JP3211297B2 - Cathode electrode oxidation method for molten carbonate fuel cell - Google Patents
Cathode electrode oxidation method for molten carbonate fuel cellInfo
- Publication number
- JP3211297B2 JP3211297B2 JP31147591A JP31147591A JP3211297B2 JP 3211297 B2 JP3211297 B2 JP 3211297B2 JP 31147591 A JP31147591 A JP 31147591A JP 31147591 A JP31147591 A JP 31147591A JP 3211297 B2 JP3211297 B2 JP 3211297B2
- Authority
- JP
- Japan
- Prior art keywords
- cathode
- inert gas
- amount
- cell
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8878—Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
- H01M4/8882—Heat treatment, e.g. drying, baking
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/14—Fuel cells with fused electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Chemical & Material Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Fuel Cell (AREA)
- Inert Electrodes (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は燃料の有する化学エネル
ギーを直接電気エネルギーに変換させるエネルギー部門
で用いる燃料電池のうち、溶融炭酸塩型燃料電池のカソ
ード電極を酸化させる方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for oxidizing a cathode electrode of a molten carbonate fuel cell among fuel cells used in an energy sector in which chemical energy of fuel is directly converted into electric energy.
【0002】[0002]
【従来の技術】溶融炭酸塩型燃料電池は、図3に概略を
示す如く、多孔質物質に電解質としての溶融炭酸塩をし
み込ませてなる電解質板(タイル)1を、カソード(酸
素極)2とアノード(燃料極)3の両電極で両面から挟
み、カソード2側に酸化ガスOGを供給すると共にアノ
ード3側に燃料ガスFGを供給することにより反応を行
わせて発電が行われるようにしたものを1セルCとし、
各セルCをセパレータ4を介して多層に積層してスタッ
クとするようにしてある。2. Description of the Related Art As shown schematically in FIG. 3, a molten carbonate fuel cell comprises an electrolyte plate (tile) 1 in which a porous material is impregnated with a molten carbonate as an electrolyte, and a cathode (oxygen electrode) 2. And the anode (fuel electrode) 3 sandwiched from both sides, the oxidizing gas OG is supplied to the cathode 2 and the fuel gas FG is supplied to the anode 3 to cause a reaction to generate power. The thing is 1 cell C,
Each cell C is stacked in multiple layers via a separator 4 to form a stack.
【0003】上記溶融炭酸塩型燃料電池を組み立てる場
合は、電解質板を構成するマトリックス板の上に炭酸塩
の粉末を均一な厚さに分散して乗せ、これをカソード2
とアノード3の両電極間に挾持させるようにし、運転開
始前に不活性ガス(N2 ガス)を流すことにより炭酸塩
の融点以上の温度(490℃)に加熱し、この初期昇温
時に炭酸塩をマトリックス板にしみ込ませる含浸工程を
経た後、カソード2側に空気を流してカソード電極の酸
化を行わせるようにしている。When assembling the above molten carbonate fuel cell, carbonate powder is dispersed in a uniform thickness on a matrix plate constituting an electrolyte plate, and this is placed on a cathode 2.
Before starting operation, the mixture is heated to a temperature (490 ° C.) higher than the melting point of the carbonate by flowing an inert gas (N 2 gas). After an impregnation step of impregnating the salt into the matrix plate, air is flown to the cathode 2 side to oxidize the cathode electrode.
【0004】上記カソード電極の酸化は、電池に組み込
まれたNi多孔質体を酸化させて酸化ニッケル(Ni
O)とするようにしている。[0004] Oxidation of the cathode electrode oxidizes a nickel porous material (Ni) by oxidizing a Ni porous body incorporated in a battery.
O).
【0005】従来のカソード電極の酸化方法は、図4に
示す如く、不活性ガス(N2 ガス)をアノード3に流し
た後、アノード3出口側からカソード2の入口側へ導い
てカソード2に流すようにし、カソード2の入口側に接
続される空気供給ラインより不活性ガス中に空気Aを混
入することによりNi材を酸化させてNiOとするよう
にしている。この場合、酸化に伴なって発熱するので、
スタック内温度が急激に上昇する危険性がある。In the conventional method of oxidizing a cathode electrode, as shown in FIG. 4, an inert gas (N 2 gas) is caused to flow to the anode 3 and then guided from the outlet side of the anode 3 to the inlet side of the cathode 2 to the cathode 2. The Ni material is oxidized into NiO by mixing air A into an inert gas from an air supply line connected to the inlet side of the cathode 2. In this case, heat is generated with the oxidation,
There is a risk that the temperature inside the stack will rise sharply.
