JPS59129330A - Premixed combustion type gas turbine - Google Patents

Premixed combustion type gas turbine

Info

Publication number
JPS59129330A
JPS59129330A JP412283A JP412283A JPS59129330A JP S59129330 A JPS59129330 A JP S59129330A JP 412283 A JP412283 A JP 412283A JP 412283 A JP412283 A JP 412283A JP S59129330 A JPS59129330 A JP S59129330A
Authority
JP
Japan
Prior art keywords
fuel
premixing chamber
gas turbine
inner cylinder
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP412283A
Other languages
Japanese (ja)
Inventor
Yoji Ishibashi
石橋 洋二
Isao Sato
勲 佐藤
Yoshimitsu Minagawa
義光 皆川
Noriyuki Hayashi
則行 林
Takashi Omori
隆司 大森
Michio Kuroda
黒田 倫夫
Fumio Kato
文雄 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP412283A priority Critical patent/JPS59129330A/en
Publication of JPS59129330A publication Critical patent/JPS59129330A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones
    • F23R3/346Feeding into different combustion zones for staged combustion

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)

Abstract

PURPOSE:To enable to control the fuel-air ratio in the annular part and in the inner tube of a premixing chamber independently of each other and consequently to burn over a wide range in the fuel-air ratio, by a structure wherein a premixing chamber, which is arranged on the upstream side of the liner of a combustor and in which fuel- and-air combustible mixture is formed, is made in a double cylindrical tube structure of an inner and an outer tubes. CONSTITUTION:A portion 41 partitioned in the inner tube 6 of a premixing chamber 4 is so constituted that its cross sectional area is gradually enlarged toward downstream direction. A portion 42 partitioned in the annular portion, which is formed in an annular portion formed by the inner tube 6 and outer tube 7, is also so constituted that its cross sectional area is gradually enlarged toward downstream direction. Due to the structure of the premixing chamber as mentioned above, the flow velocity of combustible mixture in the premixing chamber is resulted in advance to become gradually higher toward upstream direction. Accordingly, when the flow velosity at the outlet of the premixing chamber is set higher than the flow velocity required for the prevention of backfire, flame does not easily propagate toward the upstream side of the premixing chamber, even if backfiring occurs, resulting in further improving the safety against backfire.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はガスタービン燃焼器に係シ、特にN0x(音素
酸化物)低減効果が大きい予混合燃焼形の低N Ox燃
焼器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a gas turbine combustor, and particularly to a premixed combustion type low NOx combustor that has a large effect of reducing NOx (phonemic oxides).

〔従来技術〕[Prior art]

燃焼過程中に生成するNOxは燃焼ガス温度。 NOx generated during the combustion process depends on the combustion gas temperature.

酸素分圧、それに高温ガスの滞留時間の影#を受けるが
、その中でも燃焼ガス温度の影響が最も大きく、このた
め低NOx化には低温燃焼化が最も有効な手段となる。
Although it is affected by the oxygen partial pressure and the residence time of the high temperature gas, the combustion gas temperature has the greatest influence, and therefore low temperature combustion is the most effective means for reducing NOx.

従って、ガスタービン燃焼器の低Nor技術としては従
来から燃焼領域へ理論空気型以上の空気を供給して低温
度燃焼させるいわゆる希薄燃焼法が開発されてきた。し
かしながら、ガスタービン燃焼器は起動から定格負荷ま
で非常に作動範囲が広いため、定格負荷時に十分希薄燃
焼させて低N Ox化を達成しようとすると部分負荷時
や着火時には燃料流量を減少させるため一層希薄燃焼と
な)、着火不良や不安定燃焼及び未燃分の増大という悪
作用があp1希薄燃焼の程度は大きな制約を受ける。こ
の制約を回避する技術としては燃焼器内の燃料配分をコ
ントロールし、局所的に燃料過濃域を形成させることに
より、部分負荷時にはこの領域に安定燃焼火炎を作ジ、
との保炎作用によ)全体の燃焼の安定化を達成させよう
とする燃焼技術や、燃料を燃焼器の下流方向に分割して
供給するいわゆる多聞燃焼方式の開発 。
Therefore, as a low-Nor technology for gas turbine combustors, a so-called lean combustion method has been developed in which air of a stoichiometric air type or higher is supplied to the combustion region and the air is combusted at a low temperature. However, gas turbine combustors have a very wide operating range from startup to rated load, so if you try to achieve low NOx by sufficiently lean combustion at rated load, the fuel flow rate will decrease even more at partial load or ignition. The extent of p1 lean burn is severely restricted due to the adverse effects of poor ignition, unstable combustion, and an increase in unburned matter. A technique to avoid this restriction is to control the fuel distribution within the combustor and form a locally rich fuel region, thereby creating a stable combustion flame in this region during partial load.
The development of combustion technology that attempts to stabilize the overall combustion (through the flame-holding effect of the combustor) and the so-called multi-combustion method that divides and supplies fuel downstream of the combustor.

