JP2006010193A - Gas turbine combustor - Google Patents

Gas turbine combustor Download PDF

Info

Publication number
JP2006010193A
JP2006010193A JP2004187355A JP2004187355A JP2006010193A JP 2006010193 A JP2006010193 A JP 2006010193A JP 2004187355 A JP2004187355 A JP 2004187355A JP 2004187355 A JP2004187355 A JP 2004187355A JP 2006010193 A JP2006010193 A JP 2006010193A
Authority
JP
Japan
Prior art keywords
air
fuel
combustor
mixture
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004187355A
Other languages
Japanese (ja)
Other versions
JP4670035B2 (en
Inventor
Shigeru Hayashi
茂 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aerospace Exploration Agency JAXA
Original Assignee
Japan Aerospace Exploration Agency JAXA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aerospace Exploration Agency JAXA filed Critical Japan Aerospace Exploration Agency JAXA
Priority to JP2004187355A priority Critical patent/JP4670035B2/en
Publication of JP2006010193A publication Critical patent/JP2006010193A/en
Application granted granted Critical
Publication of JP4670035B2 publication Critical patent/JP4670035B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas turbine combustor for reducing discharge of a toxic component over a wide range, superior in combustion stability, superior in uniformity of the gas temperature distribution of a combustor outlet, having the short length, and having a large spatial combustion load. <P>SOLUTION: An air-fuel mixture injector 57 injects a fuel-air mixture into a burnt gas flow generated in an upstream combustion area and flowing toward the downstream side, and is composed of a fuel injector 62, an air swirling means and an air-fuel mixture injection pipe 61, and is installed from the outside on a wall surface of a combustor casing 52. An injection opening of the air-fuel mixture injection pipe 61 is positioned in the vicinity of a wall surface opening of a combustor liner 51. Since the fuel-air mixture is injected so as to cross with burnt gas and is applied with swirling, mixing with the burnt gas is promoted, and generation of NOx by combustion is effectively restrained, and combustion is completed in a short time. Uniformity of the temperature distribution of the combustor outlet is improved, and the service life of a turbine part is lengthened. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高温燃焼ガス発生用燃焼器に関するもので、特に、ジェットエンジンや産業用ガスタービンの燃焼器(以下、ガスタービン燃焼器という)に関するもので、さらには、低負荷から定格負荷を含む高負荷にいたる広い作動範囲にわたって良好な燃焼・排出性能を可能にするガスタービン燃焼器に関する。   The present invention relates to a combustor for generating high-temperature combustion gas, and particularly to a combustor for a jet engine or an industrial gas turbine (hereinafter referred to as a gas turbine combustor), and further includes a rated load from a low load. The present invention relates to a gas turbine combustor that enables good combustion and emission performance over a wide operating range up to a high load.

ガスタービンの燃焼器として燃焼領域が単一の燃焼器が、従来から広く使用されてきているが、負荷の増減、すなわち燃料流量の増減に対応して燃焼領域の燃料空気比が変化するために、燃料流量の少ない低負荷時には燃焼温度が相対的に低く、したがって、未燃焼成分の発生が多く、一方、燃料流量の多い高負荷時には燃焼温度が高く、したがって、NOxの排出が多いという欠点がある。そのため、高負荷時におけるNOx排出を抑制するために高負荷時に燃焼領域が燃料希薄になるように燃焼室の空気配分を設計すると、低負荷時には燃焼領域の燃料濃度が薄すぎて未燃焼成分の排出が急増しやすく、特に予混合燃焼では混合気の濃度が希薄側燃焼限界以下となって点火が不確実になるという問題がある。燃料流量の増減に合わせて燃焼領域に流入する空気流量を制御する機構、たとえば空気流量バルブの採用によって上記の問題は一部解決されるが、それだけでは広い負荷範囲にわたって希薄予混合燃焼の潜在的低NOx性能を十分引き出すことが難しい。そのため、燃焼領域が単一の燃焼器では、最近の厳しいNOx規制に適合するガスタービンは実現できない。   A combustor with a single combustion region has been widely used as a combustor of a gas turbine, but the fuel-air ratio in the combustion region changes in response to increase or decrease in load, that is, increase or decrease in fuel flow rate. However, the combustion temperature is relatively low at a low load with a low fuel flow rate, and therefore, a large amount of unburned components are generated. On the other hand, the combustion temperature is high at a high load with a high fuel flow rate, and therefore there is a disadvantage that NOx emissions are large. is there. Therefore, if the combustion chamber air distribution is designed so that the combustion area becomes lean at high loads in order to suppress NOx emissions at high loads, the fuel concentration in the combustion areas is too thin at low loads and the unburned components Emissions are likely to increase rapidly. In particular, premixed combustion has a problem that the concentration of the air-fuel mixture becomes lower than the lean combustion limit and ignition is uncertain. Although the above problem is partially solved by adopting a mechanism for controlling the flow rate of air flowing into the combustion region in accordance with the increase or decrease of the fuel flow rate, for example, an air flow rate valve, it alone has the potential of lean premixed combustion over a wide load range. It is difficult to achieve low NOx performance sufficiently. Therefore, a gas turbine that complies with recent strict NOx regulations cannot be realized with a combustor having a single combustion region.

単一燃焼領域燃焼器に共通する上記の問題を回避するために、複数の燃焼領域(あるいはバーナ)を設け、負荷の増大に合わせて燃料を供給する燃焼領域の数、あるいはバーナの本数を増加させていく方法が実用になっている。この方式は燃料ステージングとよばれる。複数のバーナヘの燃料流量制御は、古くから確立された技術で、汎用制御機器が入手でき、低コストで信頼性も高い。   In order to avoid the above-mentioned problems common to a single combustion zone combustor, multiple combustion zones (or burners) are provided, and the number of combustion zones or the number of burners that supply fuel as the load increases is increased. The method of letting it go is practical. This method is called fuel staging. The fuel flow control for a plurality of burners is a technology that has been established for a long time, and general-purpose control equipment is available, which is low in cost and highly reliable.

その代表的な従来例を図11に例示する。このガスタービン燃焼器3において、円筒形の燃焼器ケーシング52の内部に収納された円筒形の燃焼器ライナ51で形成される燃焼室53のドーム部53aに、始動時から最大負荷までの全作動条件で作動するパイロットバーナ11を備えたパイロット燃焼領域11aと複数のメインバーナ12を配列し、負荷の大小に応じて作動する本数を増減させるメイン燃焼領域12aとを備えている。パイロット、メインの両燃焼領域が並列的に並べられていることからパラレルステージングと呼ばれる。いずれの燃焼領域にも空気、あるいは空気と燃料との混合気が流入する。パイロットバーナ11は、始動時の点火を確実にし、低負荷時における未燃焼成分の排出を抑制し、且つメインバーナヘの燃料流量が急に絞られるガスタービンの負荷遮断時においてもメインバーナ12が失火しないようにするという役割を持っている。メイン燃焼領域12aにおいては、負荷の増加に対して新たなメインバーナに燃料が供給され、その流量はその設計流量まで増やされ、さらには次のメインバーナに燃料が供給されるというように運転される。メインバーナのうち非作動のものからは空気が流出し、この空気は隣接する作動中のメインバーナの火炎を冷却するため、それが過度の場合には未燃焼成分の発生が増大するという問題がある。この問題を回避するため、それぞれの燃焼領域、それぞれのメインバーナは、火移りが可能な範囲でできるだけ離して配置するとか、隔壁で隔てるといった設計が行われることが多い。上記の問題は、メインバーナの本数が多ければ燃焼器全体としての排出特性への影響は小さくなるものの、単一燃焼領域の場合の本質的問題から完全に免れることはできない。   A typical conventional example is illustrated in FIG. In this gas turbine combustor 3, the dome portion 53 a of the combustion chamber 53 formed by the cylindrical combustor liner 51 housed in the cylindrical combustor casing 52 is fully operated from the start to the maximum load. A pilot combustion region 11a having a pilot burner 11 that operates under conditions and a plurality of main burners 12 are arranged, and a main combustion region 12a that increases or decreases the number of operation depending on the magnitude of the load. This is called parallel staging because the pilot and main combustion regions are arranged in parallel. Air or a mixture of air and fuel flows into any combustion region. The pilot burner 11 ensures ignition at start-up, suppresses discharge of unburned components at low loads, and the main burner 12 does not misfire even when the load of the gas turbine in which the fuel flow to the main burner is suddenly reduced. Has the role of In the main combustion region 12a, fuel is supplied to a new main burner in response to an increase in load, the flow rate is increased to the designed flow rate, and further, fuel is supplied to the next main burner. The Air flows out of the non-operating main burner, and this air cools the flame of the adjacent main burner in operation, and if it is excessive, the generation of unburned components increases. is there. In order to avoid this problem, each combustion region and each main burner are often designed to be arranged as far apart as possible within a possible range of fire transfer or separated by a partition wall. The above problem cannot be completely avoided from the essential problem in the case of a single combustion region, although the influence on the emission characteristics of the entire combustor becomes small if the number of main burners is large.

上記のパラレルステージングと対照的な燃焼領域の配置として、燃焼室内に複数の燃焼領域を流れの方向(すなわち燃焼器の軸方向)に配列するアキシャル(軸方向という意味)ステージングがある。負荷の増大には、上流の燃焼領域からの既燃ガスが流れ込む下流側の燃焼領域に燃料、あるいは混合気を供給し、その流量を増加させることにより負荷の増大に対応する。下流で供給される燃料や燃料空気混合気は、上流の燃焼領域からの高温でしかも反応活性物質を多量に含んだ既燃ガス中に噴射されるために、通常は点火すらできないほど超希薄混合気でも反応させることができる。また、既燃ガス中の酸素濃度が空気よりもかなり低い場合にはNOxの生成も抑制される。このような特徴を活用することができれば、燃料が空気中に噴射される前記のパラレルステージングよりも優れたガスタービン燃焼器を実現できる可能性が高い。   As an arrangement of the combustion regions in contrast to the parallel staging described above, there is axial (meaning axial direction) staging in which a plurality of combustion regions are arranged in the flow direction (that is, the axial direction of the combustor) in the combustion chamber. The increase in the load corresponds to the increase in the load by supplying fuel or an air-fuel mixture to the downstream combustion region where the burned gas from the upstream combustion region flows and increasing the flow rate thereof. The fuel or fuel-air mixture supplied downstream is injected into the burned gas at a high temperature from the upstream combustion zone and containing a large amount of reaction-active substances. You can react even if you feel like it. Further, when the oxygen concentration in the burned gas is considerably lower than that of air, the generation of NOx is also suppressed. If such a feature can be utilized, there is a high possibility that a gas turbine combustor superior to the parallel staging in which fuel is injected into the air can be realized.