【0006】そのため、従来では、酸化反応により異常
昇温を生じさせないようにカソード電極の酸化を行うよ
うにするため、スタック内の温度が異常に高くならない
ようセルの入口側から出口側の間に設置された熱電対で
温度を検出して酸素(空気)の供給量を絞ったり、出し
たりして、不活性ガスの量に対して酸素の量を可変にし
ている。For this reason, conventionally, in order to oxidize the cathode electrode so as not to cause an abnormal temperature rise due to the oxidation reaction, the temperature in the stack must be kept between the inlet side and the outlet side so that the temperature in the stack does not become abnormally high. The temperature is detected by an installed thermocouple, and the supply amount of oxygen (air) is reduced or supplied to make the amount of oxygen variable relative to the amount of the inert gas.
【0007】[0007]
【発明が解決しようとする課題】ところが、上記従来の
カソード電極酸化方法では、酸素の量を急激に増すこと
は温度の急激な上昇となるので、常に不活性ガス(N2
ガス)を一定量流し続けなければならないという問題が
ある。又、セルの入口側では酸素濃度が高いため反応速
度が大きくなり、急激な反応による発熱が生じ、このた
め、局部的に異常昇温が認められており、又、酸素をか
なり絞って微量ずつ流すことから酸化は入口から出口に
向って進み、酸化反応で昇温する分布が出口側へずれて
来て、温度分布が均一にならず、供給酸素量が少いため
カソード材料のNiを全て酸化するのに、きわめて長い
時間がかかる、等の問題がある。However, in the above conventional method for oxidizing a cathode electrode, a rapid increase in the amount of oxygen results in a rapid rise in temperature, so that an inert gas (N 2) is always used.
Gas) must be kept flowing at a constant rate. In addition, the reaction rate increases due to the high oxygen concentration on the inlet side of the cell, and heat is generated due to abrupt reaction. For this reason, an abnormal temperature rise has been observed locally. Oxidation proceeds from the inlet to the outlet due to the flow, and the distribution of temperature rise by the oxidation reaction shifts to the outlet side, the temperature distribution is not uniform, and the amount of supplied oxygen is small, so all Ni in the cathode material is oxidized. It takes a very long time to do so.
【0008】そこで、本発明は、カソードへ流すガスの
量を多くして酸素の濃度を下げて反応速度を抑制するこ
とにより急激な酸化反応を抑えるようにし、且つガスに
よる除熱を利用してスタック内の温度上昇を抑えるよう
にしてカソード電極を酸化できる電池内でのカソード電
極酸化方法を提供しようとするものである。[0008] Therefore, the present invention suppresses the rapid oxidation reaction by increasing the amount of gas flowing to the cathode to lower the concentration of oxygen to suppress the reaction rate, and utilizes heat removal by gas. An object of the present invention is to provide a method of oxidizing a cathode electrode in a battery, which can oxidize a cathode electrode while suppressing a temperature rise in a stack.
【0009】[0009]
【課題を解決するための手段】本発明は、上記課題を解
決するために、電解質板をカソードとアノードの両電極
で両面から挟持させたセルをセパレータを介し多層に積
層してスタックとした溶融炭酸塩型燃料電池の上記カソ
ードの出口側からカソード入口側へリサイクルラインを
設け、カソードへ不活性ガスを流してカソードの出口側
からカソードの入口側へ不活性ガスをリサイクルさせる
ことにより、カソード側へ流す不活性ガスの量を、リサ
イクルさせる量の分だけ多くして多量の不活性ガスをカ
ソードへ流すようにし、次いで、不活性ガス中に微少量
の空気を混入して酸素濃度を多量の不活性ガスによりカ
ソード入口側で下げることにより酸化反応速度を抑制し
てセル内の温度の異常上昇を抑えるようにし、セル内の
温度が高くなり過ぎると空気供給量を少なくし温度が下
がって来ると空気供給量を増やすようにセル内の温度を
見ながら空気の供給量をコントロールしてカソード電極
を酸化させるようにする。SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a stack of cells in which an electrolyte plate is sandwiched between both electrodes of a cathode and an anode from both sides by means of a separator and stacked in multiple layers. A recycle line is provided from the cathode outlet side to the cathode inlet side of the carbonate type fuel cell, and an inert gas is caused to flow to the cathode to recycle the inert gas from the cathode outlet side to the cathode inlet side. The amount of inert gas flowing to the cathode is increased by the amount to be recycled so that a large amount of inert gas flows to the cathode, and then a small amount of air is mixed into the inert gas to increase the oxygen concentration to a large amount. The oxidation reaction rate is suppressed by lowering the temperature at the cathode inlet side with an inert gas, so that abnormal temperature rise in the cell is suppressed. That when such oxidizing the cathode electrode to control the supply amount of the air while watching the temperature in the cell as the reduced temperature of the air supply amount comes down increasing the air supply quantity.
