JP3873119B2 - In-cylinder swirl combustor - Google Patents

In-cylinder swirl combustor Download PDF

Info

Publication number
JP3873119B2
JP3873119B2 JP2002211801A JP2002211801A JP3873119B2 JP 3873119 B2 JP3873119 B2 JP 3873119B2 JP 2002211801 A JP2002211801 A JP 2002211801A JP 2002211801 A JP2002211801 A JP 2002211801A JP 3873119 B2 JP3873119 B2 JP 3873119B2
Authority
JP
Japan
Prior art keywords
combustion chamber
cylindrical
fuel
air
cylindrical combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002211801A
Other languages
Japanese (ja)
Other versions
JP2004053144A (en
Inventor
茂 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aerospace Exploration Agency JAXA
Original Assignee
Japan Aerospace Exploration Agency JAXA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aerospace Exploration Agency JAXA filed Critical Japan Aerospace Exploration Agency JAXA
Priority to JP2002211801A priority Critical patent/JP3873119B2/en
Publication of JP2004053144A publication Critical patent/JP2004053144A/en
Application granted granted Critical
Publication of JP3873119B2 publication Critical patent/JP3873119B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、各種用途に使用される連続燃焼装置用の燃焼器に関し、特に円筒内旋回燃焼器に関する。本発明による燃焼器は、ガスタービンや各種加熱装置の燃焼器として利用することができる。
【0002】
【従来の技術】
従来から気体燃料の燃焼器として、燃料と空気の混合気を丸形やスリット状の形状を有する流出口から略それらの軸方向に流出させるものが広く用いられている。この場合、火炎の基部が流出口の出口部に確実に位置するように、混合気の流速を大きくとらずに火炎の安定化が図られている。火炎と出口部とがほとんど接しているために、出口部は火炎からの熱を受けやすく過熱による劣化や変形を起こしやすい。出口部の変形などによって混合気の流出速度が小さくなると、混合気が暖められることによる燃焼速度の上昇とあいまって、流出口から火炎が上流にもどる、逆火と呼ばれる不具合が起きやすくなる。一方、混合気の流出速度を十分大きくすると、上記の問題を回避することは可能であるが、火炎は、混合気の速度が減衰し燃焼速度と釣り合う高さまで浮き上がる。このような保炎方法は、火炎の空間位置が変動する、火炎が長くなるなどの問題があるので、特殊な用途以外では利用できない。
【0003】
円筒状燃焼室において、側壁に設けた燃焼室の軸方向に長いスロット状の開口から混合気を壁面に沿って周方向に流入させると、中心軸周りの旋回流れ場が形成されるが、この旋回流れ場においては、燃焼室中心軸について略対称で且つ燃焼室出口に向けて直径が増大する連続した円筒状火炎面が形成される。この円筒状火炎面の内側には高温で密度の小さい既燃ガスが存在する領域が、また、その外側の円筒状燃焼室の側壁面との間の環状空間には未燃焼の混合気が存在する領域が形成される。
【0004】
上記の円筒状燃焼室内の旋回による混合気の火炎は、中心部に存在する温度の高い既燃ガスと混合気とが大きな面積で接触し、しかも、その接触面、すなわち火炎面に垂直な混合気の速度が極めて小さいために、静止混合気の場合の燃焼限界に近い燃料/空気比まで燃焼火炎の維持が可能であることが知られている。旋回流れ場の内側に密度の小さい既燃ガスが存在し、その外側に密度の大きな混合気が存在する上記火炎の構造は、流体力学的にも極めて安定である。また、この構造に起因する、火炎と混合気の流入口とが離れていることは、予混合燃焼に固有の問題のひとつである逆火の抑止に極めて有効である。
【0005】
燃焼装置から排出されるNOxは健康や地球環境に対して悪影響があることから、各種の規制が行われているが、大都市では更にNOxの発生の削減が必要とされている。NOxは高温で生成速度が急激に増大するので、その抑制には、燃料と空気を混ぜ、しかも燃料/空気比を小さくして燃焼させる希薄予混合燃焼が最も理にかなっている。希薄条件での優れた火炎安定性や予混合気を供給する場合でも逆火が起き難いという円筒内旋回燃焼の特徴は、希薄予混合燃焼の本質的特性に起因する短所を抑え、長所を最大限に発揮する上で非常に有効と考えられる。
【0006】
特開2001−280605「予混合旋回燃焼器」には、円筒内旋回燃焼を利用した空気と燃料ガスとの混合気の燃焼器が示されている。この燃焼器について、その実施形態の概念図である図6に基づいて説明する。この燃焼器は、それまでの直円筒を用いた旋回場の燃焼において生じていた問題、即ち、燃焼器の大きさに対して混合気の流量が過大になると、円筒状火炎面21と円筒側壁16との間の隙間から混合気17が未燃のまま抜け出るという問題を解決するために、燃焼室11の出口近傍に段差61を設けた。段差61による断面流路面積の急拡大によって円筒状火炎21は半径方向に広がり、段差61の下流には再循環流が形成される。未燃混合気や一酸化炭素などの不完全燃焼成分は、そうした再循環流の領域で燃焼するようにした。また、燃焼室内にセラミックス製などの保熱部材62を設け、より希薄な条件でも保炎が可能なようにした。上記の構成により、希薄限界近傍や高流入量における火炎の安定性が向上するとともに、それまでの円筒内旋回燃焼の課題であった壁面に沿う未燃焼混合気の漏れをほぼ排除し、完全燃焼負荷範囲を拡大できるようになった。
【0007】
燃焼装置やそれを備えたエンジンでは、熱発生率や出力は、単位時間当たりの燃料流量を増減することによって制御される。燃焼効率を十分高く維持しながら、NOxの発生を熱発生量や出力の大小に依らず略極小に維持するためには、燃料と混合する空気の量を燃焼器への空気の温度や圧力などによって決まる最適値に可能な限り近づける必要がある。
【0008】
空気流量を出力に対応させて制御する例としては、インバータモーターで送風機の回転数を可変制御することにより燃焼器への空気流量を燃料流量の増減に追随させている予混合バーナを備えた給湯器用燃焼器がある。この燃焼器は3本のバーナを備え、その作動本数の増減と空気流量の増減とによって、バーナの燃料空気比は1:1.3程度の範囲に抑えながら1:10のターンダウン(最小発熱量に対する最大発熱量の比)を実現している。前記の特開2001−280605「予混合旋回燃焼器」よる試作燃焼器では、空気流量を燃料流量に合わせて精密に制御すれば1個のバーナでも同程度のターンダウンが可能との結果が得られているが、実用化するとなると制御装置の高精度化や安全装置の増設のためにコストが非常にかさむという問題がある。また、更にNOxを低減するには、燃料/空気比のより小さいところでも燃焼が可能なことが要求されるが、予混合燃焼の本質的特性に関係するだけに極めて困難である。
【0009】
一方、ガスタービンの場合は、特別な例外を除き、空気流量を調節することはできないが、全空気流量のうち燃焼用に使用される流量を燃料流量に合わせて弁などの機構により制御することが考えられ、これまで種々の形態が提案されている。高温高圧の雰囲気下での空気流量制御機構の信頼性がないことや、燃料流量制御に比べより大きな駆動力や弁を必要とすることが、燃焼用空気流量制御方式の普及の障害になっている。
【0010】
空気流量制御なしでは、前述公報に開示された「予混合旋回燃焼器」でも、ガスタービンに通常要求される作動範囲の大部分にわたり完全燃焼のもと低NOxを実現することは困難である。現状では複数のバーナを備え、作動させるバーナの本数の増減と流量の制御で出力に対応させる方式の燃焼器が圧倒的多数を占めている。一本当たりのバーナの作動範囲における燃料/空気比の変化の範囲は、ほぼバーナの本数に逆比例して小さくはなるが、一定に維持できないことは明らかである。
【0011】
【発明が解決しようとする課題】
上記のように、円筒内の混合気の旋回を利用した燃焼器において、燃料/空気比が格段に小さい条件においても火炎の保持を可能にし、空気流量の制御なしに低NOx燃焼が可能な燃料/空気比の範囲を拡大する点で解決すべき課題がある。この課題を解決し、空気流量の制御なしに、従来よりも遥かに燃料/空気比が小さい条件においても火炎が保持でき、高い燃焼効率が得られるようになれば、広い作動範囲にわたってNOxの排出が著しく低減されるばかりでなく、作動範囲が格段に拡大し、実用装置への適用が容易になり、普及を促進することができる。
【0012】
この発明の目的は、円筒内旋回燃焼器のこれらの課題を解決するために、燃料/空気比が予混合均質混合気の希薄側可燃限界よりも更に小さい場合でも火炎を維持でき、空気流量の制御が無くても完全燃焼と低NOx燃焼の両立を可能にする新たな円筒内旋回燃焼方式の燃焼器を提供することである。
【0013】
【課題を解決するための手段】
上記の課題を解決するために、この円筒内旋回燃焼器は、一端を底面とする円筒状燃焼室の内部に当該円筒状燃焼室の中心軸周りの旋回流れが形成され且つ前記中心軸について略軸対称な円筒状火炎面が保持される円筒内旋回燃焼器において、前記円筒状燃焼室の底面の周辺部に燃料を前記円筒状燃焼室内に供給するための底面燃料供給器が設けられ、且つ前記円筒状燃焼室の側壁に、側壁燃料供給器が配置されていると共に空気を供給する細長のスロット状開口が設けられていることを特徴としている。
【0014】
ここで、「周辺部」の定義を図5により説明しておく。燃焼器内にその中心軸20周りの旋回流れ22を形成するために混合気(燃焼室内部で側壁面から燃料供給が行われる場合には空気)を流入させるスロット状開口18を、それに繋がる流路19の中心軸に沿って平行移動させると、円筒状燃焼室内の仮想延長部56に外接する燃焼室と同軸の仮想円筒57が決まる。仮想円筒57の投影部の外側に形成される環状部分58が本発明における周辺部の定義である。また、底面の底面燃料供給器の位置は、その開口59の重心と定義する。
【0015】
上記形態において、前記円筒状燃焼室には、既に述べたように、その円筒状燃焼室のスロット状開口18よりも上流で準備した混合気をスロット状開口18から円筒側壁面に沿って周方向に導入することが一般的であるが、側壁に側壁燃料供給器を配置し、そこから噴射された燃料と円筒側壁のスロット状開口から流入する空気とが旋回しながら混合を進め、混合気を形成するようにすることによって、逆火の問題から完全に開放される。
【0016】
前記円筒状燃焼室の下流に、接続部を介して、当該円筒状燃焼室と直径が異なると共に、前記中心軸周りの旋回流れが形成され且つ略軸対称な円筒状延長火炎面が形成される1個以上の延長円筒状燃焼室を接続することができる。円筒状燃焼室の下流に接続部を介して当該円筒状燃焼室と異なる直径の1個以上の、円筒内旋回燃焼を行う延長円筒状燃焼室を直列に接続すれば、複数の円筒状燃焼室での混合気の燃料/空気比を燃焼装置やエンジンの発熱量や出力に合わせて細かく制御できるのはもちろん、空気流量制御なしに簡単な燃料流量の制御だけで、広い作動範囲にわたり低NOxと極めて高い燃焼効率を同時に実現できる。
【0017】
前記延長円筒状燃焼室の側壁にも側壁燃料供給器を配置し、そこから噴射された燃料と円筒側壁のスロット状開口から流入する空気とが旋回しながら混合し、混合気を形成するようにしてもよい。
【0018】
また、前記接続部の壁面に、周方向に接続部燃料供給器を備え、当該壁面の構造に応じて上流側、あるいは下流側の円筒状燃焼室内に燃料を噴射するようにすれば、より全体として燃料/空気の小さなところまで燃焼が可能になり、さらに適切に燃料を配分することで、低NOxと高い燃焼効率を得ることができる。
【0019】
さらに、最下流の円筒内旋回方式の円筒状燃焼室の出口部に、該円筒状燃焼室の内径よりも内接円の直径が大きい延長ダクトを接続し、該延長ダクトの側壁には、空気、燃料、又は空気と燃料の混合気のいずれかを略中心に向けて流入させる流入口が形成され、それらが上流からの燃焼ガスと混合させることにより、燃焼ガスの旋回を弱めるとともに、燃焼ガスの温度調節、出口における燃焼ガスの温度分布の最適化が可能になる。
【0020】
さらに、また最下流の円筒内旋回方式の円筒状燃焼室の出口部に、該円筒状燃焼室の内径よりも内接円の直径が大きい延長ダクトを接続し、該延長ダクトの側壁には、空気、燃料、又は空気と燃料の混合気のいずれかを上流の円筒状燃焼室の旋回とは逆方向の旋回を生じる向きに円筒状燃焼室内に流入させる流入口が形成され、そこから空気、燃料、又は空気の燃料の混合気を噴射すると旋回を弱める効果がより強くなる。
【0021】
上記の円筒内旋回燃焼器で燃焼できる燃料は、ガス燃料だけでなく、空気やCO等の非燃焼気体と混合したガス燃料や霧状の液体燃料なども含まれる。また、前記円筒燃焼室とその上流に配置されるパイロット燃焼室のそれぞれの火炎の燃料は、必ずしも同一でなくてもよい。また、混合気は完全均質である必要はない。円筒内旋回燃焼用の混合気として供給する場合も、均質である必要はない。
【0022】
【発明の実施の形態】
図面を参照して、この発明による円筒内旋回燃焼器の実施の形態について説明する。図1は参考例に係る円筒内旋回燃焼器の概念図であり、図1(a)は円筒状燃焼室の中心軸を含む断面を示し、図1(b)はその軸に垂直なA−A断面(矢視A−A)を示している。この円筒内旋回燃焼器においては、大きな径の円筒状燃焼室11の底面12の開口13には、底面12aが完全に閉じられた小さい円筒状燃焼室(パイロット燃焼室)11aが接続されている。円筒状燃焼室11の側壁面16には混合気17が燃焼室11内に流入する細長のスロット状開口18が周方向に隔置して2個設けられ、パイロット燃焼室11aにも側壁面16aに同様な形状の2個の開口18aが設けられている。開口18,18aに繋がる流路19,19aと燃焼室側壁面16,16aとは、混合気17,17aがそれぞれの燃焼室11,11aの内壁面に沿って周方向速度成分をもって流出する位置関係にあり、燃焼室11,11a内に混合気の旋回流れ22,22aが形成される。円筒状燃焼室11の下流には、その内径よりも内接円の直径が大きい延長ダクト24が接続されている。
【0023】
スロット状開口18,18aは、周方向に多いほど安定な円筒状火炎を作ることができるが、実用的には2から4個程度がよい。スロット状開口18,18aは、軸方向に複数個配置してもよいし、更にはそれらを周方向にずらせて配置するようにすれば、燃焼室壁面が薄板の場合に問題となる燃焼室11,11aやスロット状開口18,18aの変形を軽減することができる。図1に示すでは、燃焼室11を形成する円筒は薄肉であるためスロット状開口18の上流部に薄板製の流路19が接続されているが、耐火材で成型されるように壁面が十分厚い場合は、壁面にスロット状開口を形成できる。なお、この明細書においては、スロット状開口18,18aとはそこから円筒状燃焼室11,11a内に流入する気体が円筒状燃焼室11,11a内において、その中心軸20周りの旋回を発生することができる形態の流入口全般を表す用語であって、例えば円形開口を直線的に複数個配列したものも含まれる。
【0024】
パイロット燃焼室11aの火炎21aは、図に示すように、円筒状燃焼室11との接続部の直ぐ下流に位置する急拡大部で急激に半径方向に広がり、それとともに高温の既燃ガスも広がり、それらが円筒状燃焼室11のスロット状開口18から流入する混合気の確実な着火源として作用し、その火炎21の安定性をさらに強化する。これによって、単一の円筒状燃焼室だけからなる円筒内旋回燃焼器では燃焼できなかったより希薄な混合気を燃焼させることができるようになった。円筒状燃焼室11と延長ダクト24との接続によって形成される流路面積の急拡大は、接続部の下流側に循環流を形成し、これによって火炎21と円筒側壁16との間からの未燃混合気をほぼ完全に燃焼させることができる。
【0025】