図12は、アキシャルステージングの特徴を最大限利用するように設計された従来例の燃焼器を示す縦断面図である(特許文献1参照)。このガスタービン燃焼器4では、パイロットバーナ11はエンジン始動時から常に作動し、所定の負荷以上での運転時にはパイロット燃焼領域11aの下流のメイン燃焼領域において、パイロットバーナ11による既燃ガス塊13に向けて、燃焼室53内にぼぼ軸方向に配設されたメイン予混合気噴射管14からメイン予混合気15が噴射される。所定の負荷以下での運転時には、メイン予混合気噴射管14には燃料が供給されず、空気だけが噴出し、パイロット燃焼領域11aからの既燃ガスと混合する。負荷の増減はメイン予混合気噴射管14への燃料噴射量を増減することにより行うことができる。適切な設計を行えば、無負荷から定格までのほぼ全範囲を超低NOx排出で運転できることが実証されている。重要なことは、パイロットバーナは完全燃焼で作動し、メイン予混合気噴射管からの予混合気は単独では火炎を保持できないようにし、高温の既燃ガスと混合することによってはじめて反応あるいは燃焼するように設計することである。高温で反応活性物質を大量に含んだ既燃ガスと混合することによって、点火すらできないような極めて燃料希薄な混合気も適切な滞留時間を与えればぼぼ完全に反応させることができ、低負荷側でも燃焼効率を高く維持できる。もちろん、このメイン予混合気は希薄であるので、その燃焼によってNOxは増加しない。   FIG. 12 is a longitudinal sectional view showing a conventional combustor designed to make maximum use of the characteristics of axial staging (see Patent Document 1). In this gas turbine combustor 4, the pilot burner 11 always operates from the time of starting the engine, and when operating at a predetermined load or higher, in the main combustion region downstream of the pilot combustion region 11 a, the burned gas mass 13 by the pilot burner 11 is formed. On the other hand, the main premixed gas 15 is injected from the main premixed gas injection pipe 14 disposed in the combustion chamber 53 in the axial direction. During operation at a predetermined load or lower, fuel is not supplied to the main premixed gas injection pipe 14, but only air is ejected and mixed with burned gas from the pilot combustion region 11a. The load can be increased or decreased by increasing or decreasing the fuel injection amount to the main premixed gas injection pipe 14. With proper design, it has been demonstrated that almost the entire range from no load to rating can be operated with ultra-low NOx emissions. The important thing is that the pilot burner operates with complete combustion, so that the premixed gas from the main premixed gas injection tube cannot hold the flame by itself, and only reacts or burns when mixed with hot burned gas Is to design. By mixing it with burned gas containing a large amount of reactive substances at high temperatures, even a very fuel-lean mixture that cannot even be ignited can be reacted almost completely with an appropriate residence time. But the combustion efficiency can be kept high. Of course, since this main premixed gas is lean, NOx does not increase by the combustion.

また、アキシャルステージングの範疇に入る他のガスタービンとして、従来、燃料を燃焼器ライナの開口を通して燃焼器ライナ内に噴射する追い焚き燃料ノズルを備えた触媒方式ガスタービン燃焼器が提案されている(特許文献2参照)。この燃焼器は、燃料と空気とを混合して作った予混合気を予熱室で燃焼燃料ガスと混合して作成した予熱予混合気を触媒で燃焼させる触媒燃焼器であるが、圧縮空気の一部を触媒の下流側で内筒(焼器ライナ)内に導入する導入孔から燃料を内筒内に噴射して燃焼させる追い焚き燃料ノズルと、高負荷時にこの追い焚き燃料ノズルを作動させる燃料コントローラを備えている。触媒の耐熱温度よりも高い燃焼燃料ガス温度が必要なガスタービンを実現するための発明である。負荷の低い条件では、燃料は全量空気と予混合され、触媒に導入され、燃焼ガスを発生する。負荷の増大に合わせて予混合される燃料流量が増やされていくと触媒すぐ下流でのガス温度もそれに伴って上昇する。この温度が触媒の耐熱性や耐久性の観点から定められた所定温度に達した時点で、予混合される燃料流量は一定に保たれ、残りの燃料は追い焚き燃料ノズルから噴射される。この追い焚き燃料は、触媒からの高温既燃ガスと接触、混合して燃焼する。噴射された燃料は、導入孔からの空気とも多少は混ざるが、基本的に拡散火災を生じる。特に液体燃料では、噴射されてから蒸発が進むまでに時間が必要なことから燃料粒子が高温ガスと混ざり、蒸発し、燃焼する。既燃ガス中の酸素濃度は触媒での燃焼により消費された分だけ下がっており、そのため追い焚き燃料の燃焼によるNOxの生成は純高温空気中での燃焼に比べ抑制されるという。しかし、噴射される雰囲気が高温の既燃ガスであることに加え、燃料の直接噴射であるため燃料濃度が高い部分を排除することはできないので、NOx量をそれほど増加させずに追い焚きできる燃料割合はそれほど多くない。特許文献2においてもその上限を30%としている。これに対して、特許文献1の技術では、NOx排出増大なしにメイン混合気噴射器から全燃料量の50%〜80%を供給できることが実証されている。NOxの増大を許容したとしても、追い焚き燃料を過度に増やすとスモークや粒子状物質の排出増加となることから、受け入れられない。   As another gas turbine that falls into the category of axial staging, a catalytic gas turbine combustor having a reheating fuel nozzle that injects fuel into the combustor liner through the opening of the combustor liner has been proposed ( Patent Document 2). This combustor is a catalytic combustor that burns a premixed mixture prepared by mixing fuel and air with a combustion fuel gas in a preheating chamber. A refueling fuel nozzle that injects fuel into the inner cylinder from an introduction hole that introduces a part of the catalyst into the inner cylinder (burner liner) on the downstream side of the catalyst, and activates this reheating fuel nozzle at high load It has a fuel controller. It is an invention for realizing a gas turbine that requires a combustion fuel gas temperature higher than the heat resistant temperature of the catalyst. Under low load conditions, the fuel is premixed with air and introduced into the catalyst to generate combustion gases. As the flow rate of the premixed fuel is increased as the load increases, the gas temperature immediately downstream of the catalyst also increases accordingly. When this temperature reaches a predetermined temperature determined from the viewpoint of heat resistance and durability of the catalyst, the premixed fuel flow rate is kept constant, and the remaining fuel is injected from the reheating fuel nozzle. This refueling fuel contacts and mixes with the high-temperature burned gas from the catalyst and burns. The injected fuel is mixed somewhat with the air from the introduction hole, but basically causes a diffusion fire. In particular, in the case of liquid fuel, since it takes time until the evaporation proceeds after being injected, the fuel particles mix with the hot gas, evaporate and burn. It is said that the oxygen concentration in the burned gas is lowered by the amount consumed by the combustion with the catalyst, so that the generation of NOx due to the combustion of the reheating fuel is suppressed compared to the combustion in pure high-temperature air. However, in addition to the high-temperature burned gas being injected, it is not possible to exclude the high fuel concentration because the fuel is directly injected, so the fuel that can be replenished without increasing the amount of NOx so much The ratio is not so high. Also in Patent Document 2, the upper limit is set to 30%. On the other hand, in the technique of Patent Document 1, it has been demonstrated that 50% to 80% of the total fuel amount can be supplied from the main mixture injector without increasing NOx emission. Even if the increase in NOx is allowed, if excessive fuel is increased, smoke and particulate matter emissions will increase, which is not acceptable.

上記のアキシャルステージングの第1の例では、予混合気噴射管はその一部が燃焼室内に挿入されている。そのため予混合器噴射管が加熱され、その内部を流れる空気も予熱される。このことは、燃料が液体燃料の場合には燃料噴霧の蒸発が促進され、より均質な混合気を形成できるので良好な燃焼・排出性能を発揮できるという点で都合がよい。一方、再生サイクルガスタービンのように空気温度が600℃近くにもなる燃焼器においては、空気による予混合管の内部からの冷却効果が減じ、予混合気噴射管の外表面が高温雰囲気に曝されることによる酸化の問題が懸念される。また、この予混合噴射管は燃焼器ライナに装着されているので、その点検の際には燃焼器ケーシングを開けて燃焼器ライナを取り出す必要がある。   In the first example of the axial staging described above, a part of the premixed gas injection pipe is inserted into the combustion chamber. Therefore, the premixer injection pipe is heated, and the air flowing through the premixer injection pipe is also preheated. This is advantageous in that when the fuel is a liquid fuel, the evaporation of the fuel spray is promoted and a more homogeneous air-fuel mixture can be formed, so that good combustion / discharge performance can be exhibited. On the other hand, in a combustor such as a regenerative cycle gas turbine where the air temperature is close to 600 ° C., the cooling effect from the inside of the premixing tube by air is reduced, and the outer surface of the premixed gas injection tube is exposed to a high temperature atmosphere. There is concern about oxidation problems. Further, since the premixed injection pipe is mounted on the combustor liner, it is necessary to open the combustor casing and take out the combustor liner when inspecting.