が進められている。しかし、これらの希薄燃焼方式は燃
焼器内へ燃料と空気を別々に供給し、燃焼器内で混合さ
せながら燃焼させる拡散燃焼によるものであるため、局
所的にどうしても理論混合比に近い混合気が燃焼するホ
ットスポットが発生し、ここで高磯度のNOxが発生す
るとい5致命的な欠点を有している。よってこの方式で
は、結果的にNOxの低減値は従来の標準燃焼器の約5
0%低減程度である。このため、史に大幅なNOx化を
実現させるために1均一混合気の形成後に燃焼を行なわ
せることによシ、前述したホットスポットの除去を図っ
たいわゆる混合燃焼方式による低NOx燃焼器が有望で
おる。
is in progress. However, these lean burn systems rely on diffusion combustion in which fuel and air are supplied separately into the combustor and burned while being mixed within the combustor, so it is inevitable that the air-fuel mixture close to the stoichiometric mixture locally will be mixed. It has the fatal disadvantage of generating combustion hot spots where a high degree of NOx is generated. Therefore, with this method, the resulting reduction in NOx is approximately 5 times lower than that of a conventional standard combustor.
This is about a 0% reduction. Therefore, in order to achieve the greatest reduction in NOx, a low NOx combustor using the so-called mixed combustion method is promising, which eliminates the hot spots mentioned above by performing combustion after the formation of a homogeneous mixture. I'll go.

しかしながら予混合燃焼方式をガスタービン燃焼器へ適
用しこれによシ超低NOx化を達成するに当たって、な
お問題点が残っている。それは予混合気の場合には不燃
混合範囲があることと、火炎が予混合室へ逆火する危険
があることである。
However, problems still remain in applying the premix combustion method to a gas turbine combustor and thereby achieving ultra-low NOx. In the case of a premixture, there is a range of non-flammable mixtures and there is a risk of flame backfiring into the premixing chamber.

後者の逆火の問題は、具体的な装置構成をいかにするか
は別として、混合気の流速を混合気が有する燃焼速度よ
りも十分大きくとることで原理的には解決される。従っ
て作動範囲の広いガスタービン燃焼器へ予混合燃焼方式
を適用する上での最大味題は前者の問題、つま9予混合
燃焼火炎の広作動域にわたる安定燃焼化の実現である。
The latter problem of backfire can be solved in principle by setting the flow velocity of the air-fuel mixture to be sufficiently higher than the combustion speed of the air-fuel mixture, regardless of the specific device configuration. Therefore, in applying the premix combustion method to a gas turbine combustor with a wide operating range, the biggest challenge is the former problem, that is, achieving stable combustion of the premix combustion flame over a wide operating range.

〔発明の目的・概要〕[Purpose and outline of the invention]

本発明は前述したNi1.@を解決するためになされた
ものであ多、燃焼定うイチの上流側に予混合室を設け、
かつ予混合室を二重円筒構造とし、更に混合管十分に達
成させる構造とし、この構成によって火炎の熱的保炎作
用を向上させるとともに予混台座二重円筒の譲状部と内
筒部から流出する可燃混合気濃度をコントロール可能と
することによシ希薄予混合気の広範囲にわたる安定燃焼
化を達成するものである。
The present invention is based on the above-mentioned Ni1. This was done to solve the problem. A premixing chamber was installed upstream of the combustion chamber, and
In addition, the premixing chamber has a double cylindrical structure, and the mixing tube has a structure that achieves a sufficient level of stability.This structure improves the thermal flame stabilization effect of the flame, and also allows the premixing chamber to have a double cylindrical structure. By making it possible to control the concentration of the flammable mixture flowing out, stable combustion of the lean premixture can be achieved over a wide range.

〔発明の実施例〕[Embodiments of the invention]

以下に本発明の一実施例につき図面を参照しながら詳述
する。第1図は本発明の実施の一例を示したもので、こ
のガスタービン燃焼器は燃焼器ライナの上流側に燃料と
空気の可燃混合気を形成する混合呈4を構成し、該予混
合室の下流側に燃焼器ライナ5を接続して成る。この予
混合室4は内筒6と外筒7の二重円筒形状とする。予混
合室4の円筒6と外筒7とで画成される環状部42には
空気旋回器15を同心状に有する複数筒の燃料ノズル1
4奢設け、内筒6には空気旋回器13を同心状に有する
燃料ノズル12を少なくとも1箇設けて構成する。さら
に予混合室4と燃焼室ライチ5の接続部近傍の周壁に空
気旋回器11を同心状に有する複数筒の燃料ノズル10
を設けて構成して成る。
An embodiment of the present invention will be described in detail below with reference to the drawings. FIG. 1 shows an example of the implementation of the present invention, in which this gas turbine combustor comprises a mixing chamber 4 for forming a combustible mixture of fuel and air on the upstream side of the combustor liner, and the premixing chamber A combustor liner 5 is connected to the downstream side of the combustor liner 5. This premixing chamber 4 has a double cylindrical shape with an inner cylinder 6 and an outer cylinder 7. The annular portion 42 defined by the cylinder 6 and the outer cylinder 7 of the premixing chamber 4 has a plurality of cylinder fuel nozzles 1 having an air swirler 15 concentrically therein.
The inner cylinder 6 is provided with at least one fuel nozzle 12 having an air swirler 13 concentrically therein. Furthermore, a multi-tube fuel nozzle 10 has an air swirler 11 concentrically on the peripheral wall near the connection between the premixing chamber 4 and the combustion chamber litchi 5.
It consists of the following.

このような構成をとることによって、ガスタービンの着
火、起動から部分負荷までを燃焼室ライナ5に設けられ
た燃料ノズルエ0に燃料供給して運転を行ない、高負荷
から定格負荷領域は予混合室4に設けられた燃料ノズル
12.14に燃料供給して運転することができ、従って
広範囲にわたる安定な燃焼全実現できる。
By adopting such a configuration, the gas turbine is operated by supplying fuel to the fuel nozzle 0 provided in the combustion chamber liner 5 from ignition and startup to partial load, and from high load to rated load range, the premixing chamber is used. 4 can be operated by supplying fuel to the fuel nozzles 12 and 14 provided in the fuel nozzles 12 and 14, and therefore stable combustion over a wide range can be achieved.