パイロット燃焼室11aからの既燃ガスと円筒状燃焼室11のスロット状開口18からの混合気が混合した後の温度が反応に充分高い温度、たとえば1200℃、になるように設計しておけば、円筒状燃焼室11に流入する混合気がどれほど薄くても完全に反応させることができる。装置の熱発生率やエンジンでの出力の調整は、この燃料の流量制御だけで済ますことができる。円筒状燃焼室11のスロット状開口18からの混合気が充分希薄な限り、その反応によるNOxの発生は殆どないので、パイロット燃焼室11aでの燃焼を希薄にしておけば、全体でのNOx発生は非常に少なくなる。ガスタービン燃焼器への適用を調べた模擬実験では、NOx濃度は、10ppm以下という非常に低い濃度が確認されている。
【0026】
パイロット燃焼室11aと円筒状燃焼室11の混合気17,17aの流入方向は、同一の方が円筒状燃焼室11の火炎21の安定性向上には有利で、より希薄での燃焼、従ってNOxの排出をより低いレベルに維持できる。一方、円筒状燃焼室11の長さを短くしたい場合や出口での旋回を弱めたい場合などは、逆旋回が適している。
【0027】
図2は、円筒内旋回燃焼器の他の参考例を示す図であって、図2(a)は円筒状燃焼室の中心軸を含む平面での断面図であり、図2(b)はその中心軸に垂直な平面によるB−B断面図(矢視B−B)である。なお、図中の符号は、新出のものを除き、すべての図に共通である。円筒状燃焼室11の内部に混合気の旋回流れを発生させる機構は、図1に示したものと同一である。底面12には、周辺部に底面燃料供給器26として円管からなる燃料噴射器が設けてある。燃料が気体の場合は、このような単純なもので用が足りるが、液体の場合には微粒化ノズルを燃料供給器として使用する必要があり、場合によっては微粒化用空気が必要である。また、純粋な燃料のほか、空気に混入されて搬送される燃料液滴やその蒸気、石炭ガス化炉からの発生ガスのようにCO、空気、酸素などを含む可燃ガスも燃料として使用できる。
【0028】
ここで、重要なことは燃焼室11内への燃料の供給位置は周辺部でなければならないことである。中心やそれに近い位置で燃料を供給すると、燃焼室11内の旋回流れのために燃料の噴流が安定化され、スロット状開口18から流入する空気あるいは混合気との混合が非常に抑制されてしまう。その結果、底面燃料供給器26から供給される燃料噴流の火炎は細長い拡散火炎になってしまい、空気不足の状態で燃焼するため、すすが発生しやすい。もちろん、放射熱伝達を利用する過熱炉には適しているが、NOxの低減には逆効果である。これに対して燃料を周辺部から供給すると、スロット状開口18からの空気あるいは混合気の流れとの干渉が起こり、周辺部では混合が進むものの、底面近傍の中心軸上には燃料濃度の高い領域が形成される。これが保炎可能な希薄側限界を拡大するのに極めて有効である。
【0029】
図1及び図2に示した形態においては、スロット状開口18から供給される混合気17は、その上流部で燃料と空気が混合されたものであるが、本発明の実施形態の概念図である図3に示すように、スロット状開口18からは空気だけを流入させ、燃料は円筒状燃焼室11の側壁16に備えた側壁燃料供給器25から燃料を噴射し、燃焼室11内で旋回しながら燃料と空気を混合を進める方法でも、混合気を供給する場合と同じように、ほぼ軸対称な円筒状火炎21を形成できる。図3(a)はこの発明の他の実施形態の円筒状燃焼室の中心軸を含む平面での断面図であり、図3(b)はその中心軸に垂直な平面によるC−C断面図(矢視C−C)である。この実施形態では、低出力時には、底面燃料供給器26からのみ燃料を供給し、スロット状開口18からは空気だけを流入させて燃焼を行わせ、高出力時には側壁燃料供給器25から燃料を噴射し、その燃料とスロット状開口18から流入する空気とを円筒状燃焼室11内で旋回しながら混合させて燃焼させるようにする。高出力時の出力の制御は、側壁燃料供給器25からの燃料流量の制御のみで行う。このようにすると、従来の円筒内旋回燃焼器に比べ、燃料/空気比が格段に小さい条件での運転が可能になる。NOxの排出を極小にするには、焼効率が低下しない範囲で、底面燃料供給器26からの燃料流量を絞り込むことが有効である。
【0030】
図4は、他の例を縦断面図として示す概念図である。上流部の形態は図1に示したものと基本的に同一である。その下流に内径の異なる円筒内旋回方式の燃焼室11bを接続部41を介して接続している。このようにすれば、空気流量が制御できない場合でも、各段の燃料流量を制御することによって、燃焼装置の発熱率やエンジンの出力を制御できる。多段化することによって各段の燃料/空気比の設定の自由度が高まるのでより適切な設定が可能となり、図1あるいは図2に示すものよりもさらに広い範囲にわたりNOxの低減と完全燃焼を同時に実現できる。
【0031】
このでは、更に、接続部41の壁面に燃料を燃焼室11b内に供給する接続部燃料供給器27を備えており、接続部燃料供給器27から供給される燃料は、既に第2実施形態における底面燃料供給器26と同様な効果をもたらすことができ、燃料/空気比の設定の自由度が高まるのでより適切な設定が可能となり、円筒内旋回燃焼方式を1段採用した第2実施形態又は実効的に2段採用した第1実施形態によるよりも更に広い範囲に渡りNOxの低減と完全燃焼を同時に実現できる。
【0032】
最下流の円筒内旋回方式の燃焼室の下流側には、希釈空気が流入する流入口23を設けた延長ダクト24bが接続されている。この流入口23には、希釈空気は燃焼器の断面中心にむけて流出するように延長ガイド44を設けるとより効果的である。この希釈空気の導入は、上流の円筒内旋回方式の燃焼室で生じた旋回成分を弱める上で有効である。特に、ガスタービンでは、燃焼器からの高温ガスの強い旋回成分が下流のタービンの効率に悪影響を与えるので、そうした旋回成分を回避することが必要である。空気の代わりに混合気を使用すれば、燃焼ガスの温度を更に高めることもできる。
【0033】
【発明の効果】
以上説明したように、請求項1に記載の円筒内旋回燃焼器においては、円筒内旋回方式燃焼室の底面において、その周辺部に底面燃料供給器を設け、燃料を燃焼室内に供給できるようにしているので、その燃料とスロット状開口からの空気や混合気とは適度に混合を行うとともに、底面近傍の中心付近には燃料濃度の高い領域が形成され、これがスロットから流入する混合気、あるいはスロットから流入する空気と燃焼室側壁に設けた側壁燃料供給器からの燃料とが燃焼室内で混合して出来る混合気の火炎の、特に希薄側での保持に効果をもたらし、燃焼器全体として、希薄側の燃焼可能範囲を飛躍的に広げることができる。それらの結果、面倒な空気流量の制御なしに、広い燃料/空気比の範囲にわたってNOxの排出を抑制して燃焼装置やエンジンを運転することができる。
【0034】
そして、請求項1及び請求項3の円筒内旋回燃焼器においては、混合気の形成が燃焼室内部で行われるので、逆火の問題を完全に排除でき、安全性の高い装置が実現できる。また、空気と接触すると容易に発火するような物質を安全に燃焼させることが可能になるという効果がある。
【0035】
請求項2に記載の円筒内旋回燃焼器においては、内径の異なる円筒内旋回方式燃焼室が接続されているので、各段への混合気の燃料/空気比を制御するだけで、非常に広範な燃料/空気比にわたって、低NOxと完全燃焼を両立できる。複雑な空気流量制御を必要としないという点だけからみても、コストや耐久性に優れたクリーンな燃焼器やエンジンを実現できる。
【0036】
さらに、請求項に記載の円筒内旋回燃焼器においては、前記接続部の壁面に、周方向に接続部燃料供給器を備え、当該壁面の構造に応じて上流側、あるいは下流側の燃焼室内に燃料を噴射するようにしているので、全体として燃料/空気比のより小さなところまで燃焼が可能になり、さらに適切に燃料を配分することで、低NOxと高い燃焼効率を得ることができる効果がある。
【0037】
また請求項5に記載の円筒内旋回燃焼器においては、最下流に位置する円筒内旋回燃焼室の出口に、その内径よりも内接円の直径が大きい延長ダクトを接続しているので、その接続部には段差が形成され、その下流に循環流が形成されるので、壁面に沿って未燃焼成分や混合気が流出する場合において、それらを燃焼させることができるという、実用上重要な効果がある。また、前記延長ダクトの側壁に、空気、燃料又は、空気と燃料の混合気のいずれかがほぼ半径方向中心に向かって流入する流入口を設け、それらが上流からの燃焼ガスと混合させるようにすることにより、燃焼ガスの旋回を弱めるとともに、燃焼ガス温度の調節、出口における燃焼ガスの温度分布の最適化が可能になる。
【0038】
また請求項6に記載の円筒内旋回燃焼器においては、最下流に位置する円筒内旋回燃焼室の出口に、その内径よりも内接円の直径が大きい延長ダクトを接続しているので、その接続部には段差が形成され、その下流に循環流が形成されるので、壁面に沿って未燃焼成分や混合気が流出する場合において、それらを燃焼させることができるという、実用上重要な効果がある。また、前記流入口を、それよりも上流における旋回とは逆方向の旋回を生じる角度で設けてあり、そこから空気、燃料、混合気を噴射すると、旋回を弱める効果がより強くなる効果があり、燃焼器からの燃焼ガスが強い旋回を持つことが有害な場合、例えばガスタービンなどへの適用においては旋回抑制の有効な手段となる。
【図面の簡単な説明】
【図1】本発明の参考例における円筒内旋回燃焼器の概念図である。
【図2】本発明の他の参考例における円筒内旋回燃焼器の概念図である。
【図3】本発明の実施形態における円筒内旋回燃焼器の概念図である。
【図4】本発明のさらに他の参考例における円筒内旋回燃焼器の概念図である。
【図5】本明細書における円筒状燃焼室の底面における周辺部の定義の説明図である。
【図6】予混合円筒内旋回燃焼方式を採用した従来技術の燃焼器の概念図である。
【符号の説明】
11 円筒状燃焼室 11a パイロット燃焼室
12,12a 底面 13,13a 開口
14 空気 15 燃料
16,16a 円筒状燃焼室の側壁面 17,17a 混合気
18,18a スロット状開口 19 スロット状開口に繋がる流路
20 円筒状燃焼室の中心軸 21 円筒状火炎
22,22a 旋回流れ 23 流入口
24 延長ダクト 25 側壁燃料供給器
26 底面燃料供給器 27 接続部燃料供給射器
44 ガイド 56 仮想延長部
57 仮想円筒 58 底面の環状部分
59 底面燃料供給器の開口 61 段差
62 保熱部材
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a combustor for a continuous combustion apparatus used for various applications, and more particularly to an in-cylinder swirl combustor. The combustor according to the present invention can be used as a combustor for a gas turbine or various heating devices.
[0002]
[Prior art]
  2. Description of the Related Art Conventionally, as a combustor for gaseous fuel, one that causes a mixture of fuel and air to flow out in an axial direction from an outlet having a round shape or a slit shape has been widely used. In this case, the flame is stabilized without increasing the flow rate of the air-fuel mixture so that the flame base is surely positioned at the outlet of the outlet. Since the flame and the outlet are almost in contact with each other, the outlet tends to receive heat from the flame and easily deteriorate or deform due to overheating. If the outflow rate of the air-fuel mixture decreases due to deformation of the outlet portion or the like, a problem called backfire is likely to occur, in which the flame returns from the outflow port to the upstream side, combined with an increase in the combustion speed due to warming of the air-fuel mixture. On the other hand, if the outflow speed of the air-fuel mixture is sufficiently increased, the above problem can be avoided. However, the flame rises to a height where the speed of the air-fuel mixture attenuates and matches the combustion speed. Such a flame holding method cannot be used except for special purposes because there are problems such as a change in the spatial position of the flame and a long flame.
[0003]
  In the cylindrical combustion chamber, when the air-fuel mixture flows in the circumferential direction along the wall surface from a slot-like opening that is long in the axial direction of the combustion chamber provided on the side wall, a swirl flow field around the central axis is formed. In the swirling flow field, a continuous cylindrical flame surface is formed which is substantially symmetrical with respect to the combustion chamber central axis and increases in diameter toward the combustion chamber outlet. Inside this cylindrical flame surface, there is a region where burnt gas with low density at high temperature exists, and there is an unburned mixture in the annular space between the cylindrical combustion chamber side wall surface outside it. A region to be formed is formed.
[0004]
  The flame of the air-fuel mixture by swirling in the cylindrical combustion chamber mentioned above is in contact with the burned gas having a high temperature in the center and the air-fuel mixture over a large area, and the mixture is perpendicular to the contact surface, that is, the flame surface. It is known that the combustion flame can be maintained up to a fuel / air ratio close to the combustion limit in the case of a static mixture because of the extremely low velocity of the gas. The above-described flame structure in which a burned gas having a low density exists inside the swirl flow field and a gas mixture having a high density exists outside the swirl flow field is extremely stable in terms of hydrodynamics. In addition, the fact that the flame and the inlet of the air-fuel mixture are separated due to this structure is extremely effective in suppressing backfire, which is one of the problems inherent to premixed combustion.