一方、前記のような追い焚き燃料ノズル方式では、噴射された燃料と燃焼器ライナの空気孔から流入する空気との混合は、遅く、既燃ガス中に噴射された後も局所的には燃料過多の状態で燃焼する部分が必然的にできる。平均としての燃料空気比が大きいほど局所的な燃料過多な混合気塊ができやすいので、NOxの発生が増加し、条件によってはすすが発生することもある。さらに燃料が増えると、追い焚きノズルからの燃料噴流はそれ自体で拡散火炎を保持するようになり、NOxが急増するという問題がある。そのため、排出性能を犠牲にせずに追い焚きできる燃料流量の最大は定格負荷時の全燃料流量の10%程度であり、前記第1の従来技術による50〜80%程度に比べかなり狭い。加えて、燃料と空気とを燃焼室内の既燃ガス中に噴射するまえに混合しない追い焚き燃料ノズル方式では、既燃ガスとの混合にも時間がかかり、燃焼器出口における局所的な燃料過多は高温スポットの発生につながり、特に燃焼器出口が即タービン入ロとなっている環状燃焼器ではタービンノズル等のタービン部品の寿命が短くなるという問題がある。追い焚き燃料噴射位置からタービン入口までの距離を十分とればこの問題は緩和されるが、このような対策は軽量化が必須な航空エンジンでは許容されない。燃焼器ライナの長さ増は、それ自体の重量増加に止まらず、エンジンの回転軸、ケーシングなど関連する部分の長さ増による重量増となり、結局、燃料消費量の増大となる。さらに、製造コスト、部品価格上昇による保守コスト増となる。
特開2003−262336号公報(図1及び段落[0035]参照) 特開2003−3865号公報
On the other hand, in the refueling fuel nozzle system as described above, the mixing of the injected fuel and the air flowing in from the air holes of the combustor liner is slow, and the fuel locally locally after being injected into the burned gas. The part which burns in an excessive state is inevitably formed. The larger the average fuel-air ratio, the easier it is to create a mixture with a large amount of local fuel, so the generation of NOx increases, and soot may be generated depending on the conditions. When the fuel is further increased, the fuel jet from the refueling nozzle itself holds the diffusion flame, and there is a problem that NOx increases rapidly. Therefore, the maximum fuel flow rate that can be repelled without sacrificing the discharge performance is about 10% of the total fuel flow rate at the rated load, which is considerably narrower than about 50 to 80% according to the first prior art. In addition, the refueling fuel nozzle system, in which fuel and air are not mixed before being injected into the burned gas in the combustion chamber, also takes time to mix with the burned gas, resulting in excessive local fuel at the combustor outlet. This leads to the generation of a high temperature spot, and in particular, in an annular combustor in which the combustor outlet immediately becomes a turbine inlet, there is a problem that the life of turbine parts such as a turbine nozzle is shortened. This problem can be alleviated if the distance from the fuel injection position to the turbine inlet is sufficient, but such measures are not allowed in aero engines where weight reduction is essential. The increase in the length of the combustor liner does not stop at an increase in the weight of the combustor liner, but an increase in the weight due to an increase in the length of related parts such as the rotating shaft of the engine and the casing, resulting in an increase in fuel consumption. In addition, maintenance costs increase due to increased manufacturing costs and component prices.
JP 2003-262336 A (see FIG. 1 and paragraph [0035]) JP 2003-3865 A

より広い負荷範囲においてNOxや未燃焼成分(CO、炭化水素)やスモークの排出を低減することを目的として、燃焼室内において複数の燃焼領域を流れ方向に配列したアキシャルステージング方式のガスタービン燃焼器において、下流側の燃焼領域に供給される燃料の燃焼によるNOxの発生増大をより広い負荷範囲(あるいは燃料空気比範囲)にわたって抑制し、燃焼器出口ガス温度分布の一様性を改善し、燃焼器の短縮化を進める上で解決すべき課題がある。また、燃焼室内に突き出た混合気噴射管の耐久性の改善や点検性の向上をはかる上で解決すべき課題がある。   In an axial staging type gas turbine combustor in which a plurality of combustion regions are arranged in the flow direction in a combustion chamber for the purpose of reducing emissions of NOx, unburned components (CO, hydrocarbons) and smoke in a wider load range. , The increase in the generation of NOx due to the combustion of the fuel supplied to the downstream combustion region is suppressed over a wider load range (or fuel-air ratio range), the uniformity of the combustor outlet gas temperature distribution is improved, and the combustor There is a problem to be solved in advancing the shortening. In addition, there is a problem to be solved in order to improve the durability and checkability of the air-fuel mixture injection pipe protruding into the combustion chamber.

本発明の目的は、より広い負荷範囲にわたって有害成分、特にNOxの排出が少なく、燃焼安定性に優れ、しかも燃焼器出口ガス温度分布の一様性に優れ、長さの短い空間燃焼負荷の大きいガスタービン燃焼器を提供することである。   It is an object of the present invention to reduce emission of harmful components, particularly NOx, over a wider load range, to have excellent combustion stability, to have excellent uniformity in the temperature distribution of the combustor outlet gas, and to have a short spatial combustion load. A gas turbine combustor is provided.

この発明は上記の課題を解決するためになされたもので、本発明によるガスタービン燃焼器は、燃焼器ライナで囲まれた燃焼室において上流の燃焼領域で生成され下流に向けて流れる既燃ガス流に燃料空気混合気が噴射されるガスタービン燃焼器において、燃焼器ケーシングの壁面に混合気噴射器が外側から取り付けられ、該混合気噴射器は燃料噴射器と空気旋回手段と混合気噴射管とで構成され、該混合気噴射管の先端の噴射開口は前記燃焼器ライナの壁面に配設されたライナ開口の近傍に位置し、前記燃料空気混合気は前記噴射開口から前記ライナ開口を通して前記既燃ガスの流れに交差するように噴射されることを特徴とする。   The present invention has been made to solve the above problems, and a gas turbine combustor according to the present invention is a burned gas generated in an upstream combustion region and flowing toward a downstream in a combustion chamber surrounded by a combustor liner. In a gas turbine combustor in which a fuel-air mixture is injected into a flow, an air-fuel mixture injector is attached to the wall of a combustor casing from the outside, and the air-fuel mixture injector includes a fuel injector, air swirling means, and an air-fuel mixture injection pipe An injection opening at the tip of the air-fuel mixture injection pipe is positioned in the vicinity of a liner opening disposed on the wall surface of the combustor liner, and the fuel-air mixture is passed through the liner opening from the injection opening. It is characterized by being injected so as to intersect the flow of burned gas.

既燃ガスは高温で、しかも反応活性物質を多量に含んでいるので、非常に燃料希薄な混合気でも、既燃ガスと混合させ適当な時間を与えれば反応させることができる。また、燃料希薄であるかぎりNOx生成は少ないので、低NOx排出のもとに高い燃焼効率、すなわちCO、HCの少ない燃焼が可能になる。燃料空気混合気は、既燃ガスに対して交差するように噴射されるので、混合が容易に行われる。また、混合気噴射器には燃料が混合される空気に旋回をあたえる手段、すなわち空気旋回手段を備えているので、燃料と空気の混合を促進することができ、燃料だけを噴射する追い焚きノズルによるよりも広い燃料・空気比範囲で低NOxを維持できる。さらに、燃料空気混合気の噴流には旋回が与えられているので、既燃ガスとの混合が促進され、短時間、すなわち短距離で燃焼(上記の超希薄条件での炎を伴わない反応も含む)が完了することから、燃焼器出口ガス温度分布の一様性において優れる。噴射された燃料と空気との混合が早く、燃料希薄な状態にできるので、混合気噴射管からの混合気で自立する火炎が形成されることはなく、高温既燃ガスと接触あるいは混合して初めて反応あるいは燃焼するので、燃料だけを噴射する前述の追い焚きノズルよりNOxやすすの発生は少ない。混合気噴射器は、ケーシングの壁面の穴を通して外部から取り付けられており、その混合気噴射管は従来の予混合管と異なり、燃焼器ライナに固定されていないので、燃焼器ライナを取り出さずに取り外すことができ、容易に点検することができる。また、この混合気噴射管は、その先端も燃焼室内の既燃ガスに曝されないので耐久性がある。   Since the burnt gas is high in temperature and contains a large amount of reaction active substances, even a very fuel-lean mixture can be reacted with the burnt gas by mixing it with the burned gas for a suitable time. Further, since NOx production is small as long as the fuel is lean, high combustion efficiency, that is, combustion with less CO and HC is possible with low NOx emission. Since the fuel-air mixture is injected so as to intersect the burned gas, mixing is easily performed. Further, since the air-fuel mixture injector is provided with means for swirling the air into which the fuel is mixed, that is, air swirling means, mixing of the fuel and air can be promoted, and the refueling nozzle that injects only the fuel Low NOx can be maintained over a wider fuel / air ratio range than with. In addition, the jet of the fuel-air mixture is swirled, which facilitates mixing with burned gas and burns in a short time, i.e. in a short distance (reactions that do not involve flames in the above ultra-lean conditions). Is complete, the uniformity of the combustor outlet gas temperature distribution is excellent. The fuel and air injected are mixed quickly and the fuel can be in a lean state, so that a self-supporting flame is not formed by the air-fuel mixture from the air-fuel mixture injection pipe. Since it reacts or burns for the first time, the generation of NOx and soot is less than the above-mentioned refueling nozzle that injects only fuel. The air-fuel mixture injector is mounted from the outside through a hole in the wall of the casing. Unlike the conventional premixing tube, the air-fuel mixture injection pipe is not fixed to the combustor liner, so the combustor liner is not taken out. Can be removed and easily inspected. Further, the air-fuel mixture injection pipe is durable because its tip is not exposed to the burned gas in the combustion chamber.

また、本発明によるガスタービン燃焼器は、その空気旋回手段が混合気噴射管の内部あるいは周囲に配設された複数の旋回羽根で構成される空気旋回器であることを特徴とする。空気旋回器を、予混合管の内部あるいは周囲に配設した複数の旋回羽根で構成することによってコンパクトな混合気噴射器を実現できる。   In addition, the gas turbine combustor according to the present invention is characterized in that the air swirling means is an air swirler composed of a plurality of swirl vanes disposed inside or around the mixture injection pipe. By configuring the air swirler with a plurality of swirl vanes arranged inside or around the premixing tube, a compact air-fuel mixture injector can be realized.

また、本発明によるガスタービン燃焼器は、その空気旋回手段が混合気噴射管の側壁に配設された接線空気流入流路であることを特徴とする。混合気噴射管の側壁を肉厚とし、その側壁に接線空気流入通路を配設すれば、空気はこの通路から混合気噴射管内部に流入し、管内に旋回流れを生じさせることができる。この形態は、低コストで製造でき、強度も大きいという利点がある。   The gas turbine combustor according to the present invention is characterized in that the air swirling means is a tangential air inflow passage disposed on the side wall of the mixture injection pipe. If the side wall of the air-fuel mixture injection pipe is made thick and a tangential air inflow passage is provided on the side wall, air can flow into the air-fuel mixture injection pipe from this passage, and a swirling flow can be generated in the pipe. This form has the advantage that it can be manufactured at low cost and has high strength.

本発明によるガスタービン燃焼器において、接線空気流入流路を側壁に配設した円筒状のロータが前記混合気噴射管の内側に同軸に配設され、前記混合気噴射管の側壁には前記接線空気流入流路に対応した開口が配設され、前記開口の縁には前記接線空気流入流路内に延伸するベーンが配設され、前記ロータの回転により前記接線空気流入流路の有効開口面積を変化させるようにしたことを特徴とする。あるいは、前記噴射管の内部には、前記接線空気流入流路内に延伸するベーンを周囲に配設したスライダが同軸に配設され、前記噴スライダの軸方向移動により前記接線空気流入流路の有効開口面積を変化させるようにしたことを特徴とする。   In the gas turbine combustor according to the present invention, a cylindrical rotor having a tangential air inflow channel disposed on a side wall is coaxially disposed inside the mixture injection pipe, and the tangent is disposed on the side wall of the mixture injection pipe. An opening corresponding to the air inflow passage is disposed, and a vane extending into the tangential air inflow passage is disposed at an edge of the opening, and an effective opening area of the tangential air inflow passage by rotation of the rotor It is characterized in that it is changed. Alternatively, a slider having a vane extending in the tangential air inflow passage is disposed coaxially inside the jet pipe, and the tangential air inflow passage is moved by the axial movement of the jet slider. The effective opening area is changed.

