WO2008129652A1 - Gas turbine power generating apparatus and method of starting the same - Google Patents

Gas turbine power generating apparatus and method of starting the same Download PDF

Info

Publication number
WO2008129652A1
WO2008129652A1 PCT/JP2007/058210 JP2007058210W WO2008129652A1 WO 2008129652 A1 WO2008129652 A1 WO 2008129652A1 JP 2007058210 W JP2007058210 W JP 2007058210W WO 2008129652 A1 WO2008129652 A1 WO 2008129652A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
power generation
combustor
gas turbine
centrifugal compressor
Prior art date
Application number
PCT/JP2007/058210
Other languages
French (fr)
Japanese (ja)
Inventor
Manabu Yagi
Satoshi Dodo
Susumu Nakano
Tadaharu Kishibe
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to JP2009510688A priority Critical patent/JP4900479B2/en
Priority to PCT/JP2007/058210 priority patent/WO2008129652A1/en
Publication of WO2008129652A1 publication Critical patent/WO2008129652A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • F23R3/44Combustion chambers comprising a single tubular flame tube within a tubular casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/26Starting; Ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/06Arrangement of apertures along the flame tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones
    • F23R3/346Feeding into different combustion zones for staged combustion

Definitions

  • the present invention relates to a gas turbine power generation facility constituted by a combination of a centrifugal compressor and a radial flow turbine, and a starting method thereof.
  • gas turbine power generation facilities that operate generators using a gas bottle of tens to hundreds of kilowatts have been put on the market and new development has progressed.
  • the gas turbine that drives the generator employs a structure combining a centrifugal compressor and a radial flow bin.
  • the object of the present invention is to maintain the pressure balance of the entire system even when the outer diameter difference between the compressor impeller and the turbine wheel is increased (the bin wheel outer diameter> the compressor impeller outer diameter) to increase the capacity.
  • the gas turbine power generation equipment of the present invention is a gas turbine power generation equipment to which a structure combining a centrifugal compressor and a radial flow turbine is applied.
  • the compressor impeller outer diameter ratio is 1.15 or more.
  • the gas turbine power generation equipment start-up method of the present invention provides motoring operation at a rotational speed lower than the rotational speed at which the pressure balance of the entire system becomes unstable. It is characterized in that it is ignited at the time of turning, and the bin inlet temperature is increased to a predetermined temperature at which the original operation of the turbine can be performed, and the pressure is increased while maintaining the pressure balance of the entire system in a stable state.
  • the method for starting the gas turbine power generation facility of the present invention feeds spray water or assist air from the outside to the compressor inlet so that the compressor can overcome the turbine pump operation and send air to the turbine side. In this way, it is possible to increase the speed while maintaining a stable pressure balance of the entire system.
  • FIG. 1 is a cross-sectional view of a gas turbine power generation facility relating to one embodiment (first embodiment) of a gas turbine structure of the present invention.
  • Fig. 2 is a conceptual diagram showing changes in pressure with respect to the rotational speeds of the evening and compressor when the speed is increased by motoring operation without ignition.
  • FIG. 3 is a conceptual diagram showing the relationship between the pressure P 1 and the air flow rate, the number of revolutions of ignition, the diameter ratio of the turbine wheel outer diameter and the compressor impeller outer diameter.
  • FIG. 4 is a longitudinal sectional view of a combustor according to an embodiment (first embodiment) of a gas turbine starting method of the present invention.
  • FIG. 5 is a longitudinal sectional view of a combustor according to another embodiment (second embodiment) of the gas turbine starting method of the present invention.
  • FIG. 6 is a conceptual diagram comparing power consumption up to the number of ignition revolutions when the first or second embodiment is implemented and when the gas turbine power generation facility is activated by the conventional technology.
  • FIG. 7 is a cross-sectional view of a gas turbine power generation facility relating to another embodiment (third embodiment) of the gas turbine starting method of the present invention.
  • FIG. 8 is a cross-sectional view of a gas turbine power generation facility according to another embodiment (fourth embodiment) of the gas turbine starting method of the present invention.
  • FIG. 1 is a cross-sectional view of a gas turbine section that drives a generator in a gas turbine power generation facility according to the present invention.
  • the gas turbine power generation facility in this embodiment has a power generation output exceeding 100 kW, and in particular, a structure in which a single-stage centrifugal compressor and a single-stage radial flow turpin are combined with the gas turbine section that drives the generator. This is an example in the case of applying.
  • the equipment configuration and its operation will be described according to the air flow.
  • the air 21 flowing in from the atmosphere is pressurized by the compressor impeller 1 that is the moving blade of the centrifugal compressor assembled integrally with the gas turbine rotating shaft, and flows into the diffuser 2 that is the stationary blade of the centrifugal compressor.
  • the diffuser 2 has an integral structure with either the compressor casing 3 or the compressor back plate 4.
  • the air 21 passes through the diffuser 2 outward in the circumferential direction, it is further decelerated and recovered to static pressure, and then becomes high-pressure air 2 2 of about 4 to 5 atm and about 200 ° C.
  • the high-pressure air 22 is guided to a scroll (not shown) and further recovered by static pressure, and then flows into a combustor (not shown).
  • the high-pressure air 22 that has exited the scroll may be guided to a regenerative heat exchanger (not shown), and after remaining heat by exchanging heat with the exhaust gas from the turbine, it may flow into a combustor (not shown).
  • the high-pressure air 2 2 becomes a high-temperature gas 2 3 of about 4 to 5 atm and about 100 ° C. by mixing with combustion gas and combustion in a combustor (not shown).
  • Hot gas 23 flows into nozzle 5, which is a stationary vane with a radial flow pin, and is accelerated as the cross-sectional area of the flow path is reduced.
  • the nozzle 5 has an integral structure with either the bottle back plate 7 or the turbine shell 8.
  • the accelerated hot gas 2 3 flows into the evening bin wheel 6 which is a moving blade of the radial flow turbine assembled integrally with the gas turbine rotating shaft, and expands to give rotational energy to the evening bin wheel 6. As a result, it becomes high-temperature low-pressure gas 24 and is led to an exhaust diffuser (not shown).
  • the high-temperature low-pressure gas 2 4 exiting the exhaust diffuser was led to a regenerative heat exchanger (not shown) in some cases, and the temperature was lowered by heat exchange with the high-pressure air 2 2 that was discharged from the compressor. Later it may be vented to the atmosphere.
  • the outer diameter of the compressor impeller is reduced in order to reduce the power consumption for rotation. Is required to be as small as possible within the range that satisfies the required pressure ratio.
  • the ratio of the terpin wheel outer diameter 16 and the compressor impeller outer diameter 15 is 1.15 or more.
  • Fig. 2 shows the gas turbine power generation equipment that uses a structure that combines a single-stage centrifugal compressor and a single-stage radial flow bin in the gas turbine section that drives the generator. It shows the change in pressure with respect to the rotational speeds of the turbine and compressor.
  • the turbine pressure is the pressure defined at the nozzle inlet
  • the compressor pressure is the pressure defined at the compressor scroll outlet.
  • the air flow rate at the ignition speed is limited by the flow range in which the combustor can ignite as shown in Fig. 3. Therefore, the air flow rate at the pressure P ⁇ the air flow rate at the ignition speed must be If it does not ignite.
  • the diameter ratio of the turbine wheel outer diameter 16 and the compressor impeller outer diameter 15 is not less than 1.15, and “air flow rate at pressure P,> air flow rate at ignition speed In order to clear the condition, it is necessary to lower the operating point to 10% of the rated speed and ignite at an air flow rate Gs of 5% of the rated air flow rate.
  • the compressor can overcome the pump operation of the turbine and send air to the turbine side, as will be described later. In order to achieve this, it is necessary to increase the air flow rate at the pressure by sending spray water or assist air from the outside to the compressor inlet and to exceed the air flow rate at the ignition speed.
  • a gas turbine combustor that can be stably ignited at an operating point of 10% of the rated speed at which 5% of the rated air flow rate is obtained, for example, International Publication WO 2 0 0 5 Z0 5 9442 A 1 is mentioned.
  • Fig. 4 shows the longitudinal section.
  • the combustor shown in Fig. 4 is roughly divided into a pilot parner 31, a combustor liner 31, a combustor end cover 3 3, and a combustor outer cylinder 34.
  • the pilot panner 3 1 is a panner responsible for ignition related to the start-up of the gas evening bin power generation facility, and a swirl passage 46 having swirl vanes 41 is provided around the primary fuel nozzle 43.
  • the swirl passage 46 is formed with a primary air introduction hole 42 for introducing combustion air therein.
  • the primary air introduction holes 42 are provided at eight locations in the circumferential direction.
  • Combustor liner 3 2 is a component that constitutes the combustion chamber.
  • Combustor outlet gas The dilution holes 5 2 provided at six locations in the circumferential direction for smoothing the temperature distribution and the second provided at three locations in the circumferential direction. It has a secondary air introduction hole 53, and it is connected to a transition piece, which is a connecting part with a turbine (not shown), with a spring seal 51.
  • Combustion air guided from a compressor flows in a space between the combustor liner 3 2 and the combustor outer cylinder 34, and a part of the combustion air is diluted with holes 5 provided at six locations in the circumferential direction. 2. It flows into the combustion chamber through secondary air inlet holes 53 provided at three locations in the circumferential direction. The remaining fuel air flows into the swirl passage 46 from the primary air introduction holes 42 provided at eight locations in the circumferential direction, and is given a predetermined swirl by the swirl vanes 41. Then, the combustor liner 3 Flows inside 2. Then, the combustion gas generated in the combustion chamber flows out to a transition piece which is a communication part with an evening bottle (not shown).
  • Fuel is independently supplied to the primary fuel nozzle 43 located in the lower center of the drawing and the secondary fuel nozzle 61 located in the center of the drawing, respectively, and the primary fuel nozzle 44 and the secondary fuel nozzle. 6 Ejected into the combustion chamber from 2. All fuel is injected directly into the combustion chamber, and there is no premixer-like component that mixes fuel and air outside the combustion chamber, so in principle there will be no accidents such as self-ignition or flashback. .
  • the Pilot Pana 31 uses the normal diffusion combustion method. In the gas evening bottle power generation facility, when the air flow rate can be sufficiently secured except during ignition, it flows into the turning passage 4 6 from the primary air introduction hole 4 2 and gives a predetermined turning by the turning blade 4 1.