[0005]
  Since NOx discharged from the combustion apparatus has an adverse effect on health and the global environment, various regulations have been implemented, but in large cities, further reduction of NOx generation is required. Since the production rate of NOx increases rapidly at high temperatures, lean premixed combustion, in which fuel and air are mixed and burned with a reduced fuel / air ratio, makes the most reasonable suppression. The characteristics of the swirl combustion in a cylinder, which provides excellent flame stability under lean conditions and is difficult to cause backfire even when supplying premixed gas, suppresses the disadvantages due to the essential characteristics of lean premixed combustion and maximizes the advantages. It is thought that it is very effective in exhibiting to the limit.
[0006]
  Japanese Patent Laid-Open No. 2001-280605 “Premixed swirl combustor” shows a combustor of a mixture of air and fuel gas using swirl combustion in a cylinder. This combustor will be described with reference to FIG. 6 which is a conceptual diagram of the embodiment. In this combustor, when the flow rate of the air-fuel mixture is excessive with respect to the size of the combustor, the problem that has occurred in the swirling field combustion using the straight cylinder until then, the cylindrical flame surface 21 and the cylindrical side wall In order to solve the problem that the air-fuel mixture 17 escapes from the gap between the combustion chamber 16 and unburned, a step 61 is provided in the vicinity of the outlet of the combustion chamber 11. The cylindrical flame 21 spreads in the radial direction due to the sudden expansion of the cross-sectional flow area by the step 61, and a recirculation flow is formed downstream of the step 61. Incomplete combustion components such as unburned air-fuel mixture and carbon monoxide are burned in the region of such recirculation flow. In addition, a heat retaining member 62 made of ceramic or the like is provided in the combustion chamber so that the flame can be retained even under lean conditions. With the above configuration, flame stability near the lean limit and high inflow rate is improved, and leakage of unburned mixture along the wall surface, which has been a problem with swirl combustion in the cylinder, is almost eliminated, and complete combustion is achieved. The load range can be expanded.
[0007]
  In a combustion apparatus and an engine equipped with the combustion apparatus, the heat generation rate and output are controlled by increasing or decreasing the fuel flow rate per unit time. In order to maintain the combustion efficiency sufficiently high and keep the generation of NOx at a minimum regardless of the amount of heat generation and output, the amount of air mixed with the fuel can be adjusted to the temperature and pressure of the air to the combustor. It should be as close as possible to the optimum value determined by.
[0008]
  As an example of controlling the air flow rate according to the output, hot water supply equipped with a premixing burner that causes the air flow rate to the combustor to follow the increase and decrease of the fuel flow rate by variably controlling the rotation speed of the blower with an inverter motor There is a combustor. This combustor is equipped with three burners. By increasing or decreasing the number of operating burners and increasing or decreasing the air flow rate, the burner fuel / air ratio is kept in the range of about 1: 1.3, and a 1:10 turndown (minimum heat generation). The ratio of the maximum calorific value to the quantity) is realized. In the prototype combustor based on the above-mentioned Japanese Patent Laid-Open No. 2001-280605 “Premixed swirl combustor”, if the air flow rate is precisely controlled in accordance with the fuel flow rate, the result is that even one burner can achieve the same level of turndown. However, when it is put to practical use, there is a problem that the cost becomes very high due to the high accuracy of the control device and the addition of the safety device. Further, in order to further reduce NOx, it is required that combustion is possible even at a smaller fuel / air ratio, but it is extremely difficult only because it is related to the essential characteristics of premixed combustion.
[0009]
  On the other hand, in the case of gas turbines, the air flow rate cannot be adjusted except for special exceptions, but the flow rate used for combustion out of the total air flow rate should be controlled by a mechanism such as a valve according to the fuel flow rate. Various forms have been proposed so far. The lack of reliability of the air flow control mechanism in high-temperature and high-pressure atmospheres and the need for larger driving force and valves compared to fuel flow control are obstacles to the widespread use of combustion air flow control systems. Yes.
[0010]
  Without air flow control, even with the “premixed swirl combustor” disclosed in the above publication, it is difficult to achieve low NOx under complete combustion over most of the operating range normally required for gas turbines. At present, an overwhelming majority of combustors are equipped with a plurality of burners and are adapted to output by increasing or decreasing the number of burners to be operated and controlling the flow rate. Obviously, the range of change in the fuel / air ratio in the operating range of the burner per burner becomes smaller in inverse proportion to the number of burners, but cannot be kept constant.
[0011]
[Problems to be solved by the invention]
  As described above, in a combustor that utilizes swirling of an air-fuel mixture in a cylinder, a fuel that can hold a flame even under a condition where the fuel / air ratio is extremely small and can perform low NOx combustion without controlling the air flow rate There is a problem to be solved in terms of expanding the range of the air ratio. If this problem is solved and the flame can be maintained and the high combustion efficiency can be obtained even under a condition where the fuel / air ratio is much smaller than before without controlling the air flow rate, NOx emission over a wide operating range is achieved. In addition to being significantly reduced, the operating range is greatly expanded, application to practical devices is facilitated, and popularization can be promoted.
[0012]
  The object of the present invention is to solve these problems of the in-cylinder swirl combustor so that the flame can be maintained even when the fuel / air ratio is smaller than the lean flammability limit of the premixed homogeneous mixture, and the air flow rate is reduced. It is to provide a new in-cylinder swirl combustion type combustor that enables both complete combustion and low NOx combustion without control.
[0013]
[Means for Solving the Problems]
  In order to solve the above-described problem, this swirl combustor in a cylinder has a swirl flow around the central axis of the cylindrical combustion chamber formed inside the cylindrical combustion chamber having one end as a bottom surface, and is approximately the center axis. In a cylindrical swirl combustor in which an axisymmetric cylindrical flame surface is held,A bottom surface fuel supplier for supplying fuel into the cylindrical combustion chamber is provided at the periphery of the bottom surface of the cylindrical combustion chamber, and a side wall fuel supplier is disposed on the side wall of the cylindrical combustion chamber. With an elongated slot-like opening to supply air withIt is characterized by.