上記のロータ、スライダいずれの形態においても、混合気噴射管に流入する空気の流量を調節することができ、混合気の燃料空気比をより適切に制御できる。燃料流量が少ない場合には、混合気の既燃ガスと混合した際より反応がおきやすいように空気流量を絞り、一方、燃料流量が多い場合には、混合気が既燃ガスと混合した際、過度に高温にならないように空気流量を増大させることが可能となり、いっそう広い燃料空気比範囲で低NOxと完全燃焼を維持できる。また、燃焼器出口温度の一様性を維持できる。   In both the rotor and slider forms, the flow rate of the air flowing into the air-fuel mixture injection pipe can be adjusted, and the fuel-air ratio of the air-fuel mixture can be controlled more appropriately. When the fuel flow rate is low, the air flow rate is throttled so that the reaction is more likely to occur when mixed with the burned gas of the mixture, while when the fuel flow rate is high, the mixture is mixed with the burned gas. The air flow rate can be increased so as not to become excessively high, and low NOx and complete combustion can be maintained in a wider fuel-air ratio range. Moreover, the uniformity of the combustor outlet temperature can be maintained.

本発明によるガスタービン燃焼器において、前記混合気噴射管の先端の外周と前記燃焼器ライナ開口の縁との間には空気の流入する隙間が設けられていることを特徴とする。このようにすることによって、混合気噴射管の先端部においてはその外表面に沿って高速の空気が流れるようにでき、混合気噴射管内に火炎が形成されるのを防止することができる。また、燃焼器ライナ内の火炎や高温既燃ガスからの放射により混合気噴射管の先端部が加熱されることも防止できる。また、隙間を設けることによって、燃焼器ライナの熱伸びによるライナ開口の変位を吸収できる。通常、接触する部品は空気力や熱などに起因する相互の力学的干渉によって磨耗が起きるが、本発明による混合気噴射管はライナ開口の縁に接触していないので、長期間にわたって初期の形状を維持できる。   In the gas turbine combustor according to the present invention, a gap through which air flows is provided between the outer periphery of the tip of the mixture injection pipe and the edge of the opening of the combustor liner. By doing so, high-speed air can flow along the outer surface of the front end portion of the air-fuel mixture injection tube, and it is possible to prevent a flame from being formed in the air-fuel mixture injection tube. In addition, it is possible to prevent the tip of the air-fuel mixture injection pipe from being heated by radiation from a flame in the combustor liner or high-temperature burned gas. Further, by providing the gap, the displacement of the liner opening due to the thermal elongation of the combustor liner can be absorbed. Normally, the parts to be contacted are worn by mutual mechanical interference caused by aerodynamic force, heat, etc., but since the air-fuel mixture injection pipe according to the present invention is not in contact with the edge of the liner opening, the initial shape over a long period of time. Can be maintained.

本発明によれば、燃焼器ライナで囲まれた燃焼室において上流の燃焼領域から下流に向けて流れる既燃ガス流に燃料空気混合気が噴射されるガスタービン燃焼器において、混合気噴射器を燃焼器ケーシングの壁面に外側から取り付けているので、容易に取り外すことができ、混合気噴射器の保守点検の時間、コスト削減になる。また、燃料噴射器と混合気噴射管との位置関係が一定に維持されるので、その性能が燃焼器ライナのケーシングヘの組み込み公差の影響をほとんど受けないという利点がある。また、燃焼器ライナと混合気噴射管の相対位置が組立や熱伸びによって変化しても、隙間の実効的開口面積はほぼ一定に保たれるという利点がある。混合気噴射管は、その先端も燃焼室内の既燃ガスに曝されないので長期間の使用に耐え、維持費が削減できる。   According to the present invention, in a gas turbine combustor in which a fuel-air mixture is injected into a burned gas flow that flows downstream from an upstream combustion region in a combustion chamber surrounded by a combustor liner, Since it is attached to the wall of the combustor casing from the outside, it can be easily removed, and the time and cost for maintenance and inspection of the air-fuel mixture injector can be reduced. In addition, since the positional relationship between the fuel injector and the air-fuel mixture injection pipe is maintained constant, there is an advantage that its performance is hardly affected by the tolerance of incorporation into the casing of the combustor liner. In addition, there is an advantage that the effective opening area of the gap is kept substantially constant even if the relative position of the combustor liner and the mixture injection pipe changes due to assembly or thermal elongation. Since the air-fuel mixture injection pipe is not exposed to the burned gas in the combustion chamber, it can withstand long-term use and reduce maintenance costs.

また、燃料空気混合気は既燃ガスに対して交差するように噴射されるだけでなく、その噴流には旋回が与えられているので、既燃ガスとの混合が促進され、短時間、すなわち短距離で燃焼(上記の超希薄条件での炎を伴わない反応も含む)が完了することから、燃焼器出口ガス温度分布の一様性に優れ、その結果、夕一ビン部品の寿命が延びるという効果がある。また、燃料は既燃ガス中に噴射されるまでに空気とよく混合するので、噴射燃料の燃焼によるNOxの生成が効果的に抑制され、結果的に広い負荷範囲で低NOxを実現できるという効果がある。   In addition, the fuel-air mixture is not only injected so as to intersect the burned gas, but also the jet is swirled, so that mixing with the burned gas is promoted, and for a short time, that is, Combustion over a short distance (including the reaction that does not involve flames in the above ultra-lean conditions) completes the uniformity of the combustor outlet gas temperature distribution, and as a result, extends the life of the bin parts. There is an effect. Further, since the fuel is well mixed with air before being injected into the burned gas, the production of NOx due to the combustion of the injected fuel is effectively suppressed, and as a result, low NOx can be realized over a wide load range. There is.

また、本発明によるガスタービン燃焼器は、その空気旋回手段が混合気噴射管の内部あるいは周囲に配設された複数の旋回羽根で構成される空気旋回器、あるいは混合気噴射管の側壁に配設された接線空気流入流路であるのでコンパクトである。そのため、燃焼器ライナと燃焼器ケーシングとの隙間が狭い場合にも適用できる。また、既存の燃焼器にも比較的少ない追加作業で適用でき、低コストで排出基準に適応する燃焼器を実現できる。   In addition, the gas turbine combustor according to the present invention has an air swirler configured of a plurality of swirl blades disposed inside or around the mixture injection pipe, or disposed on the side wall of the mixture injection pipe. Since it is a tangential air inflow channel provided, it is compact. Therefore, the present invention can also be applied when the gap between the combustor liner and the combustor casing is narrow. Moreover, it can be applied to existing combustors with relatively little additional work, and a combustor that meets emission standards can be realized at low cost.

本発明による旋回空気流量調整が可能なロータあるいはスライダを用いた混合気噴射器によれば、混合気噴射管に流入する空気の流量を調節することができ、混合気の燃料空気比をより適切に制御できる。燃料流量が少ない場合には、混合気が既燃ガスと混合した際、より反応が起きやすいように空気流量を絞り、一方、燃料流量が多い場合には、混合気が既燃ガスと混合した際、過度に高温にならないように空気流量を増大させることが可能となり、いっそう広い燃料空気比範囲で低NOxと完全燃焼を維持でき、燃焼器出口温度の一様性を維持できる。   According to the air-fuel mixture injector using the rotor or slider capable of adjusting the swirling air flow rate according to the present invention, the flow rate of the air flowing into the air-fuel mixture injection pipe can be adjusted, and the fuel-air ratio of the air-fuel mixture can be adjusted more appropriately. Can be controlled. When the fuel flow is low, the air flow is throttled so that the reaction is more likely to occur when the mixture is mixed with burned gas, while when the fuel flow is high, the mixture is mixed with burned gas. In this case, it is possible to increase the air flow rate so as not to become excessively high temperature, maintain low NOx and complete combustion in a wider range of fuel air ratio, and maintain uniformity of the combustor outlet temperature.

図1は、本発明によるガスタービン燃焼器の第1実施例を示す縦断面図である。図1に示すガスタービン燃焼器1においては、図11に示す従来のパラレルステージング方式のガスタービン燃焼器3、及び図12に示す従来のパラレルステージング方式のガスタービン燃焼器4と同等の機能を奏する構成要素及び部位には、同じ符号を付している。このガスタービン燃焼器は小型産業用ガスタービンに広く用いられている形態で、筒形の燃焼器ライナ51は筒形の燃焼器ケーシング52に収納され、燃焼室53のドーム部53aには燃料噴射器54と空気旋回器55からなるバーナ58が装着されている。燃料噴射器54からの燃料は燃焼室のドーム部53aにおいて空気旋回器55からの空気によって燃焼し、既燃ガスを発生する。便宜上、この燃焼領域を第1燃焼領域56と呼ぶことにする。この第1燃焼領域56よりも下流位置において、第1燃焼領域56からの既燃ガス中に燃料空気混合気を噴射するための混合気噴射器57が燃焼器ケーシング52の壁に取り付けられている。この例では、軸方向の異なる2断面にそれぞれ2本ずつ、対向して配置されている。混合気の噴射方向は、この例では既燃ガスの流れにほぼ垂直になっているが、上流側に傾斜させるのが好ましい場合もある。これらの混合気噴射器57は、燃焼器ケーシング52の外から取り外すことができる。混合気噴射管61の先端61eは燃焼器ライナ51のライナ開口51cに近接して位置し、この混合気噴射管開口出口から噴射される混合気は第1燃焼領域56で発生した既燃ガスの流れと混合し、混合気の濃度や混合後の温度などの条件によって反応あるいは燃焼する。噴射される予混合気の反応あるいは燃焼によるNOxの生成は、混合気が通常の温度条件での可燃限界よりも希薄であれば無視できる程であるので、燃焼器からのNOx排出量は、上流のバーナ58によるNOxの生成量によってほぼ決まる。したがって、バーナ58をNOx等有害成分の排出の少ない予混合方式とすれば、NOxの排出は大幅に減少する。   FIG. 1 is a longitudinal sectional view showing a first embodiment of a gas turbine combustor according to the present invention. The gas turbine combustor 1 shown in FIG. 1 has the same functions as the conventional parallel staging gas turbine combustor 3 shown in FIG. 11 and the conventional parallel staging gas turbine combustor 4 shown in FIG. Components and parts are denoted by the same reference numerals. This gas turbine combustor is widely used in small industrial gas turbines. A cylindrical combustor liner 51 is housed in a cylindrical combustor casing 52 and fuel injection is performed on a dome 53a of the combustion chamber 53. A burner 58 consisting of a vessel 54 and an air swirler 55 is mounted. The fuel from the fuel injector 54 is burned by the air from the air swirler 55 in the dome portion 53a of the combustion chamber, and burned gas is generated. For convenience, this combustion region will be referred to as the first combustion region 56. An air-fuel mixture injector 57 for injecting a fuel-air mixture into the burned gas from the first combustion region 56 is attached to the wall of the combustor casing 52 at a position downstream of the first combustion region 56. . In this example, two are arranged facing each other on two cross sections having different axial directions. In this example, the injection direction of the air-fuel mixture is substantially perpendicular to the flow of burned gas, but it may be preferable to incline upstream. These air-fuel mixture injectors 57 can be removed from the outside of the combustor casing 52. The front end 61 e of the mixture injection pipe 61 is positioned in the vicinity of the liner opening 51 c of the combustor liner 51, and the mixture injected from the mixture injection pipe opening outlet is the burned gas generated in the first combustion region 56. It mixes with the flow and reacts or burns depending on conditions such as the concentration of the mixture and the temperature after mixing. Since the reaction of the injected premixed gas or the generation of NOx due to combustion is negligible if the mixed gas is leaner than the flammability limit under normal temperature conditions, the amount of NOx emitted from the combustor is upstream. The amount of NOx produced by the burner 58 is almost determined. Therefore, if the burner 58 is a premixing system that emits less harmful components such as NOx, NOx emissions are significantly reduced.