更に詳しくは、′本実施例の具体的構成は次のようにな
っている。即ちとの予混合燃焼形ガスタービン燃焼器は
基本的にその燃焼室ライナ5と予混合室外筒7は燃焼器
外筒1とカバー2によって格納され、ておシ、圧縮機で
昇圧された圧縮空気100は燃焼器外筒1と燃焼器ライ
ナ5及び予混合室外筒7の間を上流側に流れつつ、それ
ぞれ燃焼室ライナ5と予混金蔓4に設けられた空気供給
孔又は空気旋回器から内部へ流入する形式のものである
More specifically, the specific configuration of this embodiment is as follows. In other words, in a premix combustion type gas turbine combustor, basically, the combustion chamber liner 5 and the premix chamber outer cylinder 7 are housed by the combustor outer cylinder 1 and the cover 2, and the compressor pressurizes the compressor. The air 100 flows upstream between the combustor outer cylinder 1, the combustor liner 5, and the premixing chamber outer cylinder 7, while flowing from the air supply holes or air swirler provided in the combustion chamber liner 5 and the premixing chamber 4, respectively. It is of the type that flows inside.

かかる基本構成において、予混合室4は予混合室内筒6
と予混合室外筒7の組合せよりなる二重円筒構造とし、
二重円筒の上流端の内筒6には同心状に空気旋回器13
を有する二次燃料内筒用燃料ノズル12を設け、前記二
重円筒で形成される環状部には′同心状に空気旋回器1
5を有する二次燃料環状部用燃料ノズル14を複数筒配
列する。
In this basic configuration, the premixing chamber 4 has a premixing chamber cylinder 6.
It has a double cylindrical structure consisting of a combination of and a premixing chamber outer cylinder 7,
An air swirler 13 is installed concentrically in the inner cylinder 6 at the upstream end of the double cylinder.
A secondary fuel inner cylinder fuel nozzle 12 having
A plurality of secondary fuel annular fuel nozzles 14 having a diameter of 5 are arranged in a plurality of cylinders.

本例では燃焼室ライナ5は予混合室外筒7の径よシも太
きくシ、予混合室外筒7の下流側に拡大部8によって接
続する構成をとる。この拡大部8の周壁には一次燃料ノ
ズル空気旋回器11を同心状にMする一次燃料ノズル1
0f:複数箇配列する。
In this example, the combustion chamber liner 5 has a diameter larger than that of the premixing chamber outer cylinder 7, and is connected to the downstream side of the premixing chamber outer cylinder 7 by an enlarged portion 8. A primary fuel nozzle 1 with a primary fuel nozzle air swirler 11 arranged concentrically on the peripheral wall of this enlarged portion 8
0f: Arrange multiple items.

かかる燃屍器構成において、ガスタービンの着火起動は
次のように行なう。−次燃料107を一次燃料供給管1
6及び−次燃料分配管17を介して拡大部8に設けられ
た複数筒の一次燃料ノズル10に供給し、この燃料は該
−次燃料ノズル10の下流に設けられた点火栓22によ
って着火される。この火炎は各−次燃料ノズル10の外
周に設けられた一次燃料ノズル壁気旋回器11から供給
される旋回空気流で燃焼し、この旋回空気流にょつて部
層される備狽流により安定燃焼する。−次燃料ノズル1
0によって燃焼室3に形成される火炎は複数筒の一次燃
料ノズル10によって形成される単独火炎の集合火炎で
ある。但し一次燃料ノズル10の近傍においてはそれぞ
れの燃料ノズル10と空気旋回器11によって保炎され
た単独の火炎が形成されている。−次燃料ノズル10の
下流側で各火炎が合体し、予混合室4全取シ囲むように
リング状の火炎を形成する。ガスタービンは着火起動か
ら部分負荷まではこの一次燃料107のみで運転される
In such a combustor configuration, ignition and startup of the gas turbine is performed as follows. - Primary fuel 107 to primary fuel supply pipe 1
The fuel is supplied to a plurality of primary fuel nozzles 10 provided in the enlarged portion 8 through a secondary fuel distribution pipe 17, and this fuel is ignited by a spark plug 22 provided downstream of the primary fuel nozzle 10. Ru. This flame is combusted by the swirling air flow supplied from the primary fuel nozzle wall swirler 11 provided on the outer periphery of each primary fuel nozzle 10, and stable combustion is achieved by the presence flow partially stratified by this swirling air flow. do. -Next fuel nozzle 1
The flame formed in the combustion chamber 3 by the combustion chamber 3 is a collective flame of individual flames formed by the plurality of primary fuel nozzles 10. However, in the vicinity of the primary fuel nozzle 10, a single flame stabilized by each fuel nozzle 10 and air swirler 11 is formed. - The flames combine on the downstream side of the fuel nozzle 10 to form a ring-shaped flame that surrounds the entire premixing chamber 4. The gas turbine is operated using only this primary fuel 107 from ignition startup to partial load.