  • the generated primary combustion air 71 enters the combustion chamber from the outlet of the swirl passage 46 and rapidly expands, so that a circulation flow region is formed downstream of the primary fuel nozzle 43 in the combustor head. Fuel is injected into the circulating flow region from the primary fuel nozzle 44 opened at the end face of the primary fuel nozzle 43, and diffusion combustion is performed.
  • the secondary air 7 2 ejected from the secondary air introduction hole 53 into the combustion chamber has a radial fuel from the secondary fuel nozzle 61 installed at the same position as the secondary air introduction hole 53. Is injected. However, immediately after the secondary fuel injection, the flow rate of the secondary air 7 2 enters the combustion chamber is large, and the shearing with the surrounding combustion gas is strong, so even if the combustion reaction starts, the flame will blow out immediately. Since the secondary fuel nozzle 61 does not hold the flame in the vicinity of the secondary fuel nozzle 61, the local high temperature region does not appear in the vicinity of the secondary fuel nozzle 61 or the combustor liner 3 2 and the viewpoint of ensuring reliability Is also advantageous.
  • Swirl passage 4 6 enters the combustion chamber from the exit of 6 and rapidly expands, but the flow velocity is slow, so it does not form a circulating flow region downstream of the primary fuel nozzle 4 3 in the combustor head, and combustion Go downstream in vessel liner 3 2.
  • the primary combustion air 7 1 heading downstream is composed of secondary air 7 2 ejected from three secondary air inlet holes 53 in the circumferential direction into the combustor liner 3 2, and the combustor liner 3. 2 Colliding with each other in the vicinity of the central axis to form an inwardly circulating flow 9 1, forming a stagnation region. In this stagnation region, the flow velocity decreases, and the propagation flame can be maintained sufficiently. Therefore, the primary fuel 8 1 introduced into the primary combustion air 7 1 is circulated in the above inward flow. Combustion reaction starts in stream 9 1, leading to ignition.
  • the fuel is supplied only to the primary fuel nozzle 4 3 and is ejected from the primary fuel injection hole 4 4 into the combustor liner 3 2, but the primary combustion air 7 1 At the stage of mixing, the ignitability due to excessive fuel is poor because the air flow rate is small.
  • the jet of secondary air 4 2 reaches the vicinity of the center axis of the combustor liner 3 2 From the viewpoint of stable ignition, it is important that the secondary air 72 jets collide with each other to form a stagnation region and form a circulation flow region.
  • the ratio of the jet velocity of the secondary air 4 2 to the average air velocity defined in the cross section of the combustor liner 2 is about 3 times or more, and the opening to the surface area of the combustor liner 3 2 It is desirable to design the area ratio between 20 and 30% and the combustor total pressure loss coefficient between 40 and 50.
  • combustion temperature at the time of ignition increases when the turbine inlet temperature rises.
  • the focus is on the phenomenon that the original operation of the bin exceeds the pump operation, and the flow rate of air that the compressor sends to the turbine increases.
  • the temperature should be above the temperature at which the air flow rate in an unstable state is restored to the original air flow rate commensurate with the number of revolutions of ignition, and below the temperature at which the equipment will not be damaged by heating.
  • FIG. 5 is a longitudinal sectional view of a combustor for a gas evening bottle related to the prior art described in International Publication WO 2 0 0 5/0 5 9 4 4 2 A 1. The explanation is omitted here because it is exactly the same as Figure 4.
  • the primary combustion air ⁇ 1 has a low flow velocity, so Primary fuel nozzle 4 3 Form a circulating flow area downstream However, it goes downstream in the combustor liner.
  • the primary combustion air 71 going to the downstream side is composed of secondary air 42 2 ejected into the combustor liner 2 from the secondary air introduction holes 53 in three circumferential directions, and the combustor liner. 2 Collide with each other near the central axis to form a circulating flow of outward flow 9 2, forming a stagnation region.
  • the secondary fuel 8 2 When the secondary fuel 8 2 is injected radially from the secondary fuel nozzle 61 installed in the same position as the secondary air introduction hole 53 toward the stagnation region, the outward flow in these stagnation regions In the circulating flow 92, since the flow velocity is reduced and the propagation flame can be sufficiently maintained, the secondary fuel 82 is mixed with the primary combustion air 71 and the secondary air 72, and the above The combustion reaction starts in the circulating flow of and leads to ignition.
  • the fuel is supplied only to the secondary fuel nozzle 61, and is ejected from the secondary fuel injection hole 62 into the combustor liner 32.
  • the air flow rate is small and the ignitability due to excessive fuel is poor.
  • the primary combustion air 7 1 flowing out from the upstream in the combustor liner 3 2 and the combustor liner 3 2 collide with each other in the vicinity of the central axis to form a stagnation region. Diluted with industrial air 71 to achieve good ignitability. Note that the combustion temperature at the time of ignition is set in the same manner as described in the first embodiment.
  • the gas turbine equipment related to the present invention can be started up by the start-up method related to the prior art as a comparison object when the start-up method described in the first or second embodiment is implemented.
  • Figure 6 shows a conceptual diagram comparing the power consumption up to the number of ignition revolutions.
  • the start method of gas turbine power generation equipment related to the present invention is implemented here Three
  • the ignition speed was assumed to be 10% of the rated speed.
  • the gas evening pin equipment is started by the startup method related to the conventional technology, N * TS, Development Trends and Future Prospects of Micro Gas Turbine, (2001), page 1 61 Based on the start-up method discussed on page 1 62, the ignition speed was assumed to be 25% of the rating.
  • the temperature of the turbine inlet at the time of ignition is TN
  • the power consumption when the gas turbine combustor operation method according to this embodiment is implemented and the gas turbine equipment is ignited is the same as that in Fig. 6 (1) even at the ignition speed related to the conventional technology. Decrease to value. This is because, in the region from the ignition speed related to the present invention to the ignition speed related to the prior art, since the evening bottle inlet temperature is as high as 400 ° C, the operation is inherent to the turbine. This is because the rotational friction loss of the evening pin is reduced by the amount that the air density is reduced due to the high temperature, so that the power consumption can be reduced by (A) in Fig. 6 from the conventional technology.
  • the gas turbine power generation facility in this embodiment has a power generation output of several tens to several hundreds kW, and in particular, a single stage centrifugal compressor and a single stage radial flow bin are installed in the gas turbine section that drives the generator. It is an Example at the time of applying the combined structure.
  • the gas turbine part of the gas turbine power generation facility in this section has the same equipment configuration as the cross-sectional view shown in Fig. 1, and will not be described again.
  • the gas turbine power generation facility of this embodiment does not necessarily need to be equipped with a combustor or a regenerative heat exchanger that can be ignited with a small flow rate.
  • the turbine wheel 6 drives not only the compressor impeller 1 but also a generator row having a permanent magnet 9 assembled integrally with the gas turbine rotating shaft.
  • the driven generator rotor forms an electromagnetic field with the generator stage 10 to generate electricity.
  • the generator cooling air 25 is externally introduced between the generator casing 11 and the generator station 10 so that the generator station 10 is not excessively heated. It has become.
  • While the generator cooling air 25 cools the generator stage 10, it passes through the cooling channel provided between the generator casing 11 and the generator stage 10, and the generator cooling air As 2 6, it merges with air 2 1 flowing from the atmosphere (flow rate of air 21> flow rate of generator cooling air 25 flow rate of air 26 after generator cooling) and flows into compressor impeller 1.
  • the diameter ratio of the turbine wheel outer diameter 16 and the compressor impeller outer diameter 15 is not less than 1.15.
  • the generator cooling air 2 5 that finally flows into the compressor impeller 1 together with the air 2 1 is used as the compressor. It is used as assist air for the engine and increases the amount of air sent from the compressor to the turbine side.
  • the generator cooling air 25 is fed at an increased pressure to increase the flow rate so that the flow rate recovers to the air flow rate commensurate with the number of revolutions of ignition when the pressure balance of the entire system is stable.
  • the generator cooling air 25 may not be used as the assist air, but a separate system may be used so that it is directly introduced into the compressor impeller 1 from the outside.
  • the gas turbine power generation facility in this embodiment has a power generation output of several tens to several hundreds kW, and in particular, a single stage centrifugal compressor and a single stage radial flow bin are installed in the gas turbine section that drives the generator. It is an Example at the time of applying the combined structure.
  • the gas turbine part of the gas turbine power generation facility in this example has the same equipment configuration as the cross-sectional view shown in FIG. 1, and a duplicate description is omitted.
  • the gas turbine power generation facility of this embodiment does not necessarily need to be equipped with a combustor or a regenerative heat exchanger that can be ignited with a small flow rate.
  • the compressor of the gas turpin power generation facility of the present embodiment is provided with a water spraying device 12 for spraying water directly at the compressor impeller inlet.
  • the ratio of the outer diameter of the bin wheel outer diameter 16 and the compressor impeller outer diameter 15 is 1.15 or more.
  • the amount of water sprayed increases until the flow rate recovers to an air flow rate that matches the number of revolutions of ignition when the pressure balance of the entire system is stable. If the pressure balance of the entire system is stabilized and the effect of increasing the air flow rate cannot be obtained even if the amount of water to be sprayed is increased, assist air is used as described in the third embodiment. Additional measures such as introduction to the compressor inlet will be added to stabilize the pressure balance.
  • a combustor that can be ignited at a low flow rate is provided, and a means for lowering the ignition speed from 25% of the rated speed is added. ⁇ It can be started, but by spraying with water, the range of lowering the number of revolutions of ignition is smaller than when not spraying with water.
  • a gas turbine power generation facility configured by combining a centrifugal compressor and a centrifugal turbine with a radial flow turbine
  • the hot gas at the turbine nozzle is increased. Acceleration is accelerated, and the static pressure at the turbine wheel inlet decreases.
  • the compressor approaches the design point as the turbine inlet temperature rises, so the pressure ratio increases and the static pressure at the compressor impeller outlet increases.
  • a thrust hail in the direction of pushing from the turbine wheel to the compressor impeller is generated.
  • the turbine wheel outer diameter is increased by increasing the turbine wheel outer diameter. Since it is only necessary to increase the pressure receiving area, it is effective to increase the diameter ratio of the turbine wheel outer diameter and the compressor impeller outer diameter to 1.15 or more.
  • the pressure balance of the entire system is increased. It is possible to provide a gas turbine power generation facility that can be ignited and started while maintaining a stable state and a starting method thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