図2は、本発明によるガスタービン燃焼器の第2実施例を示す縦断面図である。図3は横断面図である。図2に示すガスタービン燃焼器2においては、図11に示す従来のパラレルステージング方式のガスタービン燃焼器3、及び図12に示す従来のパラレルステージング方式のガスタービン燃焼器4と同等の機能を奏する構成要素及び部位には、同じ符号を付している。このガスタービン燃焼器はジェットエンジン、すなわち航空用ガスタービンに広く用いられている形態で、内側燃焼器ライナ51aと外側燃焼器ライナ51bとで形成される環状燃焼室53が、筒形燃焼器ケーシング52内に収納されている。燃焼室53のドーム部53aには燃料噴射器54と空気旋回器55とで構成されるバーナ58が周方向に十数個配列されている。これらのバーナ58による燃焼はほぼドーム部53aで完結する。バーナ58は、NOx等有害成分の排出の少ない予混合方式でもよい。便宜上、この燃焼領域を第1燃焼領域56と呼ぶことにする。この第1燃焼領域56よりも下流位置に燃料空気混合気を噴射するための混合気噴射器57が燃焼器ケーシング52の壁面に取り付けられている。この例ではドームに配設されたバーナ58と同じ周方向位置に混合気噴射器57が配設されているが、図4の別の横断面図に示されているように、隣接するバーナとバーナの間に配設することもできる。また、第1実施例のように、下流方向に2列、あるいはそれ以上の列に配列することもできる。独立して燃料流量制御を行う燃焼領域の数を増やすほどより広い負荷範囲にわたって良好な排出性能を実現できる。   FIG. 2 is a longitudinal sectional view showing a second embodiment of the gas turbine combustor according to the present invention. FIG. 3 is a cross-sectional view. The gas turbine combustor 2 shown in FIG. 2 has the same functions as the conventional parallel staging gas turbine combustor 3 shown in FIG. 11 and the conventional parallel staging gas turbine combustor 4 shown in FIG. Components and parts are denoted by the same reference numerals. The gas turbine combustor is widely used in jet engines, that is, aviation gas turbines, and an annular combustion chamber 53 formed by an inner combustor liner 51a and an outer combustor liner 51b is a cylindrical combustor casing. 52. In the dome portion 53 a of the combustion chamber 53, dozens of burners 58 including a fuel injector 54 and an air swirler 55 are arranged in the circumferential direction. Combustion by these burners 58 is almost completed at the dome portion 53a. The burner 58 may be a premixing system that emits less harmful components such as NOx. For convenience, this combustion region will be referred to as the first combustion region 56. An air-fuel mixture injector 57 for injecting the fuel-air mixture to a position downstream of the first combustion region 56 is attached to the wall surface of the combustor casing 52. In this example, an air-fuel mixture injector 57 is disposed at the same circumferential position as the burner 58 disposed in the dome. However, as shown in another cross-sectional view of FIG. It can also be arranged between the burners. Further, as in the first embodiment, they can be arranged in two rows or more in the downstream direction. As the number of combustion regions in which fuel flow control is independently performed is increased, better discharge performance can be realized over a wider load range.

図5(a)は、図1に示した本発明の第1実施例及び、図2に示した第2実施例の燃焼器に取り付けられている混合気噴射器57の縦断面図の拡大図であり、図5(b)は同図(a)におけるA−A断面図である。混合気噴射管61は円筒状で、その側壁61aには接線空気流入通路61bが複数個(図の実施例では6個)周方向に配設され、この接線空気流入通路61bから混合気噴射管61の内部に流入する空気は円筒内壁面61cによって旋回流を形成する。この空気流中に中心軸上に配設された燃料噴射器62から燃料が噴射される。この燃料は旋回する空気と混合し、混合気噴射管出口61dから燃焼室内に、既燃ガス56aの流れに交差するように噴射される。燃料は気体のほか、液体燃料でもよく、液体燃料の場合には燃料噴射器として液体微粒化ノズルが使用される。混合気噴射管の先端61eの外周と燃焼器ライナ開口51cの縁との間には適当な隙間63が形成されており、空気がその隙間63から燃焼室内に流入する。この隙間63は熱伸びによる変位を吸収するのにも有効である。また、燃焼器ライナと混合気噴射管の相対位置が組立や熱伸びによって変化しても、隙間63の実効的開口面積はほぼ一定に保たれるという利点がある。この混合気噴射器57は燃焼器ケーシング52へ壁面に外部からボルトで固定されており、外部に抜き出すことができる。混合気噴射管61は先細の円管でもよい。燃料噴射器は空気噴射管に一体に取り付けられているので両者の位置関係は高い精度で一定に維持される。   FIG. 5A is an enlarged view of a longitudinal sectional view of the air-fuel mixture injector 57 attached to the combustor of the first embodiment of the present invention shown in FIG. 1 and the second embodiment shown in FIG. FIG. 5B is a cross-sectional view taken along line AA in FIG. The air-fuel mixture injection pipe 61 has a cylindrical shape, and a plurality of tangential air inflow passages 61b (six in the embodiment shown in the drawing) are arranged in the circumferential direction on the side wall 61a. The air flowing into the 61 forms a swirling flow by the cylindrical inner wall surface 61c. In this air flow, fuel is injected from a fuel injector 62 disposed on the central axis. This fuel is mixed with the swirling air and injected from the mixture injection pipe outlet 61d into the combustion chamber so as to intersect the flow of the burned gas 56a. The fuel may be liquid as well as gas. In the case of liquid fuel, a liquid atomizing nozzle is used as a fuel injector. A suitable gap 63 is formed between the outer periphery of the tip 61e of the mixture injection pipe and the edge of the combustor liner opening 51c, and air flows into the combustion chamber from the gap 63. This gap 63 is also effective in absorbing displacement due to thermal elongation. Further, there is an advantage that the effective opening area of the gap 63 is kept substantially constant even if the relative position of the combustor liner and the mixture injection pipe changes due to assembly or thermal elongation. The air-fuel mixture injector 57 is fixed to the wall surface of the combustor casing 52 with a bolt from the outside, and can be extracted outside. The air-fuel mixture injection pipe 61 may be a tapered circular pipe. Since the fuel injector is integrally attached to the air injection pipe, the positional relationship between the two is kept constant with high accuracy.

図6(a)は、本発明の第3実施例のガスタービン燃焼器の混合気噴射器57の周囲を示す縦断面図で、図6(b)は同図(a)における混合気噴射管61のA−A断面図である。空気旋回手段として複数の旋回羽根72で構成される空気旋回器71を混合気噴射管61の内部に配設し、混合気噴射管61の側壁にあけられた開口61fから空気は流入し、前記空気旋回器71によって空気に旋回が与えられ、燃料は燃料噴射器62の先端から旋回空気流中に噴射される。空気旋回器71は燃料噴射器と一体になった複数の旋回羽根で構成されていてもよい。なお、この図では燃料噴射器は棒状の単純なものであるが、それ自体に旋回器を備えた気流微粒化ノズルを使用することもできる。   FIG. 6A is a longitudinal sectional view showing the periphery of an air-fuel mixture injector 57 of a gas turbine combustor according to a third embodiment of the present invention, and FIG. 6B is an air-fuel mixture injection pipe in FIG. It is AA sectional drawing of 61. FIG. An air swirler 71 composed of a plurality of swirling blades 72 as an air swirling means is arranged inside the mixture injection pipe 61, and air flows from an opening 61f formed in a side wall of the mixture injection pipe 61, Air is swirled by the air swirler 71 and fuel is injected into the swirling air stream from the tip of the fuel injector 62. The air swirler 71 may be composed of a plurality of swirl vanes integrated with the fuel injector. In this figure, the fuel injector is a simple rod-like one, but an air atomization nozzle provided with a swirler in itself can also be used.

図7は、本発明の第4実施例のガスタービン燃焼器の混合気噴射57の周囲を示す縦断面図である。空気旋回手段として複数の旋回羽根72で構成される2個の空気旋回器71a、71bを混合気噴射管61の内部に配設している。このようにすると2個の同軸旋回流れ間のせん断が強まり燃料と空気の混合が一層促進される。また、これら2個の空気旋回器71a、71bの旋回方向を互いに逆にすれば、中心部において旋回は弱めあって、中心軸上の負圧の形成が抑制され、管内への逆流を排除できる効果がある。逆流は混合気噴射管内に火災を誘引し、焼損を生じるおそれがあるので排除することが望ましい。   FIG. 7 is a longitudinal sectional view showing the periphery of the mixture injection 57 of the gas turbine combustor according to the fourth embodiment of the present invention. Two air swirlers 71 a and 71 b composed of a plurality of swirl blades 72 are disposed inside the air-fuel mixture injection pipe 61 as air swirling means. This enhances the shear between the two coaxial swirling flows and further promotes the mixing of fuel and air. Further, if the turning directions of the two air swirlers 71a and 71b are reversed, the swirling is weakened in the central portion, the formation of negative pressure on the central axis is suppressed, and the backflow into the pipe can be eliminated. effective. It is desirable to eliminate the backflow because it may cause a fire in the gas mixture injection pipe and cause burning.