ガスタービンが高負荷運転に移ると二次燃料108を二
次燃料供給管18と二次燃料環状部用燃料ノズル14へ
供給する。かかる予混合室4に供給された二次燃料10
8はそれぞれの燃料ノズル12.14に設けられた空気
旋回器13.15へ供給される空気と混合され、可燃混
合気105゜106を形成し燃焼室ライナ3へ供給され
る。これらの可燃混合気は前述した一次接触により着火
さtlかつ、リング状火炎による熱的な保炎作用によシ
安定な予混合燃焼火炎を形成する。この場合、予混合気
の着火はまず前記リング状火炎に近接して流出する根状
部可燃混合気流112において発生し、次いで可燃混合
気内の火炎伝播によシ内筒部可燃混合気111が着火す
る。このため、従来から問題であった希薄予混合気の早
期着火と安定燃焼化のためには、予混合気の着火領域を
着火しやすい混合気とすること、すなわち本発明の場合
には着火源であるリング状火炎に近接する環状部可燃混
合気112を早期着火が可能な燃空比条件に設定するこ
とが1安である。
When the gas turbine shifts to high load operation, the secondary fuel 108 is supplied to the secondary fuel supply pipe 18 and the secondary fuel annulus fuel nozzle 14. Secondary fuel 10 supplied to such premixing chamber 4
8 is mixed with air supplied to an air swirler 13.15 provided in each fuel nozzle 12.14 to form a combustible mixture 105.106 which is supplied to the combustion chamber liner 3. These combustible mixtures are ignited by the above-mentioned primary contact, and a stable premixed combustion flame is formed by the thermal flame-holding effect of the ring-shaped flame. In this case, ignition of the premixture first occurs in the root combustible mixture 112 flowing out close to the ring-shaped flame, and then the inner cylinder combustible mixture 111 is ignited by flame propagation within the combustible mixture. ignite. Therefore, in order to achieve early ignition and stable combustion of the lean premixture, which has been a problem in the past, it is necessary to make the ignition region of the premixture a mixture that is easy to ignite. One advantage is to set the fuel-air ratio condition to enable early ignition of the annular part combustible mixture 112 that is close to the ring-shaped flame that is the source.

すなわち、本発明の要点の一つは希薄可燃混合気の早期
着火を実現するために予混合室構造を二重円筒構造とし
ていることであるが、この二重構造において内筒6内の
混合気111は燃料を薄く、その外側の、内筒6と外筒
7との間の混合気112は燃料の濃いものとする。つま
シ壌状部可燃混合気112の燃旭比は円筒部可燃混合気
111よシも大きく設定する。
That is, one of the main points of the present invention is that the premixing chamber structure has a double cylindrical structure in order to realize early ignition of a lean combustible mixture. The fuel mixture 111 is thin in fuel, and the mixture 112 on the outside between the inner cylinder 6 and the outer cylinder 7 is rich in fuel. The fuel-to-fuel ratio of the combustible mixture 112 in the cylindrical portion is also set to be larger than that of the combustible mixture 111 in the cylindrical portion.

この場合希薄予混合燃焼によって大幅なKN Ox化を
実現し、かつガスタービン燃焼器として広作動範囲を安
定燃焼させるためには、具体的には環状部可燃混合気1
12の燃空比を0.040〜0.07とし、円筒部可燃
混合気111の燃空比を0.03〜0.06とする。さ
らに望ましくは、ガスタービンの定格運転条件において
環状部可燃混合気112の燃空比を0.04〜0.05
とし、円′節部可燃混合気111の燃空比f、0.03
〜0.04とする。このような範囲では、NOxの発生
がミニマムであシ、かつ着火が良く火炎安定性を良好に
保つのに液適である。
In this case, in order to achieve a significant KNOx conversion through lean premix combustion and to achieve stable combustion over a wide operating range as a gas turbine combustor, it is necessary to
12 is set to 0.040 to 0.07, and the fuel air ratio of the cylindrical combustible mixture 111 is set to 0.03 to 0.06. More preferably, the fuel-air ratio of the annular portion combustible mixture 112 is set to 0.04 to 0.05 under the rated operating conditions of the gas turbine.
The fuel-air ratio f of the combustible mixture 111 at the circle' node is 0.03.
~0.04. In this range, the generation of NOx is minimal, and the liquid is suitable for good ignition and maintaining good flame stability.

第3図は本例における燃料投入方法の一例を説明したも
のであp1ガスタービン負荷に対する一次燃料Fl  
(前記符号107で示した燃料)と二次燃料F2  (
前記符号108で示した燃料)の流量を示しである。即
ち、ガスタービンの石火起動から部分負荷領域は一次燃
料Fsのみで運転し、ガスタービンの高負荷領域を二次
燃料P1虞の投入によって負荷上昇分音まかなうもので
ある。二次燃料F、の投入時期はガスタービン負荷が5
0〜75チの間で行なうことが好ましく、さらに1定格
負荷時には一次燃料Flを減少させ、二次燃料F、の予
混合燃焼割合を増大させる。これは、拡散燃焼である一
次燃料Ft’に減少させ、逆に予混合燃焼割合を増大さ
せ低NOX化を達成させるものである。具体的には定格
時の一次燃料Ftは10〜40チ、二次燃料F2は60
〜90秦とすることが望ましい。また二次燃料投入時の
予混合火炎を早期に着火・安定燃焼させるために、二次
燃料F2 kステップ状に投入する運転方法もある。
FIG. 3 explains an example of the fuel injection method in this example. The primary fuel Fl for p1 gas turbine load
(the fuel indicated by the reference numeral 107) and the secondary fuel F2 (
This shows the flow rate of the fuel (denoted by the reference numeral 108). That is, the gas turbine is operated with only the primary fuel Fs in the partial load region from the start of the gas turbine, and the load increase is compensated for in the high load region of the gas turbine by supplying the secondary fuel P1. The injection timing of secondary fuel F is when the gas turbine load is 5.
It is preferable to perform this between 0 and 75 inches, and furthermore, at one rated load, the primary fuel Fl is decreased and the premix combustion ratio of the secondary fuel F is increased. This reduces the amount of primary fuel Ft' which is diffuse combustion, and conversely increases the premix combustion ratio to achieve low NOx. Specifically, the primary fuel Ft at the time of rating is 10 to 40 inches, and the secondary fuel F2 is 60 inches.
It is desirable to set it to ~90 Qin. Furthermore, in order to quickly ignite and stably burn the premixed flame when the secondary fuel is introduced, there is also an operation method in which the secondary fuel F2 is introduced in k steps.