[0014]
  Here, the definition of “peripheral part” will be described with reference to FIG. A slot-like opening 18 through which an air-fuel mixture (air when fuel is supplied from the side wall inside the combustion chamber) to form a swirling flow 22 around the central axis 20 in the combustor When translated along the central axis of the path 19, a virtual cylinder 57 coaxial with the combustion chamber circumscribing the virtual extension 56 in the cylindrical combustion chamber is determined. The annular portion 58 formed outside the projection portion of the virtual cylinder 57 is the definition of the peripheral portion in the present invention. In addition, the position of the bottom fuel supplier on the bottom surface is defined as the center of gravity of the opening 59.
[0015]
  Above formAs described above, the air-fuel mixture prepared upstream of the slot-shaped opening 18 of the cylindrical combustion chamber is introduced into the cylindrical combustion chamber in the circumferential direction along the cylindrical side wall surface from the slot-shaped opening 18. Generally, a side wall fuel supplier is arranged on the side wall, and fuel injected from the side wall and air flowing from the slot-like opening of the cylindrical side wall are swirled to form a mixture. LikeByIt is completely free from the problem of flashback.
[0016]
  A cylindrical extension flame surface having a diameter different from that of the cylindrical combustion chamber and a swirling flow around the central axis and a substantially axisymmetric shape is formed downstream of the cylindrical combustion chamber via a connecting portion. One or more extended cylindrical combustion chambers can be connected. If one or more extended cylindrical combustion chambers that perform swirl combustion in a cylinder having a diameter different from that of the cylindrical combustion chamber are connected in series downstream of the cylindrical combustion chamber, a plurality of cylindrical combustion chambers are connected. In addition to being able to finely control the fuel / air ratio of the air-fuel mixture in accordance with the calorific value and output of the combustion device and engine, it is possible to achieve low NOx over a wide operating range by simply controlling the fuel flow without air flow control. Extremely high combustion efficiency can be realized at the same time.
[0017]
  A side wall fuel supplier is also arranged on the side wall of the extended cylindrical combustion chamber so that the fuel injected therefrom and the air flowing in from the slot-like opening on the cylindrical side wall are mixed while swirling to form an air-fuel mixture. May be.
[0018]
  Further, if the connection portion fuel supply device is provided on the wall surface of the connection portion in the circumferential direction, and the fuel is injected into the upstream or downstream cylindrical combustion chamber according to the structure of the wall surface, the overall As a result, combustion is possible up to a small amount of fuel / air, and low NOx and high combustion efficiency can be obtained by appropriately distributing the fuel.
[0019]
  Furthermore, an extension duct having a diameter of an inscribed circle larger than the inner diameter of the cylindrical combustion chamber is connected to the outlet of the cylindrical combustion chamber of the most downstream cylindrical swirl type, and an air duct is connected to the side wall of the extension duct. An inflow port is formed through which either fuel or a mixture of air and fuel flows substantially toward the center, and these are mixed with the combustion gas from the upstream, thereby weakening the swirling of the combustion gas and the combustion gas. It is possible to optimize the temperature distribution of the combustion gas and the temperature distribution of the combustion gas at the outlet.
[0020]
Furthermore, an extension duct having a diameter of an inscribed circle larger than the inner diameter of the cylindrical combustion chamber is connected to the outlet of the cylindrical combustion chamber of the most downstream cylindrical swirl type, and the side wall of the extension duct has An inlet is formed for flowing either air, fuel, or a mixture of air and fuel into the cylindrical combustion chamber in a direction that produces a swirling direction opposite to that of the upstream cylindrical combustion chamber, from which air, The effect of weakening the swirl becomes stronger when fuel or air-fuel mixture is injected.
[0021]
  The fuel that can be burned by the above-mentioned in-cylinder swirl combustor is not only gas fuel but also air and CO.2A gas fuel mixed with a non-combustion gas such as mist or liquid fuel is also included. Moreover, the fuel of each flame of the said cylindrical combustion chamber and the pilot combustion chamber arrange | positioned in the upstream does not necessarily need to be the same. Also, the air-fuel mixture need not be completely homogeneous. Even when it is supplied as an air-fuel mixture for in-cylinder swirling combustion, it need not be homogeneous.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
  An embodiment of an in-cylinder swirl combustor according to the present invention will be described with reference to the drawings. Figure 1Cylindrical swirl combustor according to reference example1A shows a cross section including the central axis of the cylindrical combustion chamber, and FIG. 1B shows an AA cross section (arrow AA) perpendicular to the axis. Yes. In this in-cylinder swirl combustor, a small cylindrical combustion chamber (pilot combustion chamber) 11a having a bottom surface 12a completely closed is connected to an opening 13 of a bottom surface 12 of a cylindrical combustion chamber 11 having a large diameter. . Two elongated slot-shaped openings 18 through which the air-fuel mixture 17 flows into the combustion chamber 11 are provided in the circumferential direction on the side wall surface 16 of the cylindrical combustion chamber 11, and the side wall surface 16 a is also provided on the pilot combustion chamber 11 a. Two openings 18a having the same shape are provided. The flow paths 19, 19a connected to the openings 18, 18a and the combustion chamber side wall surfaces 16, 16a are in a positional relationship where the air-fuel mixture 17, 17a flows out along the inner wall surfaces of the respective combustion chambers 11, 11a with a circumferential velocity component. Thus, swirl flows 22 and 22a of the air-fuel mixture are formed in the combustion chambers 11 and 11a. An extension duct 24 having a diameter of an inscribed circle larger than its inner diameter is connected downstream of the cylindrical combustion chamber 11.
[0023]
  The more slot-shaped openings 18 and 18a are in the circumferential direction, the more stable the cylindrical flame can be made. A plurality of the slot-shaped openings 18 and 18a may be arranged in the axial direction, and if they are arranged shifted in the circumferential direction, the combustion chamber 11 becomes a problem when the wall surface of the combustion chamber is a thin plate. , 11a and the slot-shaped openings 18, 18a can be reduced. As shown in FIG.ExampleThen, since the cylinder forming the combustion chamber 11 is thin, a flow path 19 made of a thin plate is connected to the upstream portion of the slot-shaped opening 18, but if the wall surface is sufficiently thick to be molded with a refractory material, A slot-like opening can be formed on the wall surface. In this specification, the slot-like openings 18 and 18a mean that the gas flowing into the cylindrical combustion chambers 11 and 11a swirls around the central axis 20 in the cylindrical combustion chambers 11 and 11a. It is a term that represents all of the inlets that can be configured, and includes, for example, a plurality of circular openings arranged in a straight line.
[0024]
  As shown in the figure, the flame 21a of the pilot combustion chamber 11a suddenly spreads in the radial direction at a sudden expansion portion located immediately downstream of the connection portion with the cylindrical combustion chamber 11, and high-temperature burned gas also spreads with it. They act as a reliable ignition source of the air-fuel mixture flowing from the slot-like opening 18 of the cylindrical combustion chamber 11 and further enhance the stability of the flame 21. This makes it possible to burn a leaner air-fuel mixture that could not be burned by an in-cylinder swirl combustor comprising only a single cylindrical combustion chamber. The rapid expansion of the flow passage area formed by the connection between the cylindrical combustion chamber 11 and the extension duct 24 forms a circulation flow downstream of the connection portion, and thereby the uncirculated flow between the flame 21 and the cylindrical side wall 16 is not formed. The fuel mixture can be burned almost completely.
[0025]
  If the temperature after mixing the burned gas from the pilot combustion chamber 11a and the air-fuel mixture from the slot-shaped opening 18 of the cylindrical combustion chamber 11 is sufficiently high, for example, 1200 ° C. Even if the air-fuel mixture flowing into the cylindrical combustion chamber 11 is thin, it can be completely reacted. Adjustment of the heat generation rate of the device and the output of the engine can be performed only by controlling the flow rate of the fuel. As long as the air-fuel mixture from the slot-shaped opening 18 of the cylindrical combustion chamber 11 is sufficiently lean, there is almost no generation of NOx due to the reaction. Therefore, if the combustion in the pilot combustion chamber 11a is made lean, NOx is generated as a whole. Are very few. In a simulation experiment in which application to a gas turbine combustor was examined, it was confirmed that the NOx concentration was as low as 10 ppm or less.
[0026]
  The inflow direction of the air-fuel mixture 17, 17a in the pilot combustion chamber 11a and the cylindrical combustion chamber 11 is more advantageous for improving the stability of the flame 21 in the cylindrical combustion chamber 11, and the leaner combustion, therefore NOx. Discharge can be maintained at a lower level. On the other hand, when it is desired to shorten the length of the cylindrical combustion chamber 11 or to weaken the turning at the outlet, the reverse turning is suitable.
[0027]
  Fig. 2 shows the in-cylinder swirl combustorOther reference examples2A is a cross-sectional view in a plane including the central axis of the cylindrical combustion chamber, and FIG. 2B is a cross-sectional view taken along the line BB along a plane perpendicular to the central axis. It is an arrow BB). In addition, the code | symbol in a figure is common to all the figures except for a new thing. The mechanism for generating the swirling flow of the air-fuel mixture inside the cylindrical combustion chamber 11 is shown in FIG.things andAre the same. The bottom surface 12 is provided with a fuel injector made of a circular pipe as a bottom surface fuel supply device 26 at the periphery. When the fuel is a gas, such a simple one is sufficient, but when it is a liquid, it is necessary to use the atomizing nozzle as a fuel supply device, and in some cases atomizing air is required. In addition to pure fuel, CO2 such as fuel droplets transported mixed with air and its vapor, and gas generated from coal gasifiers2A combustible gas containing air, oxygen, etc. can also be used as fuel.
[0028]
  Here, what is important is that the fuel supply position into the combustion chamber 11 must be a peripheral portion. If fuel is supplied at the center or a position close thereto, the jet of fuel is stabilized due to the swirling flow in the combustion chamber 11, and mixing with the air or air-fuel mixture flowing in from the slot-like opening 18 is greatly suppressed. . As a result, the flame of the fuel jet supplied from the bottom fuel supplier 26 becomes an elongated diffusion flame and burns in a state of air shortage, soot is likely to occur. Of course, it is suitable for a superheated furnace using radiant heat transfer, but it is counterproductive to reducing NOx. On the other hand, when fuel is supplied from the peripheral portion, interference with the air or air-fuel mixture from the slot-shaped opening 18 occurs, and mixing proceeds in the peripheral portion, but the fuel concentration is high on the central axis near the bottom surface. A region is formed. This is extremely effective in expanding the limit on the lean side where the flame can be held.
[0029]
  In the form shown in FIGS. 1 and 2, the air-fuel mixture 17 supplied from the slot-shaped opening 18 is a mixture of fuel and air upstream thereof.Of the present inventionAs shown in FIG. 3, which is a conceptual diagram of the embodiment, only air flows from the slot-shaped opening 18, and the fuel is injected from a side wall fuel supplier 25 provided on the side wall 16 of the cylindrical combustion chamber 11, Even in a method in which mixing of fuel and air is advanced while swirling in the combustion chamber 11, a substantially axisymmetric cylindrical flame 21 can be formed as in the case of supplying the air-fuel mixture. FIG. 3A is a cross-sectional view in a plane including the central axis of a cylindrical combustion chamber according to another embodiment of the present invention, and FIG. 3B is a cross-sectional view taken along the line CC along the plane perpendicular to the central axis. (Arrow CC). In this embodiment, the fuel is supplied only from the bottom fuel supply device 26 at the time of low output, and combustion is performed by injecting only air from the slot-shaped opening 18. The fuel is injected from the sidewall fuel supply device 25 at the time of high output. The fuel and the air flowing in from the slot-shaped opening 18 are mixed while being swirled in the cylindrical combustion chamber 11 and burned. The output control at the time of high output is performed only by controlling the fuel flow rate from the side wall fuel supplier 25. In this way, it is possible to operate under conditions in which the fuel / air ratio is significantly smaller than in a conventional in-cylinder swirl combustor. In order to minimize NOx emission, it is effective to narrow the fuel flow rate from the bottom fuel supply device 26 within a range in which the firing efficiency does not decrease.
[0030]
  FIG.Other examplesIt is a conceptual diagram which shows as a longitudinal cross-sectional view. The form of the upstream part is shown in FIG.thingIs basically the same. A cylindrical swirl combustion chamber 11b having a different inner diameter is connected to the downstream via a connecting portion 41. In this way, even when the air flow rate cannot be controlled, the heat generation rate of the combustion device and the engine output can be controlled by controlling the fuel flow rate of each stage. By increasing the number of stages, the degree of freedom in setting the fuel / air ratio at each stage is increased, enabling more appropriate settings.As shown in FIG. 1 or FIG.Furthermore, NOx reduction and complete combustion can be realized simultaneously over a wider range.