To provide a gas turbine power generating apparatus which is capable of igniting and starting while stably keeping the pressure balance of an entire system even if the capacity of the apparatus is increased by increasing the difference in outer diameter (outer diameter of turbine wheel > outer diameter of compressor impeller) between a compressor impeller (1) and a turbine wheel (6). In order to attain the purpose, the gas turbine power generating apparatus in which the structure of the combination of a centrifugal compressor and a radial-flow turbine is used is characterized in that the ratio of the outer diameter of the turbine wheel to the outer diameter of the compressor impeller is 1.15 or larger for the purpose of increasing the power generating output.

Description

明 細 書  Specification
ガスタービン発電設備及びその起動方法 技術分野  Gas turbine power generation equipment and starting method thereof
本発明は、 遠心圧縮機と半径流タービンの組み合わせにより構成され たガスタービン発電設備及びその起動方法に関する。 背景技術  The present invention relates to a gas turbine power generation facility constituted by a combination of a centrifugal compressor and a radial flow turbine, and a starting method thereof. Background art
最近、 数十から数百 k Wのガス夕一ビンを用いて発電機を運転するガ スタービン発電設備の市場投入や新規開発が進んでいるが、 発電出力が 1 0 0 k W以下の設備では、 発電機を駆動するガスタービン部分に遠心 圧縮機と半径流夕一ビンを組み合わせた構造を採用している場合が多い。  Recently, gas turbine power generation facilities that operate generators using a gas bottle of tens to hundreds of kilowatts have been put on the market and new development has progressed. In many cases, the gas turbine that drives the generator employs a structure combining a centrifugal compressor and a radial flow bin.
このような構造から成るガス夕一ビン発電設備を起動する場合、 ェ ヌ ' ティー · エス、 マイク口ガスタービンの開発動向と将来展望、 (2001 年)、 第 1 6 1頁から第 1 6 2頁において記載されているように、 まず発 電機をモータとして使用して、 システム全体の圧力バランスを安定状態 に保ちながら燃焼器で安定して着火できる着火回転数 (定格回転数の 2 5 % ) まで昇速した後、 そのまま着火回転数に保持して着火する。 着 火を確認した後、 さらにシステム全体の圧力バランスを安定状態に保ち ながら定格回転数まで昇速する起動方法が一般的である。  In the case of starting up a gas evening power generation facility with such a structure, NTS, Development Trends and Future Prospects of the Mic Mouth Gas Turbine, (2001), pages 1 1 to 1 6 2 As described on the page, first, using the generator as a motor, the ignition speed that can be ignited stably by the combustor while keeping the pressure balance of the entire system stable (25% of the rated speed) After that, the ignition speed is maintained and the ignition is continued. A general starting method is to confirm the ignition and then increase the speed to the rated speed while keeping the pressure balance of the entire system stable.
また、 このような構造から成るガスタービン発電設備において発電出 カを大容量化するためには、 半径流タービンの出力を増大する必要があ り、 必然的にタービンホイールの外径を大きくすることとなる。 これに 対して、 圧縮機は、 圧縮機を駆動するための消費動力を低減する必要が あり、 圧縮機ィンペラの外径は必要な圧力比を満足する範囲で出来るだ け小さくすることが求められる。 結果として、 発電出力を大容量化する と、 圧縮機インペラとタービンホイールの外径差 (タービンホイール外 径>圧縮機インペラ外径) が大きくなる。 In addition, in order to increase the power output in a gas turbine power generation facility having such a structure, it is necessary to increase the output of the radial turbine, and inevitably increase the outer diameter of the turbine wheel. It becomes. On the other hand, the compressor needs to reduce the power consumption for driving the compressor, and the outer diameter of the compressor impeller can be within a range that satisfies the required pressure ratio. It is required to make it smaller. As a result, when the power generation output is increased, the difference in outer diameter between the compressor impeller and the turbine wheel (turbine wheel outer diameter> compressor impeller outer diameter) increases.
上記従来技術のように、 発電出力の大容量化に伴い圧縮機ィンペラと タービンホイールの外径差がある程度より大きくなると、 夕一ビン入口 温度がほぼ常温で、 かつ定格流量に対して少ない空気流量でのモー夕リ ング運転となる起動時において、 昇速するのに従い遠心圧縮機が、 半径 流タービンのポンプ動作に打ち勝って空気を夕一ビン側へ送り込むこと が困難となり、 システム全体の圧力パランスを安定状態に保てなくなる 現象が起こる。 その結果、 回転数の増加に見合った空気流量の増加が得 られなくなり、 従来技術に記載した着火回転数である定格回転数の 2 5 %まで昇速できなくなる問題点があった。  If the outer diameter difference between the compressor impeller and the turbine wheel becomes larger than a certain level as the power generation output increases, the evening bottle inlet temperature is almost normal and the air flow rate is lower than the rated flow rate. At the time of start-up, which is the mooring operation in the engine, it becomes difficult for the centrifugal compressor to overcome the pump operation of the radial flow turbine as it speeds up, and to send air to the bin side overnight. A phenomenon occurs that makes it impossible to maintain a stable state. As a result, an increase in the air flow rate commensurate with the increase in the rotational speed could not be obtained, and there was a problem that the speed could not be increased to 25% of the rated rotational speed, which was the ignition rotational speed described in the prior art.
本発明の目的は、 圧縮機インペラとタービンホイールの外径差 (夕一 ビンホイール外径 >圧縮機ィンペラ外径) を大きくして大容量化を図つ た場合でも、 システム全体の圧力バランスを安定した状態に保ちながら 着火 · 起動できるガスタービン発電設備およびその起動方法を提供する し clにめる。 発明の開示  The object of the present invention is to maintain the pressure balance of the entire system even when the outer diameter difference between the compressor impeller and the turbine wheel is increased (the bin wheel outer diameter> the compressor impeller outer diameter) to increase the capacity. Provide a gas turbine power generation facility that can be ignited and started while maintaining a stable state, and its starting method. Disclosure of the invention
上記目的を達成するための、 本発明ガスタービン発電設備は、 遠心圧 縮機と半径流タービンを組み合わせた構造を適用したガスタービン発電 設備において、 発電出力を大容量化するため、 タービンホイール外径と 圧縮機ィンペラ外径の径比を 1 . 1 5以上とする構造にある。  In order to achieve the above object, the gas turbine power generation equipment of the present invention is a gas turbine power generation equipment to which a structure combining a centrifugal compressor and a radial flow turbine is applied. And the compressor impeller outer diameter ratio is 1.15 or more.
また、 本発明のガスタービン発電設備の起動方法は、 システム全体の 圧力バランスが不安定となる回転数より低い回転数でのモータリング運 転時に着火し、 タービン本来の動作ができるようになる所定温度まで夕 一ビン入口温度を上昇させ、 システム全体の圧力バランスを安定した状 態に保ちながら昇速させることを特徴とする。 In addition, the gas turbine power generation equipment start-up method of the present invention provides motoring operation at a rotational speed lower than the rotational speed at which the pressure balance of the entire system becomes unstable. It is characterized in that it is ignited at the time of turning, and the bin inlet temperature is increased to a predetermined temperature at which the original operation of the turbine can be performed, and the pressure is increased while maintaining the pressure balance of the entire system in a stable state.
また、 本発明のガスタービン発電設備の起動方法は、 圧縮機がタービ ンのポンプ動作に打ち勝って空気をタービン側へ送り込むことができる ように、 外部から噴霧水やアシスト空気を圧縮機入口へ送り込むことに より、 システム全体の圧力バランスを安定した状態で保ちながら昇速さ せることを特徴とする。 図面の簡単な説明  In addition, the method for starting the gas turbine power generation facility of the present invention feeds spray water or assist air from the outside to the compressor inlet so that the compressor can overcome the turbine pump operation and send air to the turbine side. In this way, it is possible to increase the speed while maintaining a stable pressure balance of the entire system. Brief Description of Drawings
第 1図は、 本発明のガスタービン構造の一実施例 (第 1の実施例) に 関わるガスタービン発電設備の断面図。  FIG. 1 is a cross-sectional view of a gas turbine power generation facility relating to one embodiment (first embodiment) of a gas turbine structure of the present invention.
第 2図は、 着火しないモータリング運転により昇速したときの夕ービ ンと圧縮機それぞれの回転数に対する圧力変化を示した概念図。  Fig. 2 is a conceptual diagram showing changes in pressure with respect to the rotational speeds of the evening and compressor when the speed is increased by motoring operation without ignition.
第 3図は、 圧力 P 1および空気流量と、 着火回転数およびタービンホ ィール外径と圧縮機ィンペラ外径の径比の関係を示した概念図。  FIG. 3 is a conceptual diagram showing the relationship between the pressure P 1 and the air flow rate, the number of revolutions of ignition, the diameter ratio of the turbine wheel outer diameter and the compressor impeller outer diameter.
第 4図は、 本発明のガスタービン起動方法の一実施例 (第 1の実施例) に関わる燃焼器縦断面図。  FIG. 4 is a longitudinal sectional view of a combustor according to an embodiment (first embodiment) of a gas turbine starting method of the present invention.
第 5図は、 本発明のガスタービン起動方法の別の実施例 (第 2の実施 例) に関わる燃焼器縦断面図。  FIG. 5 is a longitudinal sectional view of a combustor according to another embodiment (second embodiment) of the gas turbine starting method of the present invention.
第 6図は、 第 1あるいは第 2の実施例を実施した場合と従来技術によ りガスタービン発電設備を起動した場合で着火回転数までの消費電力を 比較した概念図。  FIG. 6 is a conceptual diagram comparing power consumption up to the number of ignition revolutions when the first or second embodiment is implemented and when the gas turbine power generation facility is activated by the conventional technology.
第 7図は、 本発明のガスタービン起動方法の別の実施例 (第 3の実施 例) に関わるガスタービン発電設備の断面図。 第 8図は、 本発明のガスタービン起動方法の別の実施例 (第 4の実施 例) に関わるガスタービン発電設備の断面図。 発明を実施するための最良の形態 FIG. 7 is a cross-sectional view of a gas turbine power generation facility relating to another embodiment (third embodiment) of the gas turbine starting method of the present invention. FIG. 8 is a cross-sectional view of a gas turbine power generation facility according to another embodiment (fourth embodiment) of the gas turbine starting method of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
本発明に関わるガスタービン発電設備の一実施例 (第 1の実施例) に ついて第 1図を用いて詳細に説明する。 第 1図は本発明に関わるガス夕 —ビン発電設備における発電機を駆動するガスタービン部分の断面図で ある。  An embodiment (first embodiment) of a gas turbine power generation facility according to the present invention will be described in detail with reference to FIG. FIG. 1 is a cross-sectional view of a gas turbine section that drives a generator in a gas turbine power generation facility according to the present invention.
本実施例におけるガスタービン発電設備は、 1 0 0 k Wを超える発電 出力を有し、 特に発電機を駆動するガスタービン部分に単段の遠心圧縮 機と単段の半径流ターピンを組み合わせた構造を適用した場合の実施例 である。 本実施例におけるガス夕一ビン発電設備において、 特に発電機 を駆動するガスタービン部分に着目し、 空気の流れに従い、 機器構成お よびその動作について説明する。  The gas turbine power generation facility in this embodiment has a power generation output exceeding 100 kW, and in particular, a structure in which a single-stage centrifugal compressor and a single-stage radial flow turpin are combined with the gas turbine section that drives the generator. This is an example in the case of applying. In the gas evening bin power generation facility in this embodiment, focusing on the gas turbine portion that drives the generator, the equipment configuration and its operation will be described according to the air flow.