この方法を採用する場合には、ガスタービンの出力の急
激な変化を避けるために、−次燃料はステップ状に投入
される二次燃料流量に与あっただけ同じくステップ状に
減少させるとと′にする。このような燃料投入方法によ
り、本例の燃焼器の二次燃料投入時の燃焼特性は大幅に
向上する。また、予混合室内の可燃混合気の流速は予混
合室内へ火炎が逆火するのを防止する上で、可燃混合気
の燃焼速度よりも概略1ケタ速い流速とすることが必要
でめハ可燃混合気111,112の流速は概略20 m
 / s以上とする。
When this method is adopted, in order to avoid sudden changes in the output of the gas turbine, the secondary fuel should be reduced stepwise by the same amount as the secondary fuel flow rate, which is injected stepwise. Make it. By using such a fuel injection method, the combustion characteristics of the combustor of this example when secondary fuel is input are significantly improved. In addition, the flow velocity of the combustible mixture in the premixing chamber must be approximately one order of magnitude faster than the combustion rate of the combustible mixture in order to prevent the flame from backfiring into the premixing chamber. The flow velocity of the mixture 111 and 112 is approximately 20 m
/s or more.

以上説明した如く、本実施例では拡散燃焼バーナ全周壁
に有する燃焼室ライナ5の上流側に二重円筒構造の予混
合室4を設け、予混合室環状部42の可燃混合気と円筒
部41の可燃混合気のそれぞれの燃空比を分けてコント
ロールすることによシ、希薄可燃混合気の広範囲にわた
る安定燃焼化と低NOx燃焼化とが可能となったもので
ある。
As explained above, in this embodiment, the premixing chamber 4 having a double cylindrical structure is provided on the upstream side of the combustion chamber liner 5 provided on the entire peripheral wall of the diffusion combustion burner, and the combustible mixture in the annular part 42 of the premixing chamber and the cylindrical part 41 are provided. By separately controlling the fuel-air ratio of each combustible mixture, it is possible to achieve stable combustion and low NOx combustion over a wide range of lean combustible mixtures.

第2図は本発明の別の一例を示すもので、これは予混合
室4の内筒6内にて画成される部分41は下流側に向っ
て漸次面積が拡大する構成とし、内面6と外筒7とで形
成される環体部内にて画成される部分42も下流側に向
って漸次面積が拡大する構成とした実施例である。本例
で具体的には、この下流側に向う末広がシの構造金、予
混合室内筒6と外筒7にそれぞれ下流側に向って漸次面
積が拡大する補助内筒23と補助コーン24とを設ける
ことにより達成している。避らに本例では予混合室内筒
6の下流端には7字形状の渦流発生器25が設けである
。かかる予混合室構造とするととによシ、まず、予混合
室内の可燃混合気流は上流に向って漸次高流速化させる
ことになる。従って、予混合室の出口流速を前述した逆
火防止の流速以上に設定しておけば、万一、逆火現象が
生じても火炎は予混合室の上流側には伝わシ難くなシ、
一層逆火に対する安全性が向上する。また渦流発生器2
5によシその後流に渦流115が形成される。これによ
シ乱流渦混合が促進され、着火時の予混合火炎の火炎伝
播が著しく速くなる。さらに渦流発生器25の後流は低
速流化されるため火炎の安定化を向上させることができ
る。この渦流発生器25は、第1図の例に付加しても同
様の効果を発揮できる。
FIG. 2 shows another example of the present invention, in which a portion 41 defined within the inner cylinder 6 of the premixing chamber 4 has a structure in which the area gradually increases toward the downstream side, and the inner surface 6 In this embodiment, a portion 42 defined within the annular body portion formed by the outer cylinder 7 and the outer cylinder 7 also gradually increases in area toward the downstream side. Specifically, in this example, in the structure of the pipe that widens toward the downstream side, the premixing chamber cylinder 6 and the outer cylinder 7 are provided with an auxiliary inner cylinder 23 and an auxiliary cone 24 whose area gradually increases toward the downstream side. This is achieved by providing To avoid this, in this example, a 7-shaped vortex generator 25 is provided at the downstream end of the premixing chamber inner cylinder 6. With such a premixing chamber structure, first, the combustible air mixture flow in the premixing chamber is made to gradually increase in flow velocity toward the upstream side. Therefore, if the flow velocity at the outlet of the premixing chamber is set to a value higher than the flow velocity for preventing flashback described above, even if flashback occurs, the flame will not be easily transmitted to the upstream side of the premixing chamber.
Safety against backfire is further improved. Also, the vortex generator 2
5, a vortex 115 is formed in its wake. This promotes turbulent eddy mixing and significantly speeds up the flame propagation of the premixed flame upon ignition. Furthermore, since the downstream flow of the vortex generator 25 is made into a low-velocity flow, flame stabilization can be improved. Even if this vortex generator 25 is added to the example shown in FIG. 1, the same effect can be achieved.