図8は、本発明の第5実施例のガスタービン燃焼器の混合気噴射器57の周囲を示す縦断面図である。空気旋回手段として混合気噴射管の外周部に配設された複数の旋回羽根72で構成される空気旋回器71を備えている。この形態によれぱによれば空気旋回器71の断面面積を混合気噴管61の横断面積よりも十分大きくすることができ、空気旋回器71への流入空気量を増やせるという利点がある。   FIG. 8 is a longitudinal sectional view showing the periphery of the air-fuel mixture injector 57 of the gas turbine combustor according to the fifth embodiment of the present invention. An air swirler 71 composed of a plurality of swirl blades 72 disposed on the outer periphery of the air-fuel mixture injection pipe is provided as air swirling means. According to this embodiment, there is an advantage that the cross-sectional area of the air swirler 71 can be made sufficiently larger than the cross-sectional area of the air-fuel mixture jet tube 61 and the amount of air flowing into the air swirler 71 can be increased.

図9は、本発明の第6実施例のガスタービン燃焼器の混合気噴射器57の周囲を示す縦断面図である。接線空気流入流路81aを側壁に配設した円筒状のロータ81が、前記接線空気流入流路81a内に延伸するベーン82a及び開口61fを側壁に配設した混合気噴射管61の内側に同軸に配設され、前記ロータ81の回転により前記接線空気流入通81aの有効開口面積が変化するようになっている。前記ロータ81はその軸81cが、図には示してないが、サーボモータ、あるいはリンク機構つき空気シリンダー等により駆動される。ベーン及び開口側壁は、図示のものが最良であるが平面でも良い。   FIG. 9 is a longitudinal sectional view showing the periphery of the air-fuel mixture injector 57 of the gas turbine combustor according to the sixth embodiment of the present invention. A cylindrical rotor 81 having a tangential air inflow passage 81a disposed on the side wall is coaxial with the vane 82a extending into the tangential air inflow passage 81a and an air-fuel mixture injection pipe 61 having an opening 61f disposed on the side wall. The effective opening area of the tangential air inflow passage 81a is changed by the rotation of the rotor 81. The shaft 81c of the rotor 81 is driven by a servo motor or an air cylinder with a link mechanism, although not shown in the figure. The vanes and the open side walls are best illustrated, but may be flat.

図10は、本発明の第7実施例のガスタービン燃焼器の混合気噴射器57の周囲を示す縦断面図である。混合気噴射管61の側壁61aには接線空気流入流路61bが周方向に配設され、混合気噴射管61の内部には、前記接線空気流入流路61b内に延伸するベーン82bを周囲に配設したスライダ83が同軸に配設され、前記スライダ83の軸方向移動により前記接線空気流入通路61bの有効開口面積を変化させるようになっている。スラーダの駆動は、図には示してないが空気シリンダー、油圧シリンダーにより駆動される。   FIG. 10 is a longitudinal sectional view showing the periphery of the air-fuel mixture injector 57 of the gas turbine combustor according to the seventh embodiment of the present invention. A tangential air inflow passage 61b is disposed in the circumferential direction on the side wall 61a of the air-fuel mixture injection pipe 61, and a vane 82b extending into the tangential air inflow passage 61b is provided around the inside of the air-fuel mixture injection pipe 61. The arranged slider 83 is arranged coaxially, and the effective opening area of the tangential air inflow passage 61b is changed by the axial movement of the slider 83. The slurder is driven by an air cylinder and a hydraulic cylinder (not shown).

本発明のガスタービン燃焼器は、広い燃料・空気比範囲にわたって有害成分の排出が少なく、燃焼安定性に優れ、且つ燃焼器出口ガス温度分布の一様性に優れ、しかもその機能を達成する混合気噴射器はコンパクトで燃焼器ケーシングに外側から容易に着脱でき、既存の燃焼器にも容易に適用できるので、低負荷から高負荷に至る広い作動範囲にわたってジェットエンジンや産業用ガスタービン燃焼器として、利用可能である。   The gas turbine combustor of the present invention is a mixture that achieves its function with low emission of harmful components over a wide range of fuel / air ratio, excellent combustion stability, and uniformity of combustor outlet gas temperature distribution. The air injector is compact and can be easily attached to and removed from the combustor casing from the outside, and can be easily applied to existing combustors, so it can be used as a jet engine or industrial gas turbine combustor over a wide operating range from low to high loads. Is available.

本発明によるガスタービン燃焼器の第1実施例を示す縦断面図である。1 is a longitudinal sectional view showing a first embodiment of a gas turbine combustor according to the present invention. 本発明によるガスタービン燃焼器の第2実施例を示す縦断面図である。It is a longitudinal cross-sectional view which shows 2nd Example of the gas turbine combustor by this invention. 図2のA−A断面図である。It is AA sectional drawing of FIG. 本発明によるガスタービン燃焼器の第2実施例における別の混合気噴射管位置を示す横断面図である。It is a cross-sectional view showing another gas mixture injection pipe position in the second embodiment of the gas turbine combustor according to the present invention. 本発明によるガスタービン燃焼器の第2実施例及び第2実施例の混合気噴射器を示す拡大図で、(a)は縦断面図、(b)はそのB−B断面図である。It is an enlarged view which shows the 2nd Example of the gas turbine combustor by this invention, and the air-fuel | gaseous mixture injector of 2nd Example, (a) is a longitudinal cross-sectional view, (b) is the BB sectional drawing. 本発明によるガスタービン燃焼器の第3実施例を示す図で、(a)は混合気噴射器及びその周囲の縦断面図、(b)は混合気噴射管のC−C断面図である。It is a figure which shows 3rd Example of the gas turbine combustor by this invention, (a) is an air-fuel | gaseous mixture injector and the longitudinal cross-sectional view of the circumference | surroundings, (b) is CC sectional drawing of an air-fuel | gaseous mixture injection pipe. 本発明によるガスタービン燃焼器の第4実施例における混合気噴射器及びその周囲を示す縦横断面図である。FIG. 6 is a longitudinal and transverse sectional view showing an air-fuel mixture injector and its surroundings in a fourth embodiment of a gas turbine combustor according to the present invention. 本発明によるガスタービン燃焼器の第5実施例における混合気噴射器及びその周囲を示す縦横断面図である。FIG. 7 is a longitudinal and transverse sectional view showing an air-fuel mixture injector and its surroundings in a fifth embodiment of a gas turbine combustor according to the present invention. 本発明によるガスタービン燃焼器の第6実施例における混合気噴射器及びその周囲を示す図で、(a)は縦横断面図、(b)はそのD−D断面図である。It is a figure which shows the air-fuel | gaseous mixture injector and its periphery in 6th Example of the gas turbine combustor by this invention, (a) is a vertical-horizontal cross-sectional view, (b) is the DD sectional drawing. 本発明によるガスタービン燃焼器の第7実施例における混合気噴射器及びその周囲を示す図であり、(a)は縦横断面図、(b)はそのE−E断面図である。It is a figure which shows the air-fuel | gaseous mixture injector and its periphery in 7th Example of the gas turbine combustor by this invention, (a) is a vertical-horizontal cross-sectional view, (b) is the EE cross-sectional view. 従来のパイロットバーナとメインバーナとを備えたパラレスステージングの一例を示すガスタービン燃焼器を示す縦断面図である。It is a longitudinal cross-sectional view which shows the gas turbine combustor which shows an example of the parallel staging provided with the conventional pilot burner and the main burner. 従来のアキシャルステージングガスタービン燃焼器の一例である、燃焼室内に伸びた予混合気噴射管を備えたガスタービン燃焼器を示し、(a)はその縦断面図、(b)はそのF−F矢視図である。1 shows a gas turbine combustor including a premixed gas injection pipe extending into a combustion chamber, which is an example of a conventional axial staging gas turbine combustor, (a) is a longitudinal sectional view thereof, and (b) is an FF thereof. It is an arrow view.

符号の説明Explanation of symbols

1,2,3,4,5 ガスタービン燃焼器
11 パイロットバーナ 11a パイロット燃焼領域
12 メインバーナ 12a メイン燃焼領域
13 既燃ガス塊 14 メイン予混合気噴射管
15 メイン予混合気
51 燃焼器ライナ 51a 内側燃焼器ライナ
51b 外側燃焼器ライナ 51c 燃焼器ライナ開口
52 燃焼器ケーシング 53 燃焼室、環状燃焼室
53a ドーム部 54 燃料噴射器
55 空気旋回器 56 第1燃焼領域
56a 既燃ガス 57 混合気噴射器
58 バーナ
61 混合気噴射管 61a 側壁
61b 接線空気流入通路 61c 円筒内壁面
61d 混合気噴射管出口 61e 混合気噴射管の先端
61f 開口 62 燃料噴射器
63 隙間
71、71a、71b 空気旋回器 72 旋回羽根
81 ロータ
81a 接線空気流入流路 81c ロータ軸
82a、82b ベーン 83 スライダ
1, 2, 3, 4, 5 Gas turbine combustor 11 Pilot burner 11a Pilot combustion region 12 Main burner 12a Main combustion region 13 Burned gas lump 14 Main premixed gas injection pipe 15 Main premixed gas
51 Combustor liner 51a Inner combustor liner 51b Outer combustor liner 51c Combustor liner opening 52 Combustor casing 53 Combustion chamber, annular combustion chamber 53a Dome portion 54 Fuel injector 55 Air swirler 56 First combustion region 56a Burned gas 57 Mixture injector 58 Burner 61 Mixture injection pipe 61a Side wall 61b Tangential air inlet passage 61c Cylindrical inner wall surface 61d Mixture injection pipe outlet 61e End of mixture injection pipe 61f Opening 62 Fuel injector 63 Clearance 71, 71a, 71b Air Swivel 72 Swivel blade 81 Rotor 81a Tangential air inflow passage 81c Rotor shaft 82a, 82b Vane 83 Slider

Claims (6)