大気中より流入した空気 2 1は、 ガスタービン回転軸と一体に組み立 てられた遠心圧縮機の動翼である圧縮機ィンペラ 1により昇圧され、 遠 心圧縮機の静翼であるディフューザ 2に流入する。 ここで、 ディフュー ザ 2は圧縮機ケ一シング 3あるいは圧縮機背板 4のどちらかと一体構造 を成すものとする。 空気 2 1は、 ディフューザ 2を周方向外向きに通過 する際に、 さらに減速されて静圧回復した後、約 4〜 5気圧、約 2 0 0 °C の高圧空気 2 2 となる。 高圧空気 2 2は、 図示しないスクロールへ導か れてさらに静圧回復した後、 図示しない燃焼器に流入する。 ここで、 ス クロールを出た高圧空気 2 2を、 場合によっては図示しない再生熱交換 器に導き、 タービンの排気ガスとの熱交換により余熱した後に、 図示し ない燃焼器へ流入させても良い。 高圧空気 2 2は、 図示しない燃焼器において、 燃焼ガスと混合 ' 燃焼 により、 約 4〜 5気圧、 約 1 0 0 0 °Cの高温ガス 2 3 となる。 The air 21 flowing in from the atmosphere is pressurized by the compressor impeller 1 that is the moving blade of the centrifugal compressor assembled integrally with the gas turbine rotating shaft, and flows into the diffuser 2 that is the stationary blade of the centrifugal compressor. To do. Here, it is assumed that the diffuser 2 has an integral structure with either the compressor casing 3 or the compressor back plate 4. When the air 21 passes through the diffuser 2 outward in the circumferential direction, it is further decelerated and recovered to static pressure, and then becomes high-pressure air 2 2 of about 4 to 5 atm and about 200 ° C. The high-pressure air 22 is guided to a scroll (not shown) and further recovered by static pressure, and then flows into a combustor (not shown). Here, in some cases, the high-pressure air 22 that has exited the scroll may be guided to a regenerative heat exchanger (not shown), and after remaining heat by exchanging heat with the exhaust gas from the turbine, it may flow into a combustor (not shown). . The high-pressure air 2 2 becomes a high-temperature gas 2 3 of about 4 to 5 atm and about 100 ° C. by mixing with combustion gas and combustion in a combustor (not shown).
高温ガス 2 3は、 半径流夕一ピンの静翼であるノズル 5に流入し、 流 路断面積の縮小に伴い加速される。 ここで、 ノズル 5は夕一ビン背板 7 あるいはタービンシェル 8のどちらかと一体構造を成すものとする。 加 速された高温ガス 2 3は、 ガスタービン回転軸と一体に組み立てられた 半径流タービンの動翼である夕一ビンホイール 6に流入し、 膨張して夕 一ビンホイール 6に回転エネルギーを与えて高温低圧ガス 2 4となり、 図示しない排気ディフューザに導かれてさらに静圧回復した後に大気中 へ排気される。 ここで、 排気ディフューザを出た高温低圧ガス 2 4を、 場合によっては図示しない再生熱交換器に導き、 圧縮機の吐出空気であ る高圧空気 2 2との熱交換をして温度を下げた後に、 大気中へ排気して も良い。  Hot gas 23 flows into nozzle 5, which is a stationary vane with a radial flow pin, and is accelerated as the cross-sectional area of the flow path is reduced. Here, it is assumed that the nozzle 5 has an integral structure with either the bottle back plate 7 or the turbine shell 8. The accelerated hot gas 2 3 flows into the evening bin wheel 6 which is a moving blade of the radial flow turbine assembled integrally with the gas turbine rotating shaft, and expands to give rotational energy to the evening bin wheel 6. As a result, it becomes high-temperature low-pressure gas 24 and is led to an exhaust diffuser (not shown). Here, the high-temperature low-pressure gas 2 4 exiting the exhaust diffuser was led to a regenerative heat exchanger (not shown) in some cases, and the temperature was lowered by heat exchange with the high-pressure air 2 2 that was discharged from the compressor. Later it may be vented to the atmosphere.
本実施例のように、 発電出力が 1 0 0 k Wを超える大容量化に対応し てタービン出力を増大するには、 半径流タービンの場合、 ノズルにより 加速された流体がタービンホイールへ衝突することで発生する回転トル クを大きくするため、 夕一ビンホイールの外径を大きくすることが一般 的である。  In order to increase the turbine output in response to the increase in the power generation output exceeding 100 kW as in this embodiment, in the case of a radial flow turbine, the fluid accelerated by the nozzle collides with the turbine wheel. In order to increase the rotational torque generated by this, it is common to increase the outer diameter of the evening bin wheel.
これに対し、 発電出力が 1 0 0 k Wを超える大容量化に対応して遠心 圧縮機の消費動力を低減するには、 回転に費やす消費動力を低減するた め、 圧縮機ィンペラの外径は必要な圧力比を満足する範囲で出来るだけ 小さくすることが求められる。結果として、発電出力を大容量化すると、 必然的にタービンホイール外径 1 6 と圧縮機ィンペラ外径 1 5の外径差 が大きくなる。 本実施例では、 ターピンホイール外径 1 6 と圧縮機イン ペラ外径 1 5の径比が 1 . 1 5以上となっている。 上記のガスタービン発電設備を従来技術で起動する場合は、 系統から の外部電力ゃパッテリー電力を使用してガスタービン回転軸をモータリ ング運転し、 定格回転数の約 2 5 %相当の着火回転数まで昇速すること が必要になるが、 本実施例のようにタービンホイール外径 1 6 と圧縮機 インペラ外径 1 5の径比が 1 . 1 5以上になると、システム全体の圧カバ ランスが不安定となる現象が生じ起動できなくなる。 On the other hand, in order to reduce the power consumption of the centrifugal compressor in response to the increase in power generation output exceeding 100 kW, the outer diameter of the compressor impeller is reduced in order to reduce the power consumption for rotation. Is required to be as small as possible within the range that satisfies the required pressure ratio. As a result, when the power generation output is increased, the difference in the outer diameter between the turbine wheel outer diameter 16 and the compressor impeller outer diameter inevitably increases. In this embodiment, the ratio of the terpin wheel outer diameter 16 and the compressor impeller outer diameter 15 is 1.15 or more. When the above gas turbine power generation equipment is started up using conventional technology, the external power from the grid is used to drive the gas turbine rotating shaft using battery power, and the ignition speed is approximately 25% of the rated speed. However, if the ratio of the turbine wheel outer diameter 16 to the compressor impeller outer diameter 15 is 1.15 or more as in this embodiment, the pressure balance of the entire system is reduced. An unstable phenomenon occurs and it cannot start.
このシステム全体の圧力バランスが不安定となる現象について第 2図 を用いて説明する。 第 2図は発電機を駆動するガスタービン部分に単段 の遠心圧縮機と単段の半径流夕一ビンを組み合わせた構造を適用したガ スタービン発電設備を、 着火しないモータリング運転により昇速したと きのタービンと圧縮機それぞれの回転数に対する圧力変化を示したもの である。 ここで、 タービンの圧力はノズル入口で定義した圧力であり、 圧縮機の圧力は圧縮機スクロール出口で定義した圧力とする。  The phenomenon that the pressure balance of the entire system becomes unstable will be described with reference to Fig. 2. Fig. 2 shows the gas turbine power generation equipment that uses a structure that combines a single-stage centrifugal compressor and a single-stage radial flow bin in the gas turbine section that drives the generator. It shows the change in pressure with respect to the rotational speeds of the turbine and compressor. Here, the turbine pressure is the pressure defined at the nozzle inlet, and the compressor pressure is the pressure defined at the compressor scroll outlet.
モータリングによる起動時は、 タービン入口温度がほぼ常温で、 かつ 定格流量に対して少ない空気流量での運転となるため、 タービンは本来 の動作と異なるポンプ動作となる。 昇速するに従いタービンのボンプ動 作はその強さを増し、 タービン入口圧力と圧縮機吐出圧力が均衡してシ ステム全体の圧力バランスを安定状態に保てなくなるため、 遠心圧縮機 がタービン側へ空気を送り込むことが困難となる。 結果として回転数の 増加に見合った空気流量の増加が得られなくなり、 ある回転数以上に昇 速させることができなくなってしまう。  When starting up by motoring, the turbine inlet temperature is almost normal and the air flow is lower than the rated flow. Therefore, the turbine operates in a pump that is different from the original operation. As the speed increases, the strength of the pump operation of the turbine increases, and the turbine inlet pressure and the compressor discharge pressure are balanced and the pressure balance of the entire system cannot be maintained in a stable state. It becomes difficult to send air. As a result, an increase in the air flow rate corresponding to the increase in the rotational speed cannot be obtained, and the speed cannot be increased beyond a certain rotational speed.
すなわち、 第 2図に示すように、 起動直後におけるタービン入口圧力 と圧縮機吐出圧力の関係は 「タービン入口圧力 <圧縮機吐出圧力」 の状 態にあるが、 ある回転数 N sに達すると、 「ターピン入口圧力 =圧縮機吐 出圧力」 (このときの圧力を とする) となる。 そして、 それ以上昇速 すると 「タービン入口圧力 >圧縮機吐出圧力」 と相互の圧力の大小関係 が逆転して、 空気流量が減少する状態になってしまい、 それ以上昇速で きなくなる。 In other words, as shown in Fig. 2, the relationship between the turbine inlet pressure and the compressor discharge pressure immediately after start-up is in the state of "turbine inlet pressure <compressor discharge pressure", but when a certain rotation speed N s is reached, “Turpin inlet pressure = Compressor discharge pressure” (the pressure at this time is defined as). And more than that Then, the relation between the pressures of “turbine inlet pressure> compressor discharge pressure” is reversed, and the air flow rate decreases, and the speed cannot be increased any more.
次に、 ターピンホイール外径と圧縮機インペラ外径の径比と、 圧力 Pい空気流量及び着火回転数の関係について、第 3図を用いて説明する。 第 3図においてタービンホイール外径 1 6 と圧縮機ィンペラ外径 1 5 の径比が増加するに従い、 圧力 P t は 2次曲線的に低下し、 その圧力 における空気流量(すなわち、回転数 N sにおける空気流量)も減少する。 ただし、 タービンホイール外径 1 6と圧縮機ィンペラ外径 1 5の径比が 1 . 1 5付近より小さくなると、 圧力 P ,における空気流量に関しては、 圧力 P tの減少幅が小さくなるのに伴い、 流量の減少幅も小さくなる。 こ れに対し、 着火回転数における空気流量は、 第 3図に示すように燃焼器 の着火できる流量範囲で制限されるため、 「圧力 P ,における空気流量≥ 着火回転数における空気流量」 でなければ着火できないことになる。 本 実施例のガスタービン発電設備は、 タービンホイール外径 1 6と圧縮機 インペラ外径 1 5の径比が 1 . 1 5以上であり、 「圧力 P , における空気 流量 >着火回転数における空気流量」 の条件をクリアするためには、 定 格回転数の 1 0 %の運転点まで引き下げて定格空気流量の 5 %の空気流 量 G sで着火する必要がある。 Next, the relationship between the outer diameter of the turpin wheel and the outer diameter of the compressor impeller, the pressure P, the air flow rate and the number of revolutions of ignition will be described with reference to FIG. In FIG. 3, as the diameter ratio between the turbine wheel outer diameter 16 and the compressor impeller outer diameter 15 increases, the pressure P t decreases in a quadratic curve, and the air flow rate at that pressure (that is, the rotational speed N s The air flow rate at () also decreases. However, if the diameter ratio between the turbine wheel outer diameter 16 and the compressor impeller outer diameter 15 becomes smaller than around 1.15, the air flow rate at the pressure P, as the decreasing range of the pressure P t decreases. The decrease in flow rate is also reduced. On the other hand, the air flow rate at the ignition speed is limited by the flow range in which the combustor can ignite as shown in Fig. 3. Therefore, the air flow rate at the pressure P ≥ the air flow rate at the ignition speed must be If it does not ignite. In the gas turbine power generation facility of this example, the diameter ratio of the turbine wheel outer diameter 16 and the compressor impeller outer diameter 15 is not less than 1.15, and “air flow rate at pressure P,> air flow rate at ignition speed In order to clear the condition, it is necessary to lower the operating point to 10% of the rated speed and ignite at an air flow rate Gs of 5% of the rated air flow rate.