本実施例は、前述の第1図の例の効果に加え、さらに、
予混合室4の面[−下流に向って漸次面積を拡大させ、
かつ予混合室4の出口部に渦流発生器25を設けること
によシ、逆火防止を確実にするとともに、希薄予混合気
の着火及び安定化が向上するという効果を奏することが
できる。
In addition to the effects of the example shown in FIG.
The surface of the premixing chamber 4 [-the area is gradually expanded toward the downstream,
Furthermore, by providing the vortex generator 25 at the outlet of the premixing chamber 4, flashback can be prevented reliably, and the ignition and stabilization of the lean premixture can be improved.

〔発明の効果〕〔Effect of the invention〕

上述の如く、本発明のガスタービン燃焼器は、その燃焼
器ライナの上流側に設けた燃料と空気の可燃混合気を形
成する予混合室は、内筒と外筒の二重円筒構造としたの
で、予混合室の環状部と内筒部との可燃混合気をそれぞ
れ分けて燃空比コントロールすることができる。また、
環状部、内筒。
As described above, in the gas turbine combustor of the present invention, the premixing chamber for forming a combustible mixture of fuel and air provided upstream of the combustor liner has a double cylindrical structure with an inner cylinder and an outer cylinder. Therefore, the fuel-air ratio can be controlled by dividing the combustible mixture between the annular part and the inner cylindrical part of the premixing chamber. Also,
Annular part, inner cylinder.

予混合室と燃焼器ライナとの接続部近傍壁にはそれぞれ
空気旋回器を設けたので、各混合気の十分な均−化金な
し得る。従ってこれらのことにより、希薄可燃混合気の
広範囲にわたる安定な燃焼と、低NOx燃焼化とを可能
ならしめるという効果を果たすものである。
Since an air swirler is provided on each wall near the connection between the premixing chamber and the combustor liner, sufficient equalization of each air-fuel mixture can be achieved. Therefore, these effects enable stable combustion of a lean combustible mixture over a wide range and low NOx combustion.

なお、図示実施例はその他にも数々の作用効果を奏する
ものではあるが、当然のことながら本発明は図示例にの
み限定されるものではない。
It should be noted that, although the illustrated embodiment has many other effects, the present invention is not limited to the illustrated example.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施の一例を示した断面略示図である
。第2図は本発明の他の一実施例を示した断面略示図で
ある。第3図は燃料の投入計画を模式的に示した説明図
である。 3・・・燃焼室、4・・・予混合室、41・・・内筒で
形成される部分、42・・・環状部、5・・・燃焼室ラ
イナ、6・・・予混合室内筒、7・・・予混合室外筒、
8・・・接続部、10・・・−次燃料ノズル、11・・
・−次燃料ノズル空気旋回器、12・・・二次燃料内筒
用燃料ノズル、13・・・二次燃料内筒用燃料ノズル空
気旋回器、14・・・二次燃料環状部用燃料ノズル、1
5・・・二次燃料環状部用燃料ノズル空気旋回器、16
・・・−次燃料供給管、18・・・二次燃料供給管、2
3川補助内筒、24・・・補助コーン、25・・・渦流
発生器。 代理人 弁理士 秋本正実 第 2 目 第 3 の j゛スyピン狩今(%p 第1頁の続き 0発 明 者 加藤文雄 土浦市神立町502番地株式会社 日立製作所機械研究所内
FIG. 1 is a schematic cross-sectional view showing an example of the implementation of the present invention. FIG. 2 is a schematic cross-sectional view showing another embodiment of the present invention. FIG. 3 is an explanatory diagram schematically showing a fuel injection plan. 3... Combustion chamber, 4... Premixing chamber, 41... Part formed by inner cylinder, 42... Annular part, 5... Combustion chamber liner, 6... Premixing chamber cylinder , 7... Premixing chamber outer cylinder,
8...Connection part, 10...-Next fuel nozzle, 11...
- Secondary fuel nozzle air swirler, 12...Fuel nozzle for secondary fuel inner cylinder, 13...Fuel nozzle air swirler for secondary fuel inner cylinder, 14...Fuel nozzle for secondary fuel annular part ,1
5...Fuel nozzle air swirler for secondary fuel annular portion, 16
...-Secondary fuel supply pipe, 18...Secondary fuel supply pipe, 2
3 River auxiliary inner cylinder, 24... Auxiliary cone, 25... Eddy current generator. Agent: Masami Akimoto, Patent Attorney No. 2, No. 3 J゛Sypinkariima (%p Continued from Page 1 0) Author: Fumio Kato, 502 Kandate-cho, Tsuchiura City, Hitachi, Ltd. Mechanical Research Laboratory

Claims (1)