[0031]
  thisExampleThen, the connecting portion 41 is further provided with a connecting portion fuel supply device 27 for supplying fuel into the combustion chamber 11b on the wall surface of the connecting portion 41. The fuel supplied from the connecting portion fuel supply device 27 is already the bottom surface in the second embodiment. The same effect as that of the fuel supply device 26 can be brought about, and the degree of freedom in setting the fuel / air ratio is increased, so that more appropriate setting is possible. Thus, NOx reduction and complete combustion can be realized simultaneously over a wider range than in the first embodiment employing two stages.
[0032]
  An extension duct 24b having an inflow port 23 into which dilution air flows is connected to the downstream side of the most downstream cylinder swirl combustion chamber. It is more effective to provide an extension guide 44 at the inlet 23 so that the diluted air flows out toward the center of the cross section of the combustor. The introduction of this diluted air is effective in weakening the swirl component generated in the upstream swirl type combustion chamber in the cylinder. In particular, in gas turbines, it is necessary to avoid such swirling components because the strong swirling component of the hot gas from the combustor adversely affects the efficiency of the downstream turbine. If an air-fuel mixture is used instead of air, the temperature of the combustion gas can be further increased.
[0033]
【The invention's effect】
  As described above, in the in-cylinder swirl combustor according to the first aspect, the bottom surface fuel supply device is provided at the periphery of the bottom surface of the in-cylinder swirl combustion chamber so that fuel can be supplied into the combustion chamber. Therefore, the fuel and the air and air-fuel mixture from the slot-shaped opening are mixed moderately, and a region with a high fuel concentration is formed near the center near the bottom surface. The air that flows in from the slot and the fuel from the side wall fuel supply unit provided on the side wall of the combustion chamber are mixed in the combustion chamber, which brings about an effect in holding the flame of the air-fuel mixture, particularly on the lean side, The combustible range on the lean side can be greatly expanded. As a result, it is possible to operate the combustion apparatus and engine while suppressing NOx emission over a wide range of fuel / air ratios without troublesome control of the air flow rate.
[0034]
  And in the in-cylinder swirl combustor of claim 1 and claim 3,Since the mixture is formed in the combustion chamber, the problem of flashback can be completely eliminated, and a highly safe apparatus can be realized. Further, there is an effect that it is possible to safely burn a substance that easily ignites when it comes into contact with air.
[0035]
  In the cylindrical swirl combustor according to claim 2,A cylindrical swirl type combustion chamber with different internal diameters is connected, so it is possible to achieve both low NOx and complete combustion over a very wide range of fuel / air ratios simply by controlling the fuel / air ratio of the air-fuel mixture to each stage. it can. Even from the point of not requiring complicated air flow control, a clean combustor and engine with excellent cost and durability can be realized.
[0036]
  And claims4In the in-cylinder swirl combustor described above, a connection portion fuel supply device is provided in the circumferential direction on the wall surface of the connection portion, and fuel is injected into the combustion chamber on the upstream side or the downstream side depending on the structure of the wall surface. As a result, combustion can be achieved up to a smaller fuel / air ratio as a whole, and there is an effect that low NOx and high combustion efficiency can be obtained by appropriately distributing the fuel.
[0037]
  AlsoClaim 5In the in-cylinder swirl combustor described above, an extension duct having an inscribed circle diameter larger than the inner diameter is connected to the outlet of the in-cylinder swirl combustion chamber located on the most downstream side. And a circulating flow is formed downstream thereof, so that when unburned components and air-fuel mixture flow out along the wall surface, they can be burned and have an important practical effect.Also, an inlet is provided on the side wall of the extension duct so that either air, fuel, or a mixture of air and fuel flows almost toward the center in the radial direction so that they mix with the combustion gas from the upstream. As a result, the swirling of the combustion gas can be weakened, the temperature of the combustion gas can be adjusted, and the temperature distribution of the combustion gas at the outlet can be optimized.
[0038]
  Further, in the in-cylinder swirl combustor according to claim 6, an extension duct having a diameter of an inscribed circle larger than the inner diameter is connected to the outlet of the swirl combustion chamber in the cylinder located on the most downstream side. A step is formed in the connecting part, and a circulation flow is formed downstream of it, so that when unburned components and air-fuel mixture flow out along the wall surface, they can be burned, which is a practically important effect. There is. In addition, the inlet is provided at an angle that causes a swirl in a direction opposite to the swirl upstream, and when air, fuel, or air-fuel mixture is injected therefrom, the effect of weakening the swirl is stronger. When it is harmful that the combustion gas from the combustor has a strong swirl, it is an effective means for suppressing swirl, for example, in application to a gas turbine.
[Brief description of the drawings]
FIG. 1 shows the present invention.Reference exampleIt is a conceptual diagram of the in-cylinder swirl combustor.
FIG. 2 of the present inventionOther reference examplesIt is a conceptual diagram of the in-cylinder swirl combustor.
FIG. 3 is a conceptual diagram of an in-cylinder swirl combustor according to an embodiment of the present invention.
FIG. 4 of the present inventionOther reference examplesIt is a conceptual diagram of the in-cylinder swirl combustor.
FIG. 5 is an explanatory diagram of the definition of the peripheral portion on the bottom surface of the cylindrical combustion chamber in the present specification.
FIG. 6 is a conceptual diagram of a prior art combustor employing a premixed cylinder swirl combustion method.
[Explanation of symbols]
11 Cylindrical combustion chamber 11a Pilot combustion chamber
12, 12a Bottom surface 13, 13a Opening
14 Air 15 Fuel
16, 16a Side wall surface of cylindrical combustion chamber 17, 17a Air-fuel mixture
18, 18a Slot-shaped opening 19 Flow path connected to the slot-shaped opening
20 Central axis of cylindrical combustion chamber 21 Cylindrical flame
22, 22a Swirling flow 23 Inlet
24 Extension duct 25 Side wall fuel supplier
26 Bottom fuel supply device 27 Fuel supply injector
44 Guide 56 Virtual extension
57 Virtual cylinder 58 Bottom annular part
59 Bottom fuel supply opening 61 Step
62 Thermal insulation member