なお、 タービンホイール外径 1 6と圧縮機ィンペラ外径 1 5の径比が 1 . 2以上になると、後述するように、圧縮機がタービンのポンプ動作に 打ち勝って空気をタービン側へ送り込むことができるように、 外部から 噴霧水やアシス ト空気を圧縮機入口へ送り込むことで圧力 における 空気流量を増加し、 着火回転数における空気流量を上回る手段が必要と なる。 定格空気流量の 5 %が得られる定格回転数の 1 0 %の運転点で安定し て着火することができるガスタービン燃焼器の一例としては、 例えば国 際公開公報 WO 2 0 0 5 Z0 5 9442 A 1が挙げられる。 第 4図にそ の縦断面図を示す。 If the diameter ratio between the turbine wheel outer diameter 16 and the compressor impeller outer diameter 15 is 1.2 or more, the compressor can overcome the pump operation of the turbine and send air to the turbine side, as will be described later. In order to achieve this, it is necessary to increase the air flow rate at the pressure by sending spray water or assist air from the outside to the compressor inlet and to exceed the air flow rate at the ignition speed. As an example of a gas turbine combustor that can be stably ignited at an operating point of 10% of the rated speed at which 5% of the rated air flow rate is obtained, for example, International Publication WO 2 0 0 5 Z0 5 9442 A 1 is mentioned. Fig. 4 shows the longitudinal section.
第 4図に示した燃焼器は、 大きく分けてパイロッ トパーナ 3 1, 燃焼 器ライナ一 3 2, 燃焼器エンドカバー 3 3 , 燃焼器外筒 34によって構 成されている。  The combustor shown in Fig. 4 is roughly divided into a pilot parner 31, a combustor liner 31, a combustor end cover 3 3, and a combustor outer cylinder 34.
パイロッ トパーナ 3 1は、 ガス夕一ビン発電設備の起動に関わる着火 を担うパーナであり、 第 1次燃料ノズル 43の周囲に、 旋回羽 4 1を有 する旋回通路 46を設けている。 また、 この旋回通路 46には、 その内 部に燃焼用空気を導入する第 1次空気導入孔 42が形成されている。 こ の第 1次空気導入孔 42は円周方向 8箇所に持っている。  The pilot panner 3 1 is a panner responsible for ignition related to the start-up of the gas evening bin power generation facility, and a swirl passage 46 having swirl vanes 41 is provided around the primary fuel nozzle 43. In addition, the swirl passage 46 is formed with a primary air introduction hole 42 for introducing combustion air therein. The primary air introduction holes 42 are provided at eight locations in the circumferential direction.
燃焼器ライナー 3 2は燃焼室を構成する部品であり、 燃焼器出口ガス 温度分布を平滑化するための円周方向 6箇所に設けた希釈孔 5 2および 円周方向 3箇所に設けた第 2次空気導入孔 5 3を持ち、 図示しないター ビンとの連絡部品であるトランジッシヨンピースに対してスプリングシ ール 5 1で取り合っている。  Combustor liner 3 2 is a component that constitutes the combustion chamber. Combustor outlet gas The dilution holes 5 2 provided at six locations in the circumferential direction for smoothing the temperature distribution and the second provided at three locations in the circumferential direction. It has a secondary air introduction hole 53, and it is connected to a transition piece, which is a connecting part with a turbine (not shown), with a spring seal 51.
図示しない圧縮機から導かれた燃焼用空気は、 燃焼器ライナー 3 2と 燃焼器外筒 34の間の空間を流れ、 その一部の燃焼用空気は円周方向 6 箇所に設けた希釈孔 5 2、 円周方向 3箇所に設けた第 2次空気導入孔 5 3から燃焼室内に流入する。 また、 残りの燃料用空気は、 円周方向 8 箇所に設けた第 1次空気導入孔 42から旋回通路 46に流入し、 旋回羽 4 1により所定の旋回を与えられた後、 燃焼器ライナー 3 2の内側を流 れる。 そして、 燃焼室内部で発生した燃焼ガスは、 図示しない夕一ビン との連絡部品である トランジッシヨンピースへ流出する。 燃料は図面下側中央に位置する第 1次燃料ノズル 4 3および図面中央 の第 2次燃料ノズル 6 1にそれぞれ独立して供給され、 第 1次燃料噴孔 4 4および第 2次燃料噴孔 6 2から燃焼室内に噴出する。 全ての燃料は 直接燃焼室に向けて噴射されており、 燃焼室外で燃料と空気が混在する 予混合器のような部品がないため、 原理的に自発火あるいは逆火といつ た事故は生じない。 Combustion air guided from a compressor (not shown) flows in a space between the combustor liner 3 2 and the combustor outer cylinder 34, and a part of the combustion air is diluted with holes 5 provided at six locations in the circumferential direction. 2. It flows into the combustion chamber through secondary air inlet holes 53 provided at three locations in the circumferential direction. The remaining fuel air flows into the swirl passage 46 from the primary air introduction holes 42 provided at eight locations in the circumferential direction, and is given a predetermined swirl by the swirl vanes 41. Then, the combustor liner 3 Flows inside 2. Then, the combustion gas generated in the combustion chamber flows out to a transition piece which is a communication part with an evening bottle (not shown). Fuel is independently supplied to the primary fuel nozzle 43 located in the lower center of the drawing and the secondary fuel nozzle 61 located in the center of the drawing, respectively, and the primary fuel nozzle 44 and the secondary fuel nozzle. 6 Ejected into the combustion chamber from 2. All fuel is injected directly into the combustion chamber, and there is no premixer-like component that mixes fuel and air outside the combustion chamber, so in principle there will be no accidents such as self-ignition or flashback. .
パイロッ トパーナ 3 1は通常の拡散燃焼方式を採用している。 ガス夕 一ビン発電設備において、 着火時を除いて空気流量が十分に確保できる 場合には、 第 1次空気導入孔 4 2から旋回通路 4 6に流入し旋回羽 4 1 により所定の旋回を与えられた第 1次燃焼用空気 7 1は旋回通路 4 6出 口から燃焼室に入って急拡大するため、 燃焼器頭部の第 1次燃料ノズル 4 3下流に循環流領域を形成する。 この循環流領域に対して第 1次燃料 ノズル 4 3端面に開口した第 1次燃料噴孔 4 4から燃料を噴射し、 拡散 燃焼を行わせる。  The Pilot Pana 31 uses the normal diffusion combustion method. In the gas evening bottle power generation facility, when the air flow rate can be sufficiently secured except during ignition, it flows into the turning passage 4 6 from the primary air introduction hole 4 2 and gives a predetermined turning by the turning blade 4 1. The generated primary combustion air 71 enters the combustion chamber from the outlet of the swirl passage 46 and rapidly expands, so that a circulation flow region is formed downstream of the primary fuel nozzle 43 in the combustor head. Fuel is injected into the circulating flow region from the primary fuel nozzle 44 opened at the end face of the primary fuel nozzle 43, and diffusion combustion is performed.
一方、 第 2次空気導入孔 5 3から燃焼室内に噴出する第 2次空気 7 2 には、 第 2次空気導入孔 5 3と同じ位置に設置した第 2次燃料ノズル 6 1から放射状に燃料が噴射される。 但し、 第 2次燃料噴射直後は第 2 次空気 7 2が燃焼室に突入する流速が大きく、 また周囲の燃焼ガスとの 剪断が強いために、 燃焼反応が始まってもすぐに火炎が吹き消えてしま い、 第 2次燃料ノズル 6 1近傍では火炎保持しないので第 2次燃料ノズ ル 6 1や燃焼器ライナ一 3 2壁面近傍には局所的な高温領域が現れず、 信頼性確保の観点からも有利である。  On the other hand, the secondary air 7 2 ejected from the secondary air introduction hole 53 into the combustion chamber has a radial fuel from the secondary fuel nozzle 61 installed at the same position as the secondary air introduction hole 53. Is injected. However, immediately after the secondary fuel injection, the flow rate of the secondary air 7 2 enters the combustion chamber is large, and the shearing with the surrounding combustion gas is strong, so even if the combustion reaction starts, the flame will blow out immediately. Since the secondary fuel nozzle 61 does not hold the flame in the vicinity of the secondary fuel nozzle 61, the local high temperature region does not appear in the vicinity of the secondary fuel nozzle 61 or the combustor liner 3 2 and the viewpoint of ensuring reliability Is also advantageous.
このガスタービン燃焼器を定格空気流量の 5 %が得られる定格回転数 の 1 0 %の運転点で着火する場合、 第 1次燃焼用空気 7 1は、 第 1次空 気導入孔 4 2から旋回通路 4 6に流入し旋回羽 4 1により所定の旋回を 0 When this gas turbine combustor is ignited at an operating point of 10% of the rated speed at which 5% of the rated air flow rate can be obtained, the primary combustion air 71 will be drawn from the primary air inlet hole 42. It enters the turning passage 4 6 and makes a predetermined turning by the turning blade 4 1. 0
与えられ、 旋回通路 4 6出口から燃焼室に入って急拡大するが、 流速が 遅いため燃焼器頭部の第 1次燃料ノズル 4 3下流に循環流領域を形成す るには至らず、 燃焼器ライナー 3 2内を下流側へ向かう。 Swirl passage 4 6 enters the combustion chamber from the exit of 6 and rapidly expands, but the flow velocity is slow, so it does not form a circulating flow region downstream of the primary fuel nozzle 4 3 in the combustor head, and combustion Go downstream in vessel liner 3 2.
この下流側へ向かう第 1次燃焼用空気 7 1は、 周方向 3箇所の第 2次 空気導入孔 5 3から燃焼器ライナー 3 2内に噴出した第 2次空気 7 2 と、 燃焼器ライナー 3 2中心軸近傍で互いに衝突して内向き流れの循環流 9 1 となり、 淀み領域を形成する。 この淀み領域内では流速は低下し充 分に伝播火炎が維持できる条件となるため、 第 1次燃焼用空気 7 1中に 投入された第 1次燃料 8 1は、 上記の内向き流れの循環流 9 1内で燃焼 反応を開始し、 着火に至る。  The primary combustion air 7 1 heading downstream is composed of secondary air 7 2 ejected from three secondary air inlet holes 53 in the circumferential direction into the combustor liner 3 2, and the combustor liner 3. 2 Colliding with each other in the vicinity of the central axis to form an inwardly circulating flow 9 1, forming a stagnation region. In this stagnation region, the flow velocity decreases, and the propagation flame can be maintained sufficiently. Therefore, the primary fuel 8 1 introduced into the primary combustion air 7 1 is circulated in the above inward flow. Combustion reaction starts in stream 9 1, leading to ignition.
また、本実施例において、燃料は第 1次燃料ノズル 4 3にのみ供給し、 第 1次燃料噴孔 4 4から燃焼器ライナー 3 2内へ噴出するが、 第 1次燃 焼用空気 7 1 と混合した段階では、 空気流量が少ないため燃料過多の着 火性が悪い状態である。  In this embodiment, the fuel is supplied only to the primary fuel nozzle 4 3 and is ejected from the primary fuel injection hole 4 4 into the combustor liner 3 2, but the primary combustion air 7 1 At the stage of mixing, the ignitability due to excessive fuel is poor because the air flow rate is small.
しかし、 燃焼器ライナー 3 2内下流で周方向 3箇所の第 2次空気導入 孔 5 3から燃焼器ライナー 3 2内に噴出した第 2次空気 7 2と、 燃焼器 ライナー 3 2中心軸近傍で互いに衝突して淀み領域を形成する段階では、 第 2次空気 7 2により希釈され着火性が良好な状態に至る。  However, in the downstream of the combustor liner 3 2, there are three secondary air introduction holes 5 3 in the circumferential direction, the secondary air 7 2 injected into the combustor liner 3 2, and the combustor liner 3 2 near the central axis. At the stage where they collide with each other to form a stagnation region, they are diluted with the secondary air 72 to reach a good ignitability state.
定格空気流量の 5 %が得られる定格回転数の 1 0 %の運転点で着火す るためには、 第 2次空気 4 2の噴流が燃焼器ライナー 3 2の中心軸近傍 までパイロッ トパーナ 3 1の燃焼ガス流を横切って貫通し、 第 2次空気 7 2の噴流が相互に衝突して淀み領域を形成し、 循環流領域を形成する ことが安定して着火する観点から重要である。  In order to ignite at an operating point of 10% of the rated speed at which 5% of the rated air flow rate can be obtained, the jet of secondary air 4 2 reaches the vicinity of the center axis of the combustor liner 3 2 From the viewpoint of stable ignition, it is important that the secondary air 72 jets collide with each other to form a stagnation region and form a circulation flow region.
第 2次空気 7 2の噴出流速を確保し、 かつ第 2次空気 7 2の噴流が燃 焼器ライナー 3 2の中心軸近傍まで貫通することを確保するためには、 1 In order to secure the jet velocity of the secondary air 7 2 and to ensure that the jet of the secondary air 7 2 penetrates to the vicinity of the central axis of the combustor liner 3 2, 1