【特許請求の範囲】 1、燃焼器ライナの上流側に燃料と空気の可燃混合気を
形成する予混合室を構成し該予混合室の下流側に燃焼器
シイナを接続して成るガスタービン燃焼器において、予
混合ヱは内局と外筒の二重円筒形状とし、内筒と外筒で
形成される環状部には空気旋回器を同心状に有する複数
筒の燃料ノズルを設け、内局には空気旋回器を同心状に
冶する燃料ノズル全少なくとも1丙設けて構成し、予混
合室と燃焼器ライナの接続部近傍の周壁に空気旋回器を
同心状に有する複数面の燃料ノズルを設けて構成したこ
とを特徴とする予混合燃焼形ガスタービン燃焼器。 2、特許請求の範囲第1塊において、燃焼器ライナは予
混合室の径よシ大としたことを特徴とする予混合燃焼形
ガスタービン燃焼器。 3、特許請求の範囲第1項または第2項において、予混
合室の内筒内にて画成される部分は下流側に向って漸次
面積が拡大する構成とし、内局と外筒とで形成される環
状部内にて画成される部分も下流側に向って漸次面積が
拡大する構成としたことを特徴とする予混合燃焼形ガス
タービン燃焼器。 4、特許請求の範囲第3項において、内筒内にて画成さ
れる部分は内筒に下流側に向って漸次面積が拡大する補
助コーンを設けることによシその両次面積拡大構成を達
成し、かつ内筒と外筒で形成される環状部にて画成され
る部分には下流側に向って漸次面積が拡大する環状の補
助内筒を設けることによシその漸次面積拡大の構成を達
成したことを%徴どする予混合燃焼形ガスタービン燃焼
器。 5、%許副求の範囲第1項乃至第4項のいずれかにおい
て、予混合室の内筒下流端にV字形状の渦流発生器を設
けることを特徴とする予混合燃焼形ガスタービン燃焼器
。 6、特許請求の範囲第1項乃至第5項のいずれかにおい
て、燃焼器ライナに設けられ燃料ノズルの燃料流量と前
記燃料ノズルの外周に設けられた空気旋回器からの空気
量比′?r:0゜03〜0.06とし、予混合室の環状
部に供給する燃料流量と前記環状部に流入する空気量比
を0.045〜0.07とし、更に予混合室の内筒に供
給する燃料流量と前記内筒部に流入する空気量比を0.
03〜0.06とすることを特徴とする予混合燃焼形ガ
スタービン燃焼器。
[Claims] 1. Gas turbine combustion comprising a premixing chamber for forming a combustible mixture of fuel and air on the upstream side of the combustor liner, and a combustor liner connected to the downstream side of the premixing chamber. In the container, the premixer has a double cylindrical shape with an inner tube and an outer tube, and a plurality of fuel nozzles with concentric air swirlers are installed in the annular portion formed by the inner tube and the outer tube. At least one fuel nozzle having an air swirler arranged concentrically is provided in the fuel nozzle, and a multi-sided fuel nozzle having an air swirler arranged concentrically is provided on the circumferential wall near the connection between the premixing chamber and the combustor liner. 1. A premix combustion type gas turbine combustor, characterized in that the premix combustion type gas turbine combustor is provided. 2. A premix combustion type gas turbine combustor according to claim 1, wherein the combustor liner has a diameter larger than the premix chamber. 3. In claim 1 or 2, the area defined within the inner cylinder of the premixing chamber is configured to gradually expand in area toward the downstream side, and the area defined by the inner cylinder and the outer cylinder are A premix combustion type gas turbine combustor, characterized in that the area defined within the formed annular portion also gradually increases in area toward the downstream side. 4. In claim 3, the portion defined within the inner cylinder has a double area enlargement structure by providing the inner cylinder with an auxiliary cone whose area gradually increases toward the downstream side. This can be achieved by providing an annular auxiliary inner cylinder whose area gradually increases toward the downstream side in the part defined by the annular part formed by the inner cylinder and the outer cylinder. A premixed combustion gas turbine combustor that achieves the configuration. 5. A premix combustion type gas turbine combustor, characterized in that a V-shaped vortex generator is provided at the downstream end of the inner cylinder of the premix chamber in any one of the first to fourth % tolerance requirements. 6. In any one of claims 1 to 5, the fuel flow rate of a fuel nozzle provided in a combustor liner and the air amount ratio '? r: 0°03 to 0.06, the ratio of the fuel flow rate supplied to the annular part of the premixing chamber to the amount of air flowing into the annular part to 0.045 to 0.07, and the inner cylinder of the premixing chamber The ratio of the fuel flow rate to be supplied and the amount of air flowing into the inner cylinder section is set to 0.
03 to 0.06. A premix combustion type gas turbine combustor.
JP412283A 1983-01-17 1983-01-17 Premixed combustion type gas turbine Pending JPS59129330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP412283A JPS59129330A (en) 1983-01-17 1983-01-17 Premixed combustion type gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP412283A JPS59129330A (en) 1983-01-17 1983-01-17 Premixed combustion type gas turbine

Publications (1)

Publication Number Publication Date
JPS59129330A true JPS59129330A (en) 1984-07-25

Family

ID=11575978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP412283A Pending JPS59129330A (en) 1983-01-17 1983-01-17 Premixed combustion type gas turbine

Country Status (1)