燃焼器ライナで囲まれた燃焼室において上流の燃焼領域で生成され下流に向けて流れる既燃ガス流に燃料空気混合気が噴射されるガスタービン燃焼器において、燃焼器ケーシングの壁面に混合気噴射器が外側から取り付けられ、該混合気噴射器は燃料噴射器と空気旋回手段と混合気噴射管とで構成され、該混合気噴射管の先端の噴射開口は前記燃焼器ライナの壁面に配設されたライナ開口の近傍に位置し、前記燃料空気混合気は前記噴射開口から前記ライナ開口を通して前記既燃ガスの流れに交差するように噴射されることを特徴とするガスタービン燃焼器。   In a gas turbine combustor in which a fuel-air mixture is injected into a burned gas stream generated in an upstream combustion region and flowing downstream in a combustion chamber surrounded by a combustor liner, the mixture is injected onto the wall of the combustor casing The fuel injector is composed of a fuel injector, an air swirling means, and a fuel injection pipe, and an injection opening at the tip of the fuel injection pipe is disposed on the wall surface of the combustor liner. The gas turbine combustor is located near the liner opening, and the fuel / air mixture is injected from the injection opening through the liner opening so as to intersect the flow of the burned gas. 前記空気旋回手段は、前記混合気噴射管の内部あるいは周囲に配設された複数の旋回羽根で構成された空気旋回器であることを特徴とする請求項1に記載のガスタービン燃焼器。   2. The gas turbine combustor according to claim 1, wherein the air swirling unit is an air swirler including a plurality of swirl blades disposed inside or around the air-fuel mixture injection pipe. 前記空気旋回手段は、前記混合気噴射管の側壁に配設された接線空気流入流路であることを特徴とする請求項1に記載のガスタービン燃焼器。   The gas turbine combustor according to claim 1, wherein the air swirling means is a tangential air inflow passage disposed on a side wall of the mixture injection pipe. 前記混合気噴射管の内側に、接線空気流入流路を側壁に配設した円筒状のロータが同軸に配設され、前記混合気噴射管の側壁には前記接線空気流入流路に対応した開口が配設され、前記開口の縁には前記接線空気流入流路内に延伸するべ一ンが配設され、前記ロータの回転により前記接線空気流入流路の有効開口面積を変化させるようにしたことを特徴とする請求項1又は2に記載のガスタービン燃焼器。   A cylindrical rotor having a tangential air inflow passage disposed on a side wall is coaxially disposed inside the mixture injection pipe, and an opening corresponding to the tangential air inflow passage is provided on the side wall of the mixture injection pipe. A vane extending into the tangential air inflow channel is disposed at the edge of the opening, and the effective opening area of the tangential air inflow channel is changed by rotation of the rotor. The gas turbine combustor according to claim 1 or 2. 前記混合気噴射管の内部には、前記接線空気流入流路内に延伸するべ一ンを周囲に配設したスライダが同軸に配設され、該スライダの軸方向移動により前記接線空気流入流路の有効開口面積を変化させるようにしたことを特徴とする請求項3に記載のガスタービン燃焼器。   A slider having a vane extending around the tangential air inflow passage is disposed coaxially inside the tangential air inflow passage, and the tangential air inflow passage is moved axially by the slider. The gas turbine combustor according to claim 3, wherein an effective opening area of the gas turbine is changed. 前記混合気噴射管の先端の外周と前記燃焼器ライナ開口の縁との間には空気の流入する隙間が設けられていることを特徴とする請求項1〜5のいずれかに記載のガスタービン燃焼器。   The gas turbine according to any one of claims 1 to 5, wherein a gap through which air flows is provided between an outer periphery of a tip of the mixture injection pipe and an edge of the combustor liner opening. Combustor.
JP2004187355A 2004-06-25 2004-06-25 Gas turbine combustor Expired - Fee Related JP4670035B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004187355A JP4670035B2 (en) 2004-06-25 2004-06-25 Gas turbine combustor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004187355A JP4670035B2 (en) 2004-06-25 2004-06-25 Gas turbine combustor

Publications (2)

Publication Number Publication Date
JP2006010193A true JP2006010193A (en) 2006-01-12
JP4670035B2 JP4670035B2 (en) 2011-04-13

Family

ID=35777639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004187355A Expired - Fee Related JP4670035B2 (en) 2004-06-25 2004-06-25 Gas turbine combustor

Country Status (1)

Country Link
JP (1) JP4670035B2 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007232234A (en) * 2006-02-28 2007-09-13 Hitachi Ltd Combustion device, combustion method of combustion device, and remodeling method of combustion device
JP2008185254A (en) * 2007-01-30 2008-08-14 General Electric Co <Ge> Reverse-flow injection mechanism having coaxial fuel-air passage
WO2008129652A1 (en) * 2007-04-06 2008-10-30 Hitachi, Ltd. Gas turbine power generating apparatus and method of starting the same
JP2008309466A (en) * 2007-06-14 2008-12-25 Snecma Turbomachine combustion chamber with helical air circulation
JP2009052768A (en) * 2007-08-23 2009-03-12 Kawasaki Heavy Ind Ltd Gas turbine combustion device
JP2009198054A (en) * 2008-02-20 2009-09-03 Niigata Power Systems Co Ltd Gas turbine combustor
JP2010216668A (en) * 2009-03-13 2010-09-30 Kawasaki Heavy Ind Ltd Gas turbine combustor
JP2011220673A (en) * 2010-04-12 2011-11-04 General Electric Co <Ge> Combustor exit temperature profile control via fuel staging and related method
JP2012037233A (en) * 2011-11-18 2012-02-23 Hitachi Ltd Burner and operating method the burner
EP2511613A2 (en) * 2011-04-13 2012-10-17 Rolls-Royce Deutschland Ltd & Co KG Gas turbine combustion chamber with a holder of a seal for an extension
EP2236930A3 (en) * 2009-03-30 2013-07-31 United Technologies Corporation Combustor for gas turbine engine
JP2013195057A (en) * 2012-03-15 2013-09-30 General Electric Co <Ge> System for supplying working fluid to combustor
FR2996285A1 (en) * 2012-10-01 2014-04-04 Turbomeca TURBOMACHINE COMBUSTION ASSEMBLY WITH A VARIATION IN AIR SUPPLY.
JP2014077627A (en) * 2012-10-09 2014-05-01 General Electric Co <Ge> Fuel nozzle and method of assembling the same
JP2014092359A (en) * 2012-10-31 2014-05-19 General Electric Co <Ge> Fuel injection assemblies in combustion turbine engines
US8789375B2 (en) 2006-01-03 2014-07-29 General Electric Company Gas turbine combustor having counterflow injection mechanism and method of use
JP2014527154A (en) * 2011-09-22 2014-10-09 ゼネラル・エレクトリック・カンパニイ Combustor and method for supplying fuel to combustor
JP5759651B1 (en) * 2014-06-12 2015-08-05 川崎重工業株式会社 Multi-fuel compatible gas turbine combustor
WO2016088612A1 (en) * 2014-12-02 2016-06-09 川崎重工業株式会社 Gas turbine combustor and gas turbine
KR20160069805A (en) 2014-12-09 2016-06-17 한화테크윈 주식회사 Fuel nozzle for combustor
EP3054220A3 (en) * 2015-01-21 2016-10-05 United Technologies Corporation Bluff body fuel mixer
CN106574777A (en) * 2014-08-26 2017-04-19 西门子能源公司 Cooling system for fuel nozzles within combustor in a turbine engine
JP2017519959A (en) * 2014-03-28 2017-07-20 シーメンス エナジー インコーポレイテッド Gas turbine engine having two outlet fuel premix nozzles for a secondary fuel stage
EP2657611A3 (en) * 2012-04-27 2017-11-22 General Electric Company System for supplying fuel to a combustor
WO2018011827A1 (en) 2016-07-15 2018-01-18 Indian Institute Of Technology (Iit Madras) A swirl mesh lean direct injection concept for distributed flame holding for low pollutant emissions and mitigation of combustion instability
CN111630321A (en) * 2017-11-08 2020-09-04 川崎重工业株式会社 Burner device
CN112483262A (en) * 2020-10-27 2021-03-12 中国船舶重工集团公司第七0三研究所 Integrated device for synchronously controlling fuel quantity and air quantity and control method thereof
WO2023235078A1 (en) * 2022-06-01 2023-12-07 Siemens Energy Global GmbH & Co. KG Combustor having secondary fuel injector

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5013808U (en) * 1973-06-05 1975-02-13
JPH0452418A (en) * 1990-06-21 1992-02-20 Hitachi Ltd Burner equipped with coaxial ejector
JPH05231645A (en) * 1991-12-25 1993-09-07 Toyota Motor Corp Combustor for gas turbine engine
JPH05340508A (en) * 1992-06-10 1993-12-21 Tokyo Gas Co Ltd Combustion apparatus and method
JPH0719482A (en) * 1993-06-28 1995-01-20 Toshiba Corp Gas turbine combustion device
JPH07248117A (en) * 1994-03-10 1995-09-26 Hitachi Ltd Combustion method for gas turbine premixing combustor
JPH07332671A (en) * 1994-06-10 1995-12-22 Sekiyu Sangyo Kasseika Center Pre-evaporizing premixing combustor
JPH08247419A (en) * 1995-02-20 1996-09-27 Abb Manag Ag Two stage combustion type combustion chamber
US5996333A (en) * 1996-10-16 1999-12-07 Societe National D'etude Et De Construction De Moteurs D'aviation Oxidizer control device for a gas turbine engine
JP2000009319A (en) * 1998-06-11 2000-01-14 Inst Fr Petrole Combustion chamber of variable slot gas turbine
JP2000356315A (en) * 1999-06-11 2000-12-26 Kawasaki Heavy Ind Ltd Burner unit for gas turbine combustor
JP2002527708A (en) * 1998-10-09 2002-08-27 ゼネラル・エレクトリック・カンパニイ Gas turbine engine combustor fuel injection assembly
JP2002528694A (en) * 1998-10-09 2002-09-03 ゼネラル・エレクトリック・カンパニイ Fuel air mixer for radial dome of gas turbine engine combustor

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5013808U (en) * 1973-06-05 1975-02-13
JPH0452418A (en) * 1990-06-21 1992-02-20 Hitachi Ltd Burner equipped with coaxial ejector
JPH05231645A (en) * 1991-12-25 1993-09-07 Toyota Motor Corp Combustor for gas turbine engine
JPH05340508A (en) * 1992-06-10 1993-12-21 Tokyo Gas Co Ltd Combustion apparatus and method
JPH0719482A (en) * 1993-06-28 1995-01-20 Toshiba Corp Gas turbine combustion device
JPH07248117A (en) * 1994-03-10 1995-09-26 Hitachi Ltd Combustion method for gas turbine premixing combustor
JPH07332671A (en) * 1994-06-10 1995-12-22 Sekiyu Sangyo Kasseika Center Pre-evaporizing premixing combustor
JPH08247419A (en) * 1995-02-20 1996-09-27 Abb Manag Ag Two stage combustion type combustion chamber
US5996333A (en) * 1996-10-16 1999-12-07 Societe National D'etude Et De Construction De Moteurs D'aviation Oxidizer control device for a gas turbine engine
JP2000009319A (en) * 1998-06-11 2000-01-14 Inst Fr Petrole Combustion chamber of variable slot gas turbine
JP2002527708A (en) * 1998-10-09 2002-08-27 ゼネラル・エレクトリック・カンパニイ Gas turbine engine combustor fuel injection assembly
JP2002528694A (en) * 1998-10-09 2002-09-03 ゼネラル・エレクトリック・カンパニイ Fuel air mixer for radial dome of gas turbine engine combustor
JP2000356315A (en) * 1999-06-11 2000-12-26 Kawasaki Heavy Ind Ltd Burner unit for gas turbine combustor