燃焼器ライナー 2断面で定義する平均空気流速に対する第 2次空気 4 2 の噴流の流速の比を約 3倍以上に設計することが適当であり、 燃焼器ラ イナ一 3 2の表面積に対する開口部面積の比率を 2 0〜 3 0 %、 燃焼器 の全圧損失係数を 4 0〜 5 0の間で設計することが望ましい。 It is appropriate to design the ratio of the jet velocity of the secondary air 4 2 to the average air velocity defined in the cross section of the combustor liner 2 to be about 3 times or more, and the opening to the surface area of the combustor liner 3 2 It is desirable to design the area ratio between 20 and 30% and the combustor total pressure loss coefficient between 40 and 50.
なお、 着火時における燃焼温度は、 タービン入口温度が上がると夕一 ビン本来の動作がポンプ動作を上回り、 圧縮機がタービン側へ送り込む 空気流量が増加する現象に着目し、 システム全体の圧力バランスが不安 定な状態での空気流量から、 着火回転数に見合った本来の空気流量まで 回復する温度以上かつ機器に昇温によるダメージを与えない温度以下と する。  Note that the combustion temperature at the time of ignition increases when the turbine inlet temperature rises. The focus is on the phenomenon that the original operation of the bin exceeds the pump operation, and the flow rate of air that the compressor sends to the turbine increases. The temperature should be above the temperature at which the air flow rate in an unstable state is restored to the original air flow rate commensurate with the number of revolutions of ignition, and below the temperature at which the equipment will not be damaged by heating.
本発明に関わるガスタービン発電設備の起動方法の別の実施例 (第 2 の実施例) について第 5図を用いて詳細に説明する。 本実施例における ガスタービン発電設備の構造および起動方法は第 2の実施例と同様であ るため重複する説明は割愛する。本実施例が第 1の実施例と異なる点は、 定格空気流量の 5 %が得られる定格回転数の 1 0 %の運転点で着火する 際の、 燃焼器の着火方法である。 第 5図は、 国際公開公報 W O 2 0 0 5 / 0 5 9 4 4 2 A 1に記載の従来技術に関わるガス夕一ビン用燃焼器の 縦断面図であり、 機器構成およびその動作は第 4図と全く同様であるた め、 ここでは説明を割愛する。  Another embodiment (second embodiment) of the method for starting the gas turbine power generation facility according to the present invention will be described in detail with reference to FIG. Since the structure and start-up method of the gas turbine power generation facility in this embodiment are the same as those in the second embodiment, a duplicate description is omitted. The difference of this embodiment from the first embodiment is the combustor ignition method when ignition is performed at an operating point of 10% of the rated speed at which 5% of the rated air flow rate is obtained. FIG. 5 is a longitudinal sectional view of a combustor for a gas evening bottle related to the prior art described in International Publication WO 2 0 0 5/0 5 9 4 4 2 A 1. The explanation is omitted here because it is exactly the same as Figure 4.
このガスタービン燃焼器を定格空気流量の 5 %が得られる定格回転数 の 1 0 %の運転点で安定して着火する運用方法の別の実施例を以下に説 明する。 なお、 前に述べた実施例と重複する説明は割愛する。  Another embodiment of an operation method for stably igniting this gas turbine combustor at an operating point of 10% of the rated speed at which 5% of the rated air flow rate is obtained will be described below. In addition, the description which overlaps with the Example described previously is omitted.
このガスタービン燃焼器を定格空気流量の 5 %が得られる定格回転数 の 1 0 %の運転点で着火する場合、 第 1次燃焼用空気 Ί 1は、 流速が遅 いため燃焼器頭部の第 1次燃料ノズル 4 3下流に循環流領域を形成する には至らず、 燃焼器ライナ一 3 2内を下流側へ向かう。 この下流側へ向 かう第 1次燃焼用空気 7 1は、 周方向 3箇所の第 2次空気導入孔 5 3か ら燃焼器ライナー 2内に噴出した第 2次空気 4 2と、 燃焼器ライナー 2 中心軸近傍で互いに衝突して外向き流れの循環流 9 2 となり、 淀み領域 を形成する。 この淀み領域に向けて第 2次空気導入孔 5 3 と同じ位置に 設置した第 2次燃料ノズル 6 1から放射状に第 2次燃料 8 2を噴射する と、 これらの淀み領域における外向き流れの循環流 9 2内では、 流速が 低下し充分に伝播火炎が維持できる条件となるため、 第 2次燃料 8 2は 第 1次燃焼用空気 7 1および第 2次空気 7 2と混合し、 上記の循環流内 で燃焼反応を開始し、 着火に至る。 When this gas turbine combustor is ignited at an operating point of 10% of the rated speed at which 5% of the rated air flow rate can be obtained, the primary combustion air Ί 1 has a low flow velocity, so Primary fuel nozzle 4 3 Form a circulating flow area downstream However, it goes downstream in the combustor liner. The primary combustion air 71 going to the downstream side is composed of secondary air 42 2 ejected into the combustor liner 2 from the secondary air introduction holes 53 in three circumferential directions, and the combustor liner. 2 Collide with each other near the central axis to form a circulating flow of outward flow 9 2, forming a stagnation region. When the secondary fuel 8 2 is injected radially from the secondary fuel nozzle 61 installed in the same position as the secondary air introduction hole 53 toward the stagnation region, the outward flow in these stagnation regions In the circulating flow 92, since the flow velocity is reduced and the propagation flame can be sufficiently maintained, the secondary fuel 82 is mixed with the primary combustion air 71 and the secondary air 72, and the above The combustion reaction starts in the circulating flow of and leads to ignition.
また、本実施例において、燃料は第 2次燃料ノズル 6 1にのみ供給し、 第 2次燃料噴孔 6 2から燃焼器ライナ一 3 2内へ噴出するが、 周方向 3 箇所の第 2次空気導入孔 5 3から燃焼器ライナ一 3 2内に噴出した第 2 次空気 7 2のみと混合した段階では、 空気流量が少ないため燃料過多の 着火性が悪い状態である。  Further, in this embodiment, the fuel is supplied only to the secondary fuel nozzle 61, and is ejected from the secondary fuel injection hole 62 into the combustor liner 32. At the stage of mixing only with the secondary air 72 discharged from the air introduction hole 53 into the combustor liner 32, the air flow rate is small and the ignitability due to excessive fuel is poor.
しかし、 燃焼器ライナー 3 2内上流から流出して来る第 1次燃焼用空 気 7 1 と、 燃焼器ライナー 3 2中心軸近傍で互いに衝突して淀み領域を 形成する段階では、 第 1次燃焼用空気 7 1により希釈され着火性が良好 な状態に至る。 なお、 着火時における燃焼温度は、 第 1の実施例で述べ たのと同様に設定するものとする。  However, the primary combustion air 7 1 flowing out from the upstream in the combustor liner 3 2 and the combustor liner 3 2 collide with each other in the vicinity of the central axis to form a stagnation region. Diluted with industrial air 71 to achieve good ignitability. Note that the combustion temperature at the time of ignition is set in the same manner as described in the first embodiment.
本発明に関わるガスタービン発電設備において第 1あるいは第 2の実 施例に述べた起動方法を実施した場合と、 比較対象として従来技術に関 わる起動方法で本発明に関わるガスタービン設備を起動できたと仮定し た場合の着火回転数に至るまでの消費電力を比較した概念図を第 6図に 示す。 ここでの本発明に関わるガスタービン発電設備の起動方法を実施 3 In the gas turbine power generation equipment related to the present invention, the gas turbine equipment related to the present invention can be started up by the start-up method related to the prior art as a comparison object when the start-up method described in the first or second embodiment is implemented. Figure 6 shows a conceptual diagram comparing the power consumption up to the number of ignition revolutions. The start method of gas turbine power generation equipment related to the present invention is implemented here Three
した場合の着火回転数は、定格回転数の 1 0 %を想定した。これに対し、 従来技術に関わる起動方法でガス夕一ピン設備を起動した場合は、 ェ ヌ * ティー · エス、 マイクロガスタービンの開発動向と将来展望、 (2001 年)、 第 1 6 1頁から第 1 6 2頁において論じられた起動方法に基づき、 着火回転数を定格の 2 5 %と想定した。 なお、 着火時のタービン入口温 度はェヌ ·ティ一 ·エス、マイク口ガスタービンの開発動向と将来展望、In this case, the ignition speed was assumed to be 10% of the rated speed. On the other hand, if the gas evening pin equipment is started by the startup method related to the conventional technology, N * TS, Development Trends and Future Prospects of Micro Gas Turbine, (2001), page 1 61 Based on the start-up method discussed on page 1 62, the ignition speed was assumed to be 25% of the rating. The temperature of the turbine inlet at the time of ignition is TN
( 2 0 0 1年)、第 1 6 1頁から第 1 6 2頁において論じられた起動方法 に基づき、 従来技術および本発明に関わる技術とも同一条件で比較する ため 4 0 0 を想定した。 (200 years), based on the start-up method discussed on pages 1 61 to 1 62, 4 0 0 was assumed for comparison with the prior art and the technology related to the present invention under the same conditions.
第 6図からわかるように、 従来技術に関わる起動方法でガス夕一ビン 設備を起動した場合の消費電力は、 ガスタービンの空気との回転摩擦損 失により回転数の 3乗に比例して増加し、 着火回転数において第 6図中 As can be seen from Fig. 6, the power consumption when starting the gas evening bin facility using the startup method related to the prior art increases in proportion to the third power of the rotation speed due to rotational friction loss with the gas turbine air. Figure 6 shows the number of ignition revolutions.
( 2 ) の値となる。 これに対し、 本実施例に関わるガスタービン用燃焼 器の運用方法を実施してガスタービン設備を着火した場合の消費電力は、 従来技術に関わる着火回転数においても第 6図中( 1 )の値へ減少する。 これは、 本発明に関わる着火回転数から従来技術に関わる着火回転数ま での領域は、 夕一ビン入口温度が 4 0 0 °Cと高温であるためタービン本 来の動作となることと、 高温により空気の密度が減少した分だけ夕一ピ ンの回転摩擦損失も小さくなることにより、 消費電力が従来技術より第 6図中 (A ) の分だけ削減できるためである。 It becomes the value of (2). On the other hand, the power consumption when the gas turbine combustor operation method according to this embodiment is implemented and the gas turbine equipment is ignited is the same as that in Fig. 6 (1) even at the ignition speed related to the conventional technology. Decrease to value. This is because, in the region from the ignition speed related to the present invention to the ignition speed related to the prior art, since the evening bottle inlet temperature is as high as 400 ° C, the operation is inherent to the turbine. This is because the rotational friction loss of the evening pin is reduced by the amount that the air density is reduced due to the high temperature, so that the power consumption can be reduced by (A) in Fig. 6 from the conventional technology.
本発明に関わるガスタービン発電設備の起動方法の別の実施例 (第 3 の実施例) について第 7図を用いて詳細に説明する。 本実施例における ガスタービン発電設備は、 数十から数百 k Wの発電出力を有し、 特に発 電機を駆動するガスタービン部分に単段の遠心圧縮機と単段の半径流夕 一ビンを組み合わせた構造を適用した場合の実施例である。 本実施例に おけるガスタービン発電設備のガスタービン部分は、 その機器構成が第 1図に示した断面図と同様であり、 重複する説明は割愛する。 本実施例 のガスタービン発電設備は、 少流量で着火できる燃焼器や再生熱交換器 を備え付ける必要は必ずしも無い。 Another embodiment (third embodiment) of the method for starting the gas turbine power generation facility according to the present invention will be described in detail with reference to FIG. The gas turbine power generation facility in this embodiment has a power generation output of several tens to several hundreds kW, and in particular, a single stage centrifugal compressor and a single stage radial flow bin are installed in the gas turbine section that drives the generator. It is an Example at the time of applying the combined structure. In this example The gas turbine part of the gas turbine power generation facility in this section has the same equipment configuration as the cross-sectional view shown in Fig. 1, and will not be described again. The gas turbine power generation facility of this embodiment does not necessarily need to be equipped with a combustor or a regenerative heat exchanger that can be ignited with a small flow rate.