Country Link
JP (1) JPS59129330A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61241425A (en) * 1985-04-17 1986-10-27 Hitachi Ltd Fuel gas controlling method of gas turbine and controller
JPS62174539A (en) * 1985-09-30 1987-07-31 Toshiba Corp Gas turbine controller
JPS62218731A (en) * 1986-03-19 1987-09-26 Tokyo Electric Power Co Inc:The Gas turbine combustor
JPS62218730A (en) * 1986-03-19 1987-09-26 Tokyo Electric Power Co Inc:The Gas turbine combustor
JPS6419126A (en) * 1987-07-13 1989-01-23 Hitachi Ltd Gas turbine fuel controller
JPS6445927A (en) * 1987-06-25 1989-02-20 Gen Electric Fuel injector
US5327718A (en) * 1991-08-23 1994-07-12 Hitachi, Ltd. Gas turbine apparatus and method of control thereof
JPH08210641A (en) * 1995-02-01 1996-08-20 Kawasaki Heavy Ind Ltd Burner for gas turbine and gas turbine combustion system using the same
EP1186832A2 (en) * 2000-09-08 2002-03-13 General Electric Company Fuel nozzle assembly for reduced exhaust emissions
EP1484553A3 (en) * 2003-06-06 2006-11-29 Rolls-Royce Deutschland Ltd & Co KG Burner for a gas turbine combustor
JP2008253020A (en) * 2007-03-29 2008-10-16 Matsushita Electric Works Ltd Attachment for recessed wiring accessories
WO2008129652A1 (en) * 2007-04-06 2008-10-30 Hitachi, Ltd. Gas turbine power generating apparatus and method of starting the same
EP1959196A3 (en) * 2007-02-15 2010-06-30 Kawasaki Jukogyo Kabushiki Kaisha Combustor of a gas turbine
EP1985926A3 (en) * 2007-04-26 2016-04-13 Mitsubishi Hitachi Power Systems, Ltd. Combustion equipment and combustion method

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61241425A (en) * 1985-04-17 1986-10-27 Hitachi Ltd Fuel gas controlling method of gas turbine and controller
JPH0574697B2 (en) * 1985-04-17 1993-10-19 Hitachi Ltd
JPS62174539A (en) * 1985-09-30 1987-07-31 Toshiba Corp Gas turbine controller
JPH0461169B2 (en) * 1985-09-30 1992-09-30 Tokyo Shibaura Electric Co
JPS62218731A (en) * 1986-03-19 1987-09-26 Tokyo Electric Power Co Inc:The Gas turbine combustor
JPS62218730A (en) * 1986-03-19 1987-09-26 Tokyo Electric Power Co Inc:The Gas turbine combustor
JPS6445927A (en) * 1987-06-25 1989-02-20 Gen Electric Fuel injector
JPS6419126A (en) * 1987-07-13 1989-01-23 Hitachi Ltd Gas turbine fuel controller
JPH0579819B2 (en) * 1987-07-13 1993-11-04 Hitachi Ltd
US5327718A (en) * 1991-08-23 1994-07-12 Hitachi, Ltd. Gas turbine apparatus and method of control thereof
JPH08210641A (en) * 1995-02-01 1996-08-20 Kawasaki Heavy Ind Ltd Burner for gas turbine and gas turbine combustion system using the same
EP1186832A2 (en) * 2000-09-08 2002-03-13 General Electric Company Fuel nozzle assembly for reduced exhaust emissions
EP1186832A3 (en) * 2000-09-08 2002-04-24 General Electric Company Fuel nozzle assembly for reduced exhaust emissions
EP1484553A3 (en) * 2003-06-06 2006-11-29 Rolls-Royce Deutschland Ltd & Co KG Burner for a gas turbine combustor
US7621131B2 (en) 2003-06-06 2009-11-24 Rolls-Royce Deutschland Ltd & Co. Kg Burner for a gas-turbine combustion chamber
EP1959196A3 (en) * 2007-02-15 2010-06-30 Kawasaki Jukogyo Kabushiki Kaisha Combustor of a gas turbine
US8001786B2 (en) 2007-02-15 2011-08-23 Kawasaki Jukogyo Kabushiki Kaisha Combustor of a gas turbine engine
JP2008253020A (en) * 2007-03-29 2008-10-16 Matsushita Electric Works Ltd Attachment for recessed wiring accessories
WO2008129652A1 (en) * 2007-04-06 2008-10-30 Hitachi, Ltd. Gas turbine power generating apparatus and method of starting the same
JPWO2008129652A1 (en) * 2007-04-06 2010-07-22 株式会社日立製作所 Gas turbine power generation facility and starting method thereof
EP1985926A3 (en) * 2007-04-26 2016-04-13 Mitsubishi Hitachi Power Systems, Ltd. Combustion equipment and combustion method

Similar Documents

Publication Publication Date Title
JP2713627B2 (en) Gas turbine combustor, gas turbine equipment including the same, and combustion method
US5201181A (en) Combustor and method of operating same
RU2455569C1 (en) Burner
JPH02208417A (en) Gas-turbine burner and operating method therefor
JPS6057131A (en) Fuel feeding process for gas turbine combustor
JPH05203148A (en) Gas turbine combustion apparatus and its control method
JP2006258041A (en) Gas turbine combustor and its igniting method
JPS59129330A (en) Premixed combustion type gas turbine
US6874323B2 (en) Low emissions hydrogen blended pilot
US20030054304A1 (en) Main burner, method and apparatus
EP0643267B1 (en) Premixed gas burning method and combustor
JP3954138B2 (en) Combustor and fuel / air mixing tube with radial inflow dual fuel injector
JPH09166326A (en) Gas turbine combustion device
JPH0440611B2 (en)
JP2001254947A (en) Gas turbine combustor
JP3482718B2 (en) Gas turbine combustor
JPH05332512A (en) Burner for gas turbine combustion device
JPH1114055A (en) Gas turbine combustor and its combustion method
JP3449802B2 (en) Gas combustion equipment
JP2004028352A (en) LOW NOx COMBUSTOR COMPRISING FUEL INJECTION VALVE FOR PREVENTING BACKFIRE AND SELF-IGNITION
JP2000074371A (en) Burner
JP2607387Y2 (en) Gas turbine combustor
JPH06213456A (en) Combustion device for gas turbine and its fuel control device
JPS63161318A (en) Combustion method for combustor for gas turbine
JPH11223342A (en) Combustor for gas turbine