Claims (6)

一端を底面とする円筒状燃焼室の内部に当該円筒状燃焼室の中心軸周りの旋回流れが形成され且つ前記中心軸について略軸対称な円筒状火炎面が保持される円筒内旋回燃焼器において、前記円筒状燃焼室の底面の周辺部に燃料を前記円筒状燃焼室内に供給するための底面燃料供給器が設けられ、且つ前記円筒状燃焼室の側壁に、側壁燃料供給器が配置されていると共に空気を供給する細長のスロット状開口が設けられていることを特徴とする円筒内旋回燃焼器。  In an in-cylinder swirl combustor in which a swirl flow around a central axis of the cylindrical combustion chamber is formed inside a cylindrical combustion chamber having one end as a bottom surface, and a cylindrical flame surface substantially axisymmetric about the central axis is held A bottom fuel supply device for supplying fuel into the cylindrical combustion chamber is provided at a peripheral portion of a bottom surface of the cylindrical combustion chamber, and a side wall fuel supply device is disposed on a side wall of the cylindrical combustion chamber. And an elongated slot-like opening for supplying air is provided. 前記円筒状燃焼室の下流に、接続部を介して、当該円筒状燃焼室と直径が異なると共に前記中心軸周りの旋回流れが形成され且つ略軸対称な円筒状火炎面が形成される1個以上の延長円筒状燃焼室が接続されていることを特徴とする請求項に記載の円筒内旋回燃焼器。One piece having a diameter different from that of the cylindrical combustion chamber and a swirling flow around the central axis and a substantially axisymmetric cylindrical flame surface are formed downstream of the cylindrical combustion chamber via a connecting portion. The in-cylinder swirl combustor according to claim 1 , wherein the extended cylindrical combustion chamber is connected. 前記延長円筒状燃焼室の側壁に、側壁燃料噴射器が配置され、且つ空気を供給する細長のスロット状開口が設けられていることを特徴とする請求項に記載の円筒内旋回燃焼器。The in-cylinder swirl combustor according to claim 2 , wherein a side wall fuel injector is disposed on a side wall of the extended cylindrical combustion chamber, and an elongated slot-like opening for supplying air is provided. 前記接続部の壁面には、周方向に接続部燃料噴射器が配置されていることを特徴とする請求項2又は3に記載の円筒内旋回燃焼器。The in-cylinder swirl combustor according to claim 2 or 3 , wherein a connection portion fuel injector is disposed in a circumferential direction on a wall surface of the connection portion. 最下流の円筒内旋回方式の円筒状燃焼室の出口部に、該円筒状燃焼室の内径よりも内接円の直径が大きい延長ダクトが接続され、該延長ダクトの側壁には、空気、燃料、又は空気と燃料の混合気のいずれかを略中心に向けて流入させる流入口が形成され、上流の円筒内旋回方式の円筒状燃焼室で生じた旋回成分を弱めるようにしてなることを特徴とする請求項1〜4何れかに記載の円筒内旋回燃焼器。An extension duct having a diameter of an inscribed circle larger than the inner diameter of the cylindrical combustion chamber is connected to the outlet of the cylindrical combustion chamber of the most downstream cylindrical swirling method. Or an inflow port through which either the air-fuel mixture or the air-fuel mixture flows substantially toward the center is formed so as to weaken the swirl component generated in the upstream cylindrical swirl type cylindrical combustion chamber. cylindrical inner swirl combustor according to any one claims 1 to 4. 最下流の円筒内旋回方式の円筒状燃焼室の出口部に、該円筒状燃焼室の内径よりも内接円の直径が大きい延長ダクトが接続され、該延長ダクトの側壁には、空気、燃料、又は空気と燃料の混合気のいずれかを上流の円筒状燃焼室の旋回とは逆方向の旋回を生じる向きに円筒状燃焼室内に流入させる流入口が形成され、上流の円筒内旋回方式の燃焼室で生じた旋回成分を弱めるようにしてなることを特徴とする請求項1〜4何れかに記載の円筒内旋回燃焼器。An extension duct having a diameter of an inscribed circle larger than the inner diameter of the cylindrical combustion chamber is connected to the outlet of the cylindrical combustion chamber of the most downstream cylindrical swirling method. Or an inlet for flowing either the air / fuel mixture into the cylindrical combustion chamber in a direction opposite to that of the upstream cylindrical combustion chamber. The in-cylinder swirl combustor according to any one of claims 1 to 4 , wherein swirl components generated in the combustion chamber are weakened.
JP2002211801A 2002-07-19 2002-07-19 In-cylinder swirl combustor Expired - Lifetime JP3873119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002211801A JP3873119B2 (en) 2002-07-19 2002-07-19 In-cylinder swirl combustor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002211801A JP3873119B2 (en) 2002-07-19 2002-07-19 In-cylinder swirl combustor