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8789375B2 (en) 2006-01-03 2014-07-29 General Electric Company Gas turbine combustor having counterflow injection mechanism and method of use
JP2007232234A (en) * 2006-02-28 2007-09-13 Hitachi Ltd Combustion device, combustion method of combustion device, and remodeling method of combustion device
JP2008185254A (en) * 2007-01-30 2008-08-14 General Electric Co <Ge> Reverse-flow injection mechanism having coaxial fuel-air passage
JP4900479B2 (en) * 2007-04-06 2012-03-21 株式会社日立製作所 Gas turbine power generation facility and starting method thereof
WO2008129652A1 (en) * 2007-04-06 2008-10-30 Hitachi, Ltd. Gas turbine power generating apparatus and method of starting the same
JPWO2008129652A1 (en) * 2007-04-06 2010-07-22 株式会社日立製作所 Gas turbine power generation facility and starting method thereof
JP2008309466A (en) * 2007-06-14 2008-12-25 Snecma Turbomachine combustion chamber with helical air circulation
JP2009052768A (en) * 2007-08-23 2009-03-12 Kawasaki Heavy Ind Ltd Gas turbine combustion device
JP2009198054A (en) * 2008-02-20 2009-09-03 Niigata Power Systems Co Ltd Gas turbine combustor
JP2010216668A (en) * 2009-03-13 2010-09-30 Kawasaki Heavy Ind Ltd Gas turbine combustor
US8656721B2 (en) 2009-03-13 2014-02-25 Kawasaki Jukogyo Kabushiki Kaisha Gas turbine combustor including separate fuel injectors for plural zones
EP2236938A2 (en) 2009-03-13 2010-10-06 Kawasaki Jukogyo Kabushiki Kaisha Gas turbine combustor
EP2236938A3 (en) * 2009-03-13 2011-04-27 Kawasaki Jukogyo Kabushiki Kaisha Gas turbine combustor
EP2236930A3 (en) * 2009-03-30 2013-07-31 United Technologies Corporation Combustor for gas turbine engine
JP2011220673A (en) * 2010-04-12 2011-11-04 General Electric Co <Ge> Combustor exit temperature profile control via fuel staging and related method
EP2511613A2 (en) * 2011-04-13 2012-10-17 Rolls-Royce Deutschland Ltd & Co KG Gas turbine combustion chamber with a holder of a seal for an extension
EP2511613A3 (en) * 2011-04-13 2015-01-21 Rolls-Royce Deutschland Ltd & Co KG Gas turbine combustion chamber with a holder of a seal for an extension
US9388987B2 (en) 2011-09-22 2016-07-12 General Electric Company Combustor and method for supplying fuel to a combustor
JP2014527154A (en) * 2011-09-22 2014-10-09 ゼネラル・エレクトリック・カンパニイ Combustor and method for supplying fuel to combustor
JP2012037233A (en) * 2011-11-18 2012-02-23 Hitachi Ltd Burner and operating method the burner
JP2013195057A (en) * 2012-03-15 2013-09-30 General Electric Co <Ge> System for supplying working fluid to combustor
EP2639508A3 (en) * 2012-03-15 2017-06-07 General Electric Company System for supplying a working fluid to a combustor
EP2657611A3 (en) * 2012-04-27 2017-11-22 General Electric Company System for supplying fuel to a combustor
KR102093954B1 (en) 2012-10-01 2020-03-26 사프란 헬리콥터 엔진스 Turbine engine combustion assembly with a variable air supply
KR20150065832A (en) * 2012-10-01 2015-06-15 터보메카 Turbine engine combustion assembly with a variable air supply
US10054056B2 (en) 2012-10-01 2018-08-21 Safran Helicopter Engines Turbine engine combustion assembly with a variable air supply
JP2015531471A (en) * 2012-10-01 2015-11-02 ターボメカTurbomeca Turbine engine combustion assembly with variable air supply
WO2014053724A1 (en) * 2012-10-01 2014-04-10 Turbomeca Turbine engine combustion assembly with a variable air supply
FR2996285A1 (en) * 2012-10-01 2014-04-04 Turbomeca TURBOMACHINE COMBUSTION ASSEMBLY WITH A VARIATION IN AIR SUPPLY.
RU2632353C2 (en) * 2012-10-01 2017-10-04 Тюрбомека Combustion chamber unit of gas turbine engine with variable air supply
JP2014077627A (en) * 2012-10-09 2014-05-01 General Electric Co <Ge> Fuel nozzle and method of assembling the same
EP2728264A3 (en) * 2012-10-31 2017-12-27 General Electric Company Fuel injection assemblies in combustion turbine engines
JP2014092359A (en) * 2012-10-31 2014-05-19 General Electric Co <Ge> Fuel injection assemblies in combustion turbine engines
JP2017519959A (en) * 2014-03-28 2017-07-20 シーメンス エナジー インコーポレイテッド Gas turbine engine having two outlet fuel premix nozzles for a secondary fuel stage
US10139111B2 (en) 2014-03-28 2018-11-27 Siemens Energy, Inc. Dual outlet nozzle for a secondary fuel stage of a combustor of a gas turbine engine
US9400113B2 (en) 2014-06-12 2016-07-26 Kawasaki Jukogyo Kabushiki Kaisha Multifuel gas turbine combustor
JP5759651B1 (en) * 2014-06-12 2015-08-05 川崎重工業株式会社 Multi-fuel compatible gas turbine combustor
US9638423B2 (en) 2014-06-12 2017-05-02 Kawasaki Jukogyo Kabushiki Kaisha Multifuel gas turbine combustor with fuel mixing chamber and supplemental burner
CN106574777A (en) * 2014-08-26 2017-04-19 西门子能源公司 Cooling system for fuel nozzles within combustor in a turbine engine
CN106574777B (en) * 2014-08-26 2020-02-07 西门子能源公司 Cooling system for fuel nozzle within combustor in turbine engine
JP2017526857A (en) * 2014-08-26 2017-09-14 シーメンス エナジー インコーポレイテッド Cooling system for fuel nozzles in a turbine engine combustor.
US10309655B2 (en) 2014-08-26 2019-06-04 Siemens Energy, Inc. Cooling system for fuel nozzles within combustor in a turbine engine
WO2016088612A1 (en) * 2014-12-02 2016-06-09 川崎重工業株式会社 Gas turbine combustor and gas turbine
KR20160069805A (en) 2014-12-09 2016-06-17 한화테크윈 주식회사 Fuel nozzle for combustor
EP3054220A3 (en) * 2015-01-21 2016-10-05 United Technologies Corporation Bluff body fuel mixer
US9797601B2 (en) 2015-01-21 2017-10-24 United Technologies Corporation Bluff body fuel mixer
US10816209B2 (en) 2015-01-21 2020-10-27 Raytheon Technologies Corporation Bluff body fuel mixer
WO2018011827A1 (en) 2016-07-15 2018-01-18 Indian Institute Of Technology (Iit Madras) A swirl mesh lean direct injection concept for distributed flame holding for low pollutant emissions and mitigation of combustion instability
EP3485197A4 (en) * 2016-07-15 2020-02-19 Indian Institute of Technology (ITT Madras) A swirl mesh lean direct injection concept for distributed flame holding for low pollutant emissions and mitigation of combustion instability
CN111630321A (en) * 2017-11-08 2020-09-04 川崎重工业株式会社 Burner device
US11573007B2 (en) 2017-11-08 2023-02-07 Kawasaki Jukogyo Kabushiki Kaisha Burner device
CN111630321B (en) * 2017-11-08 2023-05-02 川崎重工业株式会社 Burner device
CN112483262A (en) * 2020-10-27 2021-03-12 中国船舶重工集团公司第七0三研究所 Integrated device for synchronously controlling fuel quantity and air quantity and control method thereof
CN112483262B (en) * 2020-10-27 2022-11-01 中国船舶重工集团公司第七0三研究所 Integrated device for synchronously controlling fuel quantity and air quantity and control method thereof
WO2023235078A1 (en) * 2022-06-01 2023-12-07 Siemens Energy Global GmbH & Co. KG Combustor having secondary fuel injector

Also Published As

Publication number Publication date
JP4670035B2 (en) 2011-04-13

Similar Documents

Publication Publication Date Title
JP4670035B2 (en) Gas turbine combustor
JP5364275B2 (en) Method and system for enabling NOx emissions to be reduced in a combustion system
JP3958767B2 (en) Gas turbine combustor and ignition method thereof
JP2644745B2 (en) Gas turbine combustor
JP4134311B2 (en) Gas turbine combustor
EP2481982B2 (en) Mixer assembly for a gas turbine engine
JP2954480B2 (en) Gas turbine combustor
US20140182294A1 (en) Gas turbine combustor
US8015814B2 (en) Turbine engine having folded annular jet combustor
JP5604132B2 (en) Radial direction lean direct injection burner
JP2009052877A (en) Gas turbine premixer with radial multistage flow path, and air-gas mixing method for gas turbine
JP2005226847A (en) Combustion device and method
JPS637283B2 (en)
EP1836443B1 (en) Rich catalytic injection
JP2008096099A (en) Method and apparatus for reducing gas turbine engine emission
JPH02309124A (en) Combustor and operating method thereof
CN110878947A (en) Gas turbine combustor
JP2005106305A (en) Nozzle for fuel combustion and fuel supplying method for gas turbine combustor
JP4400314B2 (en) Gas turbine combustor and fuel supply method for gas turbine combustor
JP3990678B2 (en) Gas turbine combustor
CN102997281A (en) System and method for conditioning a working fluid in a combustor
EP1852657A1 (en) Fuel injection valve, combustor using the fuel injection valve, and fuel injection method for the fuel injection valve
JP3873119B2 (en) In-cylinder swirl combustor
JP5610446B2 (en) Gas turbine combustor
JPH0443220A (en) Combustion device for gas turbine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100930

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101224

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees