv value has been increased by about 4 times to allow partial combustion of the primary fuel in the combustion catalyst layer. By doing so, the area of the installed combustion catalyst layer can be reduced to about 1/2 or less.

そして燃焼ガスの自己循環との組み合せのため、高温で
もNOxの増加が少なく、また従来方式のように、二次
燃料を増加させる時に燃料中に二次空気を供給しなくて
もよい効果がある。
In combination with self-circulation of combustion gas, there is little increase in NOx even at high temperatures, and there is also the effect that there is no need to supply secondary air into the fuel when increasing the amount of secondary fuel, as in conventional systems. .

〔発明の効果〕〔Effect of the invention〕

本発明のガスバーナによれば、燃焼ガスを自己循環させ
て一次燃料と混合し、混合気の温度を触媒燃焼に適した
温度に昇温するため、空気予熱器が不要となり、運転経
費を削除できる。
According to the gas burner of the present invention, the combustion gas is self-circulated and mixed with the primary fuel, and the temperature of the mixture is raised to a temperature suitable for catalytic combustion, thereby eliminating the need for an air preheater and reducing operating costs. .

また、燃焼触媒層における部分燃焼を許容するため、燃
焼触媒層の面積を半減できるとともに、高温でもNOx
量を減少できる効果がある。
In addition, since partial combustion is allowed in the combustion catalyst layer, the area of the combustion catalyst layer can be halved and NOx can be generated even at high temperatures.
It has the effect of reducing the amount.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す構成図、第2図は本発
明によるN Ox発生量の一例を示すグラフ、第3図は
従来の技術を示す図である。 1・・・一次燃料供給管、6・・・二次燃料管、9・・
・燃焼触媒層、11・・・排ガス循lit銘。 12・・・空気流入口(空気ノズル) 40・・・空気通路、41・・・混合気通路。
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a graph showing an example of the amount of NOx generated according to the present invention, and FIG. 3 is a diagram showing a conventional technique. 1...Primary fuel supply pipe, 6...Secondary fuel pipe, 9...
・Combustion catalyst layer, 11...Exhaust gas circulation lit name. 12... Air inlet (air nozzle) 40... Air passage, 41... Air mixture passage.

Claims (1)

【特許請求の範囲】 1、燃料を一次燃料と二次燃料とに分割し、前記一次燃
料を燃焼触媒層で触媒燃焼させかつ前記二次燃料を気相
燃焼させるガスバーナにおいて、前記燃焼触媒層のほぼ
中心を貫通しかつ先端から前記二次燃料を噴射して燃焼
させる二次燃料管と、該二次燃料管の外周に設けられ空
気を導入して燃焼ガスを循環させるとともに導入した前
記一次燃料と混合してその混合気を所定温度に昇温させ
る循環手段とよりなることを特徴とするガスバーナ。 2、循環手段は、燃焼触媒層と連通しかつ一次燃料を導
入させる混合気通路と、該混合気通路の外周に設けられ
この混合気通路に燃焼ガスを循環する排ガス循環路と、
該排ガス循環路の外周に設けられ前記燃焼ガスを空気運
動量により前記混合気通路に吸引する空気ノズルを備え
た空気通路とにより形成されることを特徴とする請求項
1記載のガスバーナ。3、混合気通路に、混合気の温度
がそれぞれの燃料に応じて定まる設定温度に達した際、
開口されて一次燃料を供給する供給弁を付設してあるこ
とを特徴とする請求項1又は2記載のガスバーナ。 4、燃焼触媒層は、一次燃料を部分燃焼させることを特
徴とする請求項1、2又は3記載のガスバーナ。
[Scope of Claims] 1. A gas burner that divides fuel into a primary fuel and a secondary fuel, catalytically combusts the primary fuel in a combustion catalyst layer, and combusts the secondary fuel in a gas phase, the combustion catalyst layer comprising: A secondary fuel pipe that penetrates approximately the center and injects the secondary fuel from the tip to burn it, and the primary fuel that is installed around the outer periphery of the secondary fuel pipe to introduce air to circulate combustion gas and to introduce the primary fuel. 1. A gas burner comprising circulation means for heating the mixture to a predetermined temperature by mixing the mixture with the mixture. 2. The circulation means includes a mixture passage that communicates with the combustion catalyst layer and introduces the primary fuel, and an exhaust gas circulation passage that is provided on the outer periphery of the mixture passage and circulates combustion gas to the mixture passage;
2. The gas burner according to claim 1, further comprising an air passage provided on the outer periphery of the exhaust gas circulation passage and provided with an air nozzle that sucks the combustion gas into the mixture passage by air momentum. 3. When the temperature of the mixture reaches the set temperature determined according to each fuel in the mixture passage,
3. The gas burner according to claim 1, further comprising a supply valve that is opened to supply primary fuel. 4. The gas burner according to claim 1, 2 or 3, wherein the combustion catalyst layer partially burns the primary fuel.
JP2288183A 1990-10-25 1990-10-25 Gas burner Pending JPH04161708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2288183A JPH04161708A (en) 1990-10-25 1990-10-25 Gas burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2288183A JPH04161708A (en) 1990-10-25 1990-10-25 Gas burner

Publications (1)

Publication Number Publication Date
JPH04161708A true JPH04161708A (en) 1992-06-05

Family

ID=17726888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2288183A Pending JPH04161708A (en) 1990-10-25 1990-10-25 Gas burner

Country Status (1)

Country Link
JP (1) JPH04161708A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003336832A (en) * 2002-05-22 2003-11-28 Toho Gas Co Ltd Hot air circulating device
KR100738804B1 (en) * 2006-10-10 2007-07-12 인하대학교 산학협력단 A burner for reducing pollutional material
CN108488851A (en) * 2018-02-07 2018-09-04 海宁鼎合工程技术开发有限公司 A kind of energy-saving environmental-protection gas furnace
KR20190087592A (en) * 2017-02-23 2019-07-24 주식회사 수국 Combined low knox burner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003336832A (en) * 2002-05-22 2003-11-28 Toho Gas Co Ltd Hot air circulating device
KR100738804B1 (en) * 2006-10-10 2007-07-12 인하대학교 산학협력단 A burner for reducing pollutional material
KR20190087592A (en) * 2017-02-23 2019-07-24 주식회사 수국 Combined low knox burner
CN108488851A (en) * 2018-02-07 2018-09-04 海宁鼎合工程技术开发有限公司 A kind of energy-saving environmental-protection gas furnace

Similar Documents

Publication Publication Date Title
US7717700B2 (en) Hybrid burner and associated operating method
EP0738854B1 (en) A low nitrogen oxide producing combustion method and apparatus
EP0193601A1 (en) Method and apparatus for conducting a substantially isothermal combustion process in a combustor
JPH074616A (en) Cyclone combustion
JP4499734B2 (en) Fuel combustion method and apparatus
JP2000249312A (en) Flat flame burner
JPH04161708A (en) Gas burner
JP2005520120A (en) Combustion chamber / venturi cooling apparatus and method for low NOx emission combustors
US5899680A (en) Low nitrogen oxides generating combustion method and apparatus
JP3873119B2 (en) In-cylinder swirl combustor
JP3454441B2 (en) Method and apparatus for low nitrogen oxide combustion combustion
EP2682675B1 (en) Flue gas recycle system with fixed orifices
JPH09126412A (en) Low nox boiler
JPH0828821A (en) Radiant tube burner equipment producing little nitrogen oxide, and burning method thereof
JPS62190317A (en) Combustion furnace
JPH05203109A (en) Heat generator by burning of catalyst
JP2001227710A (en) LOW NOx BURNER
JP3111848B2 (en) Radiant tube burner combustion method
JPS61231316A (en) Pulverized coal burner
JPS6217506A (en) Low nox burner for heating furnace
JPS5818007A (en) Combustor
JPH08285225A (en) Method and device for nitrogen oxide low generating combustion
JPH08285222A (en) Method and device for nitrogen oxide low generating combustion
JPH08145309A (en) Method and device for combustion reduced in generation of nitrogen oxide
JPH049504A (en) Burner for boiler