第 7図において、 タービンホイール 6は、 圧縮機インペラ 1だけでな く、 ガスタービン回転軸と一体に組み立てられた永久磁石 9を有する発 電機ロー夕も駆動する。 駆動された発電機ロータは発電機ステ一夕 1 0 と電磁場を形成し発電する。 ただし、 駆動エネルギーの全てが発電力に はならず、 数%はロスとなり発電機ステ一夕 1 0が加熱する。 本実施例 では、 発電機ステ一夕 1 0が過度に加熱しないよう、 外部より発電機冷 却空気 2 5を発電機ケーシング 1 1 と発電機ステ一夕 1 0の間に導入す るようになっている。 発電機冷却空気 2 5は発電機ステ一夕 1 0を冷却 しながら、 発電機ケーシング 1 1 と発電機ステ一夕 1 0の間に設けられ た冷却流路を通過し、 発電機冷却後空気 2 6 として大気中より流入する 空気 2 1 と合流して (空気 2 1の流量 >発電機冷却空気 2 5の流量 =発 電機冷却後空気 2 6の流量) 圧縮機ィンペラ 1へ流入する。  In FIG. 7, the turbine wheel 6 drives not only the compressor impeller 1 but also a generator row having a permanent magnet 9 assembled integrally with the gas turbine rotating shaft. The driven generator rotor forms an electromagnetic field with the generator stage 10 to generate electricity. However, not all of the driving energy is generated, and a few percent is lost, and the generator stage 10 is heated. In this embodiment, the generator cooling air 25 is externally introduced between the generator casing 11 and the generator station 10 so that the generator station 10 is not excessively heated. It has become. While the generator cooling air 25 cools the generator stage 10, it passes through the cooling channel provided between the generator casing 11 and the generator stage 10, and the generator cooling air As 2 6, it merges with air 2 1 flowing from the atmosphere (flow rate of air 21> flow rate of generator cooling air 25 = flow rate of air 26 after generator cooling) and flows into compressor impeller 1.
本実施例のガスタービン発電設備を着火回転数までモー夕リング運転 で昇速して起動する場合、 タービンホイール外径 1 6 と圧縮機ィンペラ 外径 1 5の径比が 1 . 1 5以上の組み合わせでも夕一ビンのポンプ動作 に打ち勝って圧縮機からタービン側へ空気を送り込み易くするため、 最 終的に圧縮機ィンペラ 1へ空気 2 1 と供に流入する発電機冷却空気 2 5 を圧縮機のアシスト空気として使用し、 圧縮機からタービン側へ送り込 む空気量を増加する。 その際、 発電機冷却空気 2 5は、 システム全体の 圧力バランスが安定な状態での着火回転数に見合った空気流量まで流量 が回復するよう、 通常より加圧して流量を増加して送り込む。 着火後は 通常の発電機ステ一夕 1 0の冷却に必要な流量まで減少しても良いが、 着火回転数までシステム全体の圧力バランス不安定により不足する流量 分を把握しておき、 その不足流量分をアシスト空気として最初から発電 機冷却空気 2 5に追加しておけば、 着火回転数までは加圧して冷却空気 流量を増加するといつた冷却空気送付圧力の切替動作が発生しないで済 む。 When the gas turbine power generation facility of this embodiment is started up by the motoring operation up to the ignition rotation speed, the diameter ratio of the turbine wheel outer diameter 16 and the compressor impeller outer diameter 15 is not less than 1.15. Even in combination, in order to overcome the pump operation of the evening bin and make it easy to send air from the compressor to the turbine side, the generator cooling air 2 5 that finally flows into the compressor impeller 1 together with the air 2 1 is used as the compressor. It is used as assist air for the engine and increases the amount of air sent from the compressor to the turbine side. At that time, the generator cooling air 25 is fed at an increased pressure to increase the flow rate so that the flow rate recovers to the air flow rate commensurate with the number of revolutions of ignition when the pressure balance of the entire system is stable. After ignition Although it may be reduced to the flow rate required for normal generator cooling, the flow rate that is insufficient due to instability in the pressure balance of the entire system up to the number of ignition revolutions, and the shortage flow rate is reduced. If it is added to the generator cooling air 25 as the assist air from the beginning, it is not necessary to switch the cooling air delivery pressure when the pressure is increased to the ignition speed and the flow rate of the cooling air is increased.
なお、 本実施例において、 アシスト空気として発電機冷却空気 2 5を 使用しなくても、 外部より圧縮機インペラ 1へ直接導入するよう別系統 としても良い。  In this embodiment, the generator cooling air 25 may not be used as the assist air, but a separate system may be used so that it is directly introduced into the compressor impeller 1 from the outside.
本発明に関わるガスタービン発電設備の起動方法の別の実施例 (第 4 の実施例) について第 8図を用いて詳細に説明する。 本実施例における ガスタービン発電設備は、 数十から数百 k Wの発電出力を有し、 特に発 電機を駆動するガスタービン部分に単段の遠心圧縮機と単段の半径流夕 一ビンを組み合わせた構造を適用した場合の実施例である。 本実施例に おけるガスタービン発電設備のガスタービン部分は、 その機器構成が第 1図に示した断面図と同様であり、 重複する説明は割愛する。 本実施例 のガスタービン発電設備は、 少流量で着火できる燃焼器や再生熱交換器 を備え付ける必要は必ずしも無い。  Another embodiment (fourth embodiment) of the method for starting the gas turbine power generation facility according to the present invention will be described in detail with reference to FIG. The gas turbine power generation facility in this embodiment has a power generation output of several tens to several hundreds kW, and in particular, a single stage centrifugal compressor and a single stage radial flow bin are installed in the gas turbine section that drives the generator. It is an Example at the time of applying the combined structure. The gas turbine part of the gas turbine power generation facility in this example has the same equipment configuration as the cross-sectional view shown in FIG. 1, and a duplicate description is omitted. The gas turbine power generation facility of this embodiment does not necessarily need to be equipped with a combustor or a regenerative heat exchanger that can be ignited with a small flow rate.
第 8図に示すように、 本実施例のガスターピン発電設備の圧縮機は、 圧縮機インペラ入口に直接水噴霧する水噴霧装置 1 2を設置している。 本実施例のガスタービン発電設備を着火回転数までモータリング運転で 昇速して起動する場合、 夕一ビンホイール外径 1 6 と圧縮機ィンペラ外 径 1 5の径比が 1 . 1 5以上の組み合わせでもタービンのポンプ動作に 打ち勝って圧縮機からタービン側へ空気を送り込み易くするため、 圧縮 機ィンペラ入口へ水噴霧することにより圧縮機効率を改善し、 圧縮機の 6 As shown in FIG. 8, the compressor of the gas turpin power generation facility of the present embodiment is provided with a water spraying device 12 for spraying water directly at the compressor impeller inlet. When the gas turbine power generation facility of this embodiment is started up by motoring up to the ignition rotation speed, the ratio of the outer diameter of the bin wheel outer diameter 16 and the compressor impeller outer diameter 15 is 1.15 or more. In order to overcome the pump operation of the turbine even with this combination, it is easy to send air from the compressor to the turbine side, so that the compressor efficiency is improved by spraying water to the compressor impeller inlet. 6
吐出圧力を昇圧する。 その際、 噴霧する水の量はシステム全体の圧カバ ランスが安定な状態での着火回転数に見合った空気流量まで流量が回復 するまで増加していく。 ここで、 噴霧する水の量を増加してもシステム 全体の圧力バランスが安定化して空気流量が増加する効果が得られなく なった場合は、 第 3の実施例に述べたようにアシスト空気を圧縮機入口 へ導入するなどの手段を補助的に追加して、 圧力パランスの安定化を図 る。 または、 第 1および第 2の実施例に述べたように少流量で着火でき る燃焼器を備えておき、 着火回転数を定格回転数の 2 5 %相当より下げ る手段を追加することで着火 · 起動することもできるが、 水噴霧するこ とにより、 水噴霧しない場合よりも着火回転数を下げる幅が小さくて済 む。 Increase the discharge pressure. At that time, the amount of water sprayed increases until the flow rate recovers to an air flow rate that matches the number of revolutions of ignition when the pressure balance of the entire system is stable. If the pressure balance of the entire system is stabilized and the effect of increasing the air flow rate cannot be obtained even if the amount of water to be sprayed is increased, assist air is used as described in the third embodiment. Additional measures such as introduction to the compressor inlet will be added to stabilize the pressure balance. Alternatively, as described in the first and second embodiments, a combustor that can be ignited at a low flow rate is provided, and a means for lowering the ignition speed from 25% of the rated speed is added. · It can be started, but by spraying with water, the range of lowering the number of revolutions of ignition is smaller than when not spraying with water.
ここまで、 本発明に関わるガスタービン発電設備のようにタービンホ ィール外径と圧縮機ィンペラ外径の径比が 1 . 1 5以上になると、従来技 術の起動方法では起動できないといった内容の説明を述べてきたが、 こ の構造には定格運転時のスラストを小さくできるというメリッ トも有し ている。  Up to this point, it has been explained that when the diameter ratio of the turbine wheel outer diameter to the compressor impeller outer diameter exceeds 1.15 as in the gas turbine power generation facility according to the present invention, it cannot be activated by the conventional technology activation method. As described above, this structure also has the advantage of reducing thrust during rated operation.
遠心圧縮機と半径流タービンの遠心夕一ポ機械の組み合わせにより構 成するガスタービン発電設備において、 タービン入口温度を上げて発電 出力を定格に向けて増加していくと、 タービンノズルでの高温ガスの加 速が促進され、 タービンホイール入口の静圧は低下していく。 これに対 し、 圧縮機はタービン入口温度が上がるに連れて設計点に近づくので圧 力比が大きくなり、圧縮機ィンペラ出口の静圧も上昇する。結果として、 定格運転時には、 タービンホイ一ルから圧縮機ィンペラ側へ押す方向の スラス卜が発生することになる。 この定格運転時のスラストを小さくす るには、 タービンホイール外径を大きくすることでタービンホイールの 受圧面積を広くすれば良いので、 すなわちタービンホイール外径と圧縮 機ィンペラ外径の径比が 1 . 1 5以上と大きくすることが有効というこ とになる。 産業上の利用可能性 In a gas turbine power generation facility configured by combining a centrifugal compressor and a centrifugal turbine with a radial flow turbine, when the turbine inlet temperature is increased and the power generation output is increased toward the rating, the hot gas at the turbine nozzle is increased. Acceleration is accelerated, and the static pressure at the turbine wheel inlet decreases. In contrast, the compressor approaches the design point as the turbine inlet temperature rises, so the pressure ratio increases and the static pressure at the compressor impeller outlet increases. As a result, during rated operation, a thrust hail in the direction of pushing from the turbine wheel to the compressor impeller is generated. In order to reduce the thrust during this rated operation, the turbine wheel outer diameter is increased by increasing the turbine wheel outer diameter. Since it is only necessary to increase the pressure receiving area, it is effective to increase the diameter ratio of the turbine wheel outer diameter and the compressor impeller outer diameter to 1.15 or more. Industrial applicability
本発明によれば、 圧縮機インペラと夕一ビンホイールの外径差 (ター ビンホイール外径 >圧縮機ィンペラ外径) を大きく して大容量化を図つ た場合でも、 システム全体の圧力バランスを安定した状態に保ちながら 着火 ·起動できるガスタービン発電設備およびその起動方法を提供する ことが可能となる。  According to the present invention, even when the outer diameter difference between the compressor impeller and the evening bin wheel (turbine wheel outer diameter> compressor impeller outer diameter) is increased to increase the capacity, the pressure balance of the entire system is increased. It is possible to provide a gas turbine power generation facility that can be ignited and started while maintaining a stable state and a starting method thereof.