Publications (2)

Publication Number Publication Date
JP2004053144A JP2004053144A (en) 2004-02-19
JP3873119B2 true JP3873119B2 (en) 2007-01-24

Family

ID=31934900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002211801A Expired - Lifetime JP3873119B2 (en) 2002-07-19 2002-07-19 In-cylinder swirl combustor

Country Status (1)

Country Link
JP (1) JP3873119B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020003185A (en) * 2018-06-29 2020-01-09 株式会社日本サーモエナー Gas combustion device and vacuum water warmer

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5102963B2 (en) * 2006-03-02 2012-12-19 一般財団法人電力中央研究所 Lean premixed combustor and combustion method
JP5462502B2 (en) * 2009-03-06 2014-04-02 大阪瓦斯株式会社 Tubular flame burner
JP2011075173A (en) * 2009-09-30 2011-04-14 Hitachi Ltd Combustor
JP5749507B2 (en) * 2010-02-05 2015-07-15 大阪瓦斯株式会社 Single-end closed tubular flame burner
KR101301729B1 (en) 2010-08-11 2013-09-09 (주)오선텍 Burner for reformer
JP6846713B2 (en) * 2016-06-06 2021-03-24 東京瓦斯株式会社 Combustor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020003185A (en) * 2018-06-29 2020-01-09 株式会社日本サーモエナー Gas combustion device and vacuum water warmer

Also Published As

Publication number Publication date
JP2004053144A (en) 2004-02-19

Similar Documents

Publication Publication Date Title
JP2713627B2 (en) Gas turbine combustor, gas turbine equipment including the same, and combustion method
US7425127B2 (en) Stagnation point reverse flow combustor
JP4134311B2 (en) Gas turbine combustor
JP5364275B2 (en) Method and system for enabling NOx emissions to be reduced in a combustion system
CA2574091C (en) Stagnation point reverse flow combustor for a combustion system
JP2009052877A (en) Gas turbine premixer with radial multistage flow path, and air-gas mixing method for gas turbine
JPH02309124A (en) Combustor and operating method thereof
JP2009250604A (en) Burner tube premixer and method for mixing air with gas in gas turbine engine
JP2005351616A (en) Burner tube and method for mixing air and gas in gas turbine engine
JP2011002221A (en) A plurality of fuel circuits for synthesis gas/natural gas dry type low nox in premixing nozzle
JP2006145194A (en) Trapped vortex combustor cavity manifold for gas turbine engine
JP2006010193A (en) Gas turbine combustor
JP2001182908A (en) LOW NOx BURNR AND METHOD OF COMBUSTION IN LOW NOx BURNER
JP3873119B2 (en) In-cylinder swirl combustor
JP3817625B2 (en) Burner equipment
JP2006242399A (en) Combustion equipment and combustion method by combustion equipment
JP2005226850A (en) Combustion device
JPH10160163A (en) Nitrogen oxide reduction structure of gas turbine combustor
JP2003074854A (en) Combustion equipment of gas-turbine engine
JP7307441B2 (en) combustor
JP2003279043A (en) LOW NOx COMBUSTOR FOR GAS TURBINE
KR101041466B1 (en) The low NOx gas turbine combustor having the multi-fuel mixing device
JP2004028352A (en) LOW NOx COMBUSTOR COMPRISING FUEL INJECTION VALVE FOR PREVENTING BACKFIRE AND SELF-IGNITION
KR102586498B1 (en) Partial premixed burner for boiler that can prevent flashback of hydrogen fuel
KR102599129B1 (en) Hydrogen Boiler for Flashback Prevention using Partial Premixed Flow Line

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060327

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060327

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060919

R150 Certificate of patent or registration of utility model

Ref document number: 3873119

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term