Claims

8 請 求 の 範 囲 8 Scope of request
1 . 空気を圧縮する遠心圧縮機と、 該遠心圧縮機により圧縮された空気 と燃料とを燃焼する燃焼器と、 該燃焼器で発生する燃焼ガスによって駆 動される半径流タービンとを備えたガスターピン発電設備において、 遠心圧縮機インペラと半径流タービンホイールの外径の径比を 1 , 1 5 以上に構成したことを特徴とするガスタービン発電設備。  1. A centrifugal compressor that compresses air, a combustor that combusts air and fuel compressed by the centrifugal compressor, and a radial flow turbine that is driven by combustion gas generated in the combustor. In the gas turpin power generation facility, the gas turbine power generation facility is characterized in that the ratio of the outer diameters of the centrifugal compressor impeller and the radial flow turbine wheel is set to 1, 15 or more.
2 . 空気を圧縮する遠心圧縮機と、 該遠心圧縮機により圧縮された空気 と燃料とを燃焼する燃焼器と、 該燃焼器で発生する燃焼ガスによって駆 動される半径流タービンと、 遠心圧縮機ィンペラと半径流タービンホイ ールとが一体に組み立てられたガスタービン回転軸により駆動される発 電機とを備えたガスタービン発電設備において、 2. a centrifugal compressor that compresses air, a combustor that combusts air and fuel compressed by the centrifugal compressor, a radial flow turbine that is driven by combustion gas generated in the combustor, and centrifugal compression In a gas turbine power generation facility equipped with a generator driven by a gas turbine rotating shaft in which a mechanical impeller and a radial turbine wheel are integrally assembled,
遠心圧縮機ィンペラと半径流タービンホイールの外径の径比を 1 . 1 5 以上に構成したことを特徴とするガス夕一ビン発電設備。  A gas evening bottle power generation facility characterized in that the outer diameter ratio of the centrifugal compressor impeller and the radial flow turbine wheel is set to 1.15 or more.
3 . 請求項 1に記載のガスタービン発電設備において、 3. In the gas turbine power generation facility according to claim 1,
前記燃焼器は、 燃焼室を形成する筒状の燃焼器ライナーと、 該燃焼器 ライナーの外周部側に前記燃焼器ライナーと隙間を介して設けた外筒と、 前記燃焼器ライナーの一端に設けられ燃焼室内に燃焼を噴出する第 1次 燃料ノズルと、 該第 1次燃料ノズルから燃焼室内に噴射された燃料に空 気を供給する第 1次空気導入ノズルと、 前記燃焼器ライナーの周壁に設 けられ、 前記外筒との間隙から案内される燃焼用空気を前記燃焼室内に 導入する第 2次空気導入孔と、 該第 2次空気導入孔と対向する位置の外 筒に設けられ、 前記第 2次空気導入孔から前記燃焼室内に燃料を直接噴 射する第 2次燃料ノズルとを備え、 前記第 2次空気導入孔と第 2次燃料 ノズルを前記第 1次燃料ノズルによる火炎の先端部に対応した位置に設 置し、 前記第 2次空気導入孔から前記燃焼室に導入する空気と燃料を前 記第 1次燃料のノズルからの燃焼ガスと衝突させて循環流を形成し、 前 記第 2次空気導入孔から燃焼室内に導入された空気と燃料を前記燃焼ガ スと混合させ、 前記燃料を緩慢に酸化させるように構成したことを特徴 とするガス夕一ビン発電設備。 The combustor includes a cylindrical combustor liner forming a combustion chamber, an outer cylinder provided on the outer peripheral side of the combustor liner via a gap with the combustor liner, and provided at one end of the combustor liner. A primary fuel nozzle that ejects combustion into the combustion chamber, a primary air introduction nozzle that supplies air to the fuel injected from the primary fuel nozzle into the combustion chamber, and a peripheral wall of the combustor liner A secondary air introduction hole for introducing combustion air guided from a gap with the outer cylinder into the combustion chamber, and an outer cylinder at a position facing the secondary air introduction hole; A secondary fuel nozzle that directly injects fuel into the combustion chamber from the secondary air introduction hole, and the secondary air introduction hole and the secondary fuel nozzle are connected to the flame of the primary fuel nozzle. The secondary air is installed at a position corresponding to the tip. Before the air and fuel introduced into the combustion chamber from the entry apertures The primary fuel nozzle collides with the combustion gas to form a circulating flow, and the air and fuel introduced into the combustion chamber from the secondary air introduction hole are mixed with the combustion gas, and the fuel This is a gas evening power generation facility characterized in that it is slowly oxidized.
4 . 請求項 1に記載したガスタービン発電設備において、  4. In the gas turbine power generation facility described in claim 1,
前記発電機を冷却する空気、 或いは前記遠心圧縮機へ流入する空気と は別系統で外部より該遠心圧縮機へ空気を導くよう設けたラインの空気 を、 モータリング運転による起動時に前記遠心圧縮機のアシスト空気と して供給するラインを設けたことを特徴としたガスタービン発電設備。 Air that cools the generator or air in a line that is separate from the air that flows into the centrifugal compressor and that leads the air to the centrifugal compressor from the outside is used when the centrifugal compressor is activated during motoring operation. A gas turbine power generation facility that is provided with a supply line for assist air.
5 . 空気を圧縮する遠心圧縮機と、 該遠心圧縮機により圧縮された空気 と燃料とを燃焼する燃焼器と、 該燃焼器で発生する燃焼ガスによって駆 動される半径流タービンとを備えたガスタービン発電設備の起動方法に おいて、 5. A centrifugal compressor that compresses air, a combustor that combusts air and fuel compressed by the centrifugal compressor, and a radial flow turbine that is driven by combustion gas generated in the combustor. In the starting method of the gas turbine power generation equipment,
遠心圧縮機ィンペラと半径流タービンホイールの外径の径比を 1. 1 5 以上に構成し、  The ratio of the outer diameter of the centrifugal compressor impeller and the radial turbine wheel is set to 1. 15 or more,
定格回転数に対して 1 0 %の回転数で着火することを特徴としたガス タービン発電設備の起動方法。  A method for starting a gas turbine power generation facility, characterized in that ignition is performed at a rotation speed of 10% with respect to a rated rotation speed.
6 . 空気を圧縮する遠心圧縮機と、 該遠心圧縮機により圧縮された空気 と燃料とを燃焼する燃焼器と、 該燃焼器で発生する燃焼ガスによって駆 動される半径流タービンとを備え、  6. A centrifugal compressor that compresses air, a combustor that combusts air and fuel compressed by the centrifugal compressor, and a radial flow turbine that is driven by combustion gas generated in the combustor,
前記燃焼器は、 燃料と空気を燃焼室内に噴出する第 1のパーナと、 該 第 1のバ一ナによる火炎の下流側に交差するように燃料と空気を噴出さ せる第 2のパーナを設けたガスタービン発電設備の起動方法において、 前記第 1のパーナからは空気のみを噴出させ、 前記第 2のパーナから は燃料と空気を噴出させて着火することを特徴としたガスタービン発電 設備の起動方法。 The combustor includes a first panner for ejecting fuel and air into the combustion chamber, and a second panner for ejecting fuel and air so as to intersect the downstream side of the flame generated by the first burner. In the method for starting the gas turbine power generation facility, the gas turbine power generation is characterized in that only air is ejected from the first burner and fuel and air are ejected from the second burner. How to start the equipment.
7 . 請求項 5に記載したガスタービン発電設備の起動方法において、 前記発電機を冷却する空気、 或いは前記遠心圧縮機へ流入する空気と は別系統で外部より該遠心圧縮機へ空気を導くよう設けたラインの空気 を、 モータリング運転による起動時に前記遠心圧縮機のアシスト空気と して供給することを特徴としたガス夕一ビン発電設備の起動方法。  7. The method for starting a gas turbine power generation facility according to claim 5, wherein the air is led to the centrifugal compressor from outside by a separate system from the air for cooling the generator or the air flowing into the centrifugal compressor. A method for starting a gas evening bottle power generation facility, characterized in that air in a provided line is supplied as assist air for the centrifugal compressor during startup by motoring operation.
8 . 請求項 5に記載したガスタービン発電設備の起動方法において、 着火時における燃焼温度をシステム全体の圧力バランスが安定な状態 に見合った空気流量にまで回復する温度以上かつ機器に昇温によるダメ —ジを与えない温度以下とすることを特徴としたガス夕一ビン発電設備 の起動方法。  8. In the start-up method of the gas turbine power generation facility according to claim 5, the combustion temperature at the time of ignition is not less than the temperature at which the air pressure is restored to the air flow rate suitable for the stable pressure balance of the entire system, and the equipment is damaged by the temperature rise. —A method for starting up a gas-powered bin power generation system, characterized by a temperature that does not give any pressure.
9 . 請求項 5に記載のガスタービン発電設備の起動方法において、 着火する前に、 前記遠心圧縮機へ流入する空気に、 システム全体の圧 カバランスが安定な状態に見合った空気流量に回復するまでの水量を噴 霧することを特徴としたガスタービン発電設備の起動方法。  9. In the start-up method of the gas turbine power generation facility according to claim 5, before the ignition, the air flowing into the centrifugal compressor recovers to an air flow rate suitable for a stable pressure balance of the entire system. A method for starting up a gas turbine power generation facility, characterized by spraying the amount of water up to.
1 0 . 空気を圧縮する遠心圧縮機と、 該遠心圧縮機により圧縮された空 気と燃料とを燃焼する燃焼器と、 該燃焼器で発生する燃焼ガスによって 駆動される半径流タービンとを備えたガスタービン発電設備の起動方法 において、  1. A centrifugal compressor that compresses air, a combustor that combusts air and fuel compressed by the centrifugal compressor, and a radial flow turbine that is driven by combustion gas generated in the combustor. In the starting method of the gas turbine power generation equipment
システム全体の圧力バランスが不安定となる回転数より低い回転数で のモータリング運転時に着火し、 タービン本来の動作ができるようにな る所定温度までタービン入口温度を上昇させ、 システム全体の圧力バラ ンスを安定した状態に保ちながら昇速させることを特徴としたガスター ビン発電設備の起動方法。  It is ignited during motoring operation at a rotational speed lower than the rotational speed at which the pressure balance of the entire system becomes unstable, and the turbine inlet temperature is increased to a predetermined temperature at which the original operation of the turbine can be performed. The gas turbine power generation equipment start-up method is characterized by increasing the speed while maintaining the gas flow in a stable state.
1 1 . 空気を圧縮する遠心圧縮機と、 該遠心圧縮機により圧縮された空 気と燃料とを燃焼する燃焼器と、 該燃焼器で発生する燃焼ガスによって 駆動される半径流タービンとを備えたガス夕一ビン発電設備の起動方法 において、 1 1. Centrifugal compressor that compresses air and the air compressed by the centrifugal compressor In a method of starting a gas evening bin power generation facility comprising a combustor for burning air and fuel, and a radial flow turbine driven by combustion gas generated in the combustor,
前記圧縮機がタービンのポンプ動作に打ち勝って空気をタービン側へ 送り込むことができるように、 外部から噴霧水やアシスト空気を圧縮機 入口へ送り込むことにより、 システム全体の圧力バランスを安定した状 態で保ちながら昇速させることを特徴とするガスタービン発電設備の起 動方法。  In order for the compressor to overcome the pump operation of the turbine and send air to the turbine side, spray water and assist air are sent from the outside to the compressor inlet, so that the pressure balance of the entire system is stable. A method for starting a gas turbine power generation facility, characterized in that the speed is increased while maintaining.
PCT/JP2007/058210 2007-04-06 2007-04-06 Gas turbine power generating apparatus and method of starting the same WO2008129652A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009510688A JP4900479B2 (en) 2007-04-06 2007-04-06 Gas turbine power generation facility and starting method thereof
PCT/JP2007/058210 WO2008129652A1 (en) 2007-04-06 2007-04-06 Gas turbine power generating apparatus and method of starting the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2007/058210 WO2008129652A1 (en) 2007-04-06 2007-04-06 Gas turbine power generating apparatus and method of starting the same

Publications (1)

Publication Number Publication Date
WO2008129652A1 true WO2008129652A1 (en) 2008-10-30

Family

ID=39875200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/058210 WO2008129652A1 (en) 2007-04-06 2007-04-06 Gas turbine power generating apparatus and method of starting the same

Country Status (2)

Country Link
JP (1) JP4900479B2 (en)
WO (1) WO2008129652A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3008391A4 (en) * 2013-06-11 2016-07-06 United Technologies Corp Combustor with axial staging for a gas turbine engine
US11022028B2 (en) * 2019-05-07 2021-06-01 Caterpillar Inc. Engine system and method including first and second turbochargers
US11156164B2 (en) 2019-05-21 2021-10-26 General Electric Company System and method for high frequency accoustic dampers with caps
US11174792B2 (en) 2019-05-21 2021-11-16 General Electric Company System and method for high frequency acoustic dampers with baffles

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50160611A (en) * 1974-06-18 1975-12-26
JPS59129330A (en) * 1983-01-17 1984-07-25 Hitachi Ltd Premixed combustion type gas turbine
JPS6123439U (en) * 1984-07-17 1986-02-12 日産自動車株式会社 Automotive gas turbine
JPH09501213A (en) * 1993-06-30 1997-02-04 プラット アンド ホイットニー カナダ,インコーポレイテッド Gas turbine fuel pressure starting method
WO2005059442A1 (en) * 2003-12-16 2005-06-30 Hitachi, Ltd. Combustor for gas turbine
JP2006010193A (en) * 2004-06-25 2006-01-12 Japan Aerospace Exploration Agency Gas turbine combustor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50160611A (en) * 1974-06-18 1975-12-26
JPS59129330A (en) * 1983-01-17 1984-07-25 Hitachi Ltd Premixed combustion type gas turbine
JPS6123439U (en) * 1984-07-17 1986-02-12 日産自動車株式会社 Automotive gas turbine
JPH09501213A (en) * 1993-06-30 1997-02-04 プラット アンド ホイットニー カナダ,インコーポレイテッド Gas turbine fuel pressure starting method
WO2005059442A1 (en) * 2003-12-16 2005-06-30 Hitachi, Ltd. Combustor for gas turbine
JP2006010193A (en) * 2004-06-25 2006-01-12 Japan Aerospace Exploration Agency Gas turbine combustor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3008391A4 (en) * 2013-06-11 2016-07-06 United Technologies Corp Combustor with axial staging for a gas turbine engine
US11143407B2 (en) 2013-06-11 2021-10-12 Raytheon Technologies Corporation Combustor with axial staging for a gas turbine engine
US11022028B2 (en) * 2019-05-07 2021-06-01 Caterpillar Inc. Engine system and method including first and second turbochargers
US11536191B2 (en) 2019-05-07 2022-12-27 Caterpillar Inc. Engine and fuel cell system including first and second turbochargers
US11156164B2 (en) 2019-05-21 2021-10-26 General Electric Company System and method for high frequency accoustic dampers with caps
US11174792B2 (en) 2019-05-21 2021-11-16 General Electric Company System and method for high frequency acoustic dampers with baffles

Also Published As

Publication number Publication date
JPWO2008129652A1 (en) 2010-07-22
JP4900479B2 (en) 2012-03-21

Similar Documents

Publication Publication Date Title
EP2306090B1 (en) Gas turbine combustor
JP4765646B2 (en) Control method of gas turbine
US8763400B2 (en) Aerodynamic pylon fuel injector system for combustors
KR102046457B1 (en) Combustor and gas turbine including the same
EP2889542B1 (en) Method for operating a combustor for a gas turbine and combustor for a gas turbine
JP6092047B2 (en) Method for mixing dilution air in a sequential combustion system of a gas turbine
WO2008129652A1 (en) Gas turbine power generating apparatus and method of starting the same
JPH08218896A (en) Power plant
US11136917B2 (en) Airfoil for turbines, and turbine and gas turbine including the same
JP2012002232A (en) Method for starting gas turbine power generation apparatus
JP2018520289A (en) Ultra-low NOx exhaust gas turbine engine in machine drive applications
RU2320885C2 (en) Two-loop gas-turbine fan engine
EP3486438B1 (en) Gas turbine including external cooling system and method of cooling the same
US20120151895A1 (en) Hot gas path component cooling for hybrid pulse detonation combustion systems
JP3532495B2 (en) Reburning combined cycle mixed gas turbine
CN114961894B (en) Annular segment and turbomachine comprising same
EP4212777B1 (en) Combustor nozzle
KR102433706B1 (en) Nozzle assembly, Combustor and Gas turbine comprising the same
KR102156428B1 (en) Airfoil for turbine, turbine including the same
KR20230122348A (en) Gas turbine combustor and gas turbine having same
US10174673B2 (en) Portable green power systems
CN115875693A (en) Gas turbine head integrated combustion chamber and gas turbine power generation system
KR20240003230A (en) Jet nozzle, combustor and gas turbine including same
JP2008057417A (en) Gas turbine equipment
KR20190036205A (en) Gas Turbine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741646

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009510688

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07741646

Country of ref document: EP

Kind code of ref document: A1