【0010】[0010]
【作用】リサイクルラインを使ってカソード出口ガスを
カソード入口側へリサイクルさせると、カソードへ流さ
れる不活性ガスのトータル量が多くなるので、供給空気
の量が同じであれば、不活性ガスの量が多くなっている
分だけ供給空気が薄められてカソード入口側での酸素濃
度が下げられることにより反応速度が遅くなり、セル内
で局部的な異常昇温を抑えることができる。同時に、不
活性ガスのリサイクルにより冷却効果が高められる結
果、反応時の温度を制御することができる。又、上記酸
素濃度が下げられることから、酸素濃度の薄い空気がセ
ル全体に行き渡るので、セル全面で酸化が行われること
から、入口から出口まで温度差の小さい温度勾配のゆる
やかな温度分布が得られる。[Function] When the cathode outlet gas is recycled to the cathode inlet side using the recycle line, the total amount of inert gas flowing to the cathode increases, so if the amount of supplied air is the same, the amount of inert gas Since the supply air is diluted by the amount of the increase, the oxygen concentration at the cathode inlet side is reduced, so that the reaction speed is reduced, and local abnormal temperature rise in the cell can be suppressed. At the same time, the cooling effect is enhanced by recycling the inert gas, so that the temperature during the reaction can be controlled. In addition, since the oxygen concentration is lowered, air having a low oxygen concentration spreads over the entire cell, and oxidation is performed on the entire surface of the cell. Therefore, a gentle temperature distribution with a small temperature gradient from the inlet to the outlet is obtained. Can be
【0011】[0011]
【実施例】以下、本発明の実施例を図面を参照して説明
する。Embodiments of the present invention will be described below with reference to the drawings.
【0012】図1は本発明の実施例を示すもので、図3
に示す溶融炭酸塩型燃料電池と同様に、電解質板1をカ
ソード2とアノード3の両電極で両面から挟んでなるセ
ルCをセパレータ4を介し積層し、セパレータ4とカソ
ード2との間に形成されたガス通路に酸化ガスOGを供
給すると共に、セパレータ4とアノード3との間に形成
されたガス通路に燃料ガスFGを供給するようにしたも
のをスタックとした構成において、この燃料電池を用い
た発電システムでカソード2の出口側に接続してあるカ
ソード出口ガスライン5の途中より分岐させてカソード
2の入口側にリサイクルさせるようにしてあるカソード
リサイクルライン6を利用して電池の中でカソード電極
2の酸化を行わせる。すなわち、カソード2の出口側に
クーラ7を設け、リサイクルライン6の途中にリサイク
ル用ブロワ8を設け、カソード出口ガスを冷却してリサ
イクルさせることによりリサイクル用ブロワ8の保護を
図るようにしてある構成のリサイクルライン6を使用
し、カソード電極の酸化開始前に、アノード3を経て導
かれた不活性ガス(N2 ガス)をカソード2側へ流し、
徐々に不活性ガスの温度を上げて500℃を越える温度
まで昇温されると、カソード電極2の酸化を行わせる。
この際、カソード電極が酸化しない温度のときに不活性
ガスをリサイクルライン6に流してリサイクルライン6
を不活性ガスでパージし、次いで、不活性ガスの温度が
500℃近傍にまで上げられると、この不活性ガス中に
微少量の空気を混入し、セル内の温度を見ながら空気の
供給量をコントロールして酸化を行わせるようにする。
上記の酸化反応による発熱によりセル内の温度は上昇す
るが、本発明では不活性ガスをリサイクルさせることに
よる冷却効果によって酸化反応による昇温を抑制できる
と共に、不活性ガスのリサイクルにより多量の不活性ガ
スがカソード入口側からカソード2へ流されることから
供給される空気の量は従来と同じであってもカソード入
口側での酸素濃度を従来の方法に比して下げることがで
きて反応速度を抑制することができるので、温度の異常
上昇を抑えることができる。しかも酸素濃度の薄い空気
がセル全体に行き渡るので、セル全体で酸化が行われる
ことになる。FIG. 1 shows an embodiment of the present invention.
As in the case of the molten carbonate type fuel cell shown in FIG. 1, a cell C having an electrolyte plate 1 sandwiched between both electrodes of a cathode 2 and an anode 3 from both sides is laminated with a separator 4 interposed therebetween, and formed between the separator 4 and the cathode 2. The fuel cell is used in a configuration in which the oxidizing gas OG is supplied to the gas passage formed and the fuel gas FG is supplied to the gas passage formed between the separator 4 and the anode 3 in a stack. In the power generation system, the cathode is recycled from the middle of a cathode outlet gas line 5 connected to the outlet side of the cathode 2 and recycled to the inlet side of the cathode 2 using a cathode recycling line 6 in the battery. The electrode 2 is oxidized. That is, a cooler 7 is provided on the outlet side of the cathode 2, a recycle blower 8 is provided in the middle of the recycle line 6, and the recycle blower 8 is protected by cooling and recycling the cathode outlet gas. Before the oxidation of the cathode electrode is started, an inert gas (N 2 gas) led through the anode 3 is flowed to the cathode 2 side before the oxidation of the cathode electrode is started.
When the temperature of the inert gas is gradually increased to a temperature exceeding 500 ° C., the cathode electrode 2 is oxidized.
At this time, when the temperature of the cathode electrode is not oxidized, the inert gas flows into the recycling line
Is purged with an inert gas, and then when the temperature of the inert gas is raised to around 500 ° C., a small amount of air is mixed into the inert gas, and the amount of air supplied is checked while monitoring the temperature inside the cell. To control the oxidation.
Although the temperature inside the cell rises due to the heat generated by the above-mentioned oxidation reaction, in the present invention, the cooling effect by recycling the inert gas can suppress the temperature rise due to the oxidation reaction, and a large amount of inert gas can be recycled by recycling the inert gas. Since the amount of air supplied from the gas flowing from the cathode inlet side to the cathode 2 is the same as the conventional method, the oxygen concentration at the cathode inlet side can be reduced as compared with the conventional method, and the reaction rate can be reduced. Since it can be suppressed, an abnormal rise in temperature can be suppressed. In addition, since air having a low oxygen concentration is distributed throughout the cell, oxidation is performed in the entire cell.
【0013】本発明者等は、電極面積:0.3m2 、積
層セル数:50セルのスタックにおいて不活性ガスをリ
サイクルさせてカソード電極の酸化を行わせる実験を行
い、中央に配置した第25層目のセパレータの入口から
出口における温度変化について調べたところ、図2に示
す如き結果が得られた。図中、は入口側位置の温度変
化を示し、は出口位置における温度変化を示し、
は入口から出口に至る各位置での温度変化を示す。図
2から明らかなように、カソード2へのリサイクルライ
ン6を利用して不活性ガスをリサイクルさせるようにす
ることにより、上述したように、セル全体で酸化が行わ
れていることがわかり、又、入口酸素濃度が他と比べて
高いため、酸化は時間とともに入口から出口へ向って進
行していることがわかる。この実験では、スタックの高
さ方向についてはほぼ同様に酸化が進んでいることも確
認できた。The present inventors conducted an experiment in which an inert gas was recycled to oxidize a cathode electrode in a stack having an electrode area of 0.3 m 2 and a number of stacked cells of 50 cells. When the temperature change from the inlet to the outlet of the layer separator was examined, the results as shown in FIG. 2 were obtained. In the figure, indicates a temperature change at the inlet side position, indicates a temperature change at the outlet position,
Indicates a temperature change at each position from the inlet to the outlet. As is clear from FIG. 2, by using the recycle line 6 to the cathode 2 to recycle the inert gas, as described above, it can be seen that the entire cell is oxidized, and Since the oxygen concentration at the inlet is higher than the others, it can be seen that the oxidation proceeds from the inlet to the outlet with time. In this experiment, it was also confirmed that oxidation proceeded in the same manner in the stack height direction.
【0014】[0014]
【発明の効果】以上述べた如く、本発明の溶融炭酸塩型
燃料電池のカソード電極酸化方法によれば、電解質板を
カソードとアノードの両電極で両面から挟持させたセル
をセパレータを介し多層に積層してスタックとした溶融
炭酸塩型燃料電池の上記カソードの出口側からカソード
入口側へリサイクルラインを設け、カソードへ不活性ガ
スを流してカソードの出口側からカソードの入口側へ不
活性ガスをリサイクルさせることにより、カソード側へ
流す不活性ガスの量を、リサイクルさせる量の分だけ多
くして多量の不活性ガスをカソードへ流すようにし、次
いで、不活性ガス中に微少量の空気を混入して酸素濃度
を多量の不活性ガスによりカソード入口側で下げること
により酸化反応速度を抑制してセル内の温度の異常上昇
を抑えるようにし、セル内の温度が高くなり過ぎると空
気供給量を少なくし温度が下がって来ると空気供給量を
増やすようにセル内の温度を見ながら空気の供給量をコ
ントロールしてカソード電極を酸化させるので、次の如
き優れた効果を奏し得る。 (i) カソード出口側からカソード入口側へ不活性ガスを
リサイクルさせることによりカソードを流れる不活性ガ
スのトータル流量を増加させることができて、冷却効果
が高まり、酸化反応時の異常昇温を抑制することができ
る。 (ii)上記(i) によりカソードを流れる不活性ガスの流量
が多いので、カソード入口側で供給される空気が薄めら
れてカソード入口側で酸素濃度が下げられるため、酸化
反応速度を遅らせることができてカソード入口側での局
部的な温度の異常上昇を抑えることができ、酸化反応時
の温度を全般的に低くすることができる。 (iii) 酸素濃度の薄い空気がセル全体に行き渡り、セル
全面で酸化が行われ、温度分布を均一化できる。 (iv)不活性ガスの供給量を減少することができる。As described above, according to the method of oxidizing the cathode electrode of the molten carbonate fuel cell of the present invention, the cell in which the electrolyte plate is sandwiched between the cathode and the anode from both sides is formed into a multilayer through the separator. A recycle line is provided from the outlet side of the cathode to the cathode inlet side of the molten carbonate type fuel cell that is formed by stacking, and an inert gas is supplied to the cathode to flow the inert gas from the outlet side of the cathode to the inlet side of the cathode. By recycling, the amount of inert gas flowing to the cathode side is increased by the amount to be recycled so that a large amount of inert gas flows to the cathode, and then a small amount of air is mixed in the inert gas. The oxidation reaction rate is reduced by lowering the oxygen concentration at the cathode inlet side with a large amount of inert gas to suppress the abnormal rise in temperature inside the cell. If the temperature inside the cell becomes too high, the air supply is reduced, and if the temperature falls, the cathode supply is oxidized by controlling the air supply while monitoring the temperature inside the cell so as to increase the air supply. The following excellent effects can be obtained. (i) By recycling the inert gas from the cathode outlet to the cathode inlet, the total flow rate of the inert gas flowing through the cathode can be increased, increasing the cooling effect and suppressing abnormal temperature rise during the oxidation reaction. can do. (ii) Since the flow rate of the inert gas flowing through the cathode is large due to the above (i), the air supplied at the cathode inlet side is diluted and the oxygen concentration is reduced at the cathode inlet side, so that the oxidation reaction rate may be slowed. As a result, an abnormal increase in local temperature at the cathode inlet side can be suppressed, and the temperature during the oxidation reaction can be generally lowered. (iii) Air having a low oxygen concentration spreads over the entire cell, oxidation is performed on the entire surface of the cell, and the temperature distribution can be made uniform. (iv) The supply amount of the inert gas can be reduced.
【図1】本発明の実施例を示す概要図である。FIG. 1 is a schematic diagram showing an embodiment of the present invention.
【図2】本発明の方法でカソード電極の酸化を行うとき
の実験結果を示す図である。FIG. 2 is a view showing an experimental result when a cathode electrode is oxidized by the method of the present invention.
【図3】溶融炭酸塩型燃料電池の概略を示す断面図であ
る。FIG. 3 is a cross-sectional view schematically showing a molten carbonate fuel cell.
【図4】従来のカソード電極の酸化方法を示す図であ
る。FIG. 4 is a diagram showing a conventional method for oxidizing a cathode electrode.
1 電解質板 2 カソード(カソード電極) 3 アノード 5 カソード出口ガスライン 6 リサイクルライン 7 クーラ 8 リサイクル用ブロワ A 空気 C セル DESCRIPTION OF SYMBOLS 1 Electrolyte plate 2 Cathode (cathode electrode) 3 Anode 5 Cathode outlet gas line 6 Recycle line 7 Cooler 8 Recycling blower A Air C cell
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭58−119161(JP,A) 特開 昭62−140375(JP,A) 特開 平4−12463(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/86 - 4/88 H01M 8/00 - 8/24 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-58-119161 (JP, A) JP-A-62-140375 (JP, A) JP-A-4-12463 (JP, A) (58) Field (Int.Cl. 7 , DB name) H01M 4/86-4/88 H01M 8/00-8/24
Claims (1)
で両面から挟持させたセルをセパレータを介し多層に積
層してスタックとした溶融炭酸塩型燃料電池の上記カソ
ードの出口側からカソード入口側へリサイクルラインを
設け、カソードへ不活性ガスを流してカソードの出口側
からカソードの入口側へ不活性ガスをリサイクルさせる
ことにより、カソード側へ流す不活性ガスの量を、リサ
イクルさせる量の分だけ多くして多量の不活性ガスをカ
ソードへ流すようにし、次いで、不活性ガス中に微少量
の空気を混入して酸素濃度を多量の不活性ガスによりカ
ソード入口側で下げることにより酸化反応速度を抑制し
てセル内の温度の異常上昇を抑えるようにし、セル内の
温度が高くなり過ぎると空気供給量を少なくし温度が下
がって来ると空気供給量を増やすようにセル内の温度を
見ながら空気の供給量をコントロールしてカソード電極
を酸化させることを特徴とする溶融炭酸塩型燃料電池の
カソード電極酸化方法。1. A molten carbonate fuel cell having an electrolyte plate sandwiched between both electrodes of a cathode and an anode from both sides in a multilayer structure with a separator interposed therebetween in a multilayer structure from an outlet side of the cathode to an inlet side of the cathode. A recycling line is provided to allow the inert gas to flow to the cathode and recycle the inert gas from the cathode outlet to the cathode inlet, thereby increasing the amount of inert gas flowing to the cathode by the amount to be recycled. To allow a large amount of inert gas to flow to the cathode, and then mix a small amount of air into the inert gas and reduce the oxygen concentration at the cathode inlet side with a large amount of inert gas to suppress the oxidation reaction rate. To suppress abnormal rise in temperature inside the cell.If the temperature inside the cell becomes too high, the air supply is reduced, and if the temperature falls, the air supply A method for oxidizing a cathode electrode of a molten carbonate fuel cell, comprising oxidizing a cathode electrode by controlling a supply amount of air while monitoring a temperature in a cell so as to increase a supply amount.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31147591A JP3211297B2 (en) | 1991-10-31 | 1991-10-31 | Cathode electrode oxidation method for molten carbonate fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31147591A JP3211297B2 (en) | 1991-10-31 | 1991-10-31 | Cathode electrode oxidation method for molten carbonate fuel cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05129022A JPH05129022A (en) | 1993-05-25 |
JP3211297B2 true JP3211297B2 (en) | 2001-09-25 |
Family
ID=18017671
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31147591A Expired - Fee Related JP3211297B2 (en) | 1991-10-31 | 1991-10-31 | Cathode electrode oxidation method for molten carbonate fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3211297B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007033478A2 (en) * | 2005-09-21 | 2007-03-29 | Hydrogenics Corporation | Air independent power production |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160138189A (en) * | 2014-03-27 | 2016-12-02 | 누베라 퓨엘 셀스, 인크. | Cathode gas recirculation method and system for fuel cells |
-
1991
- 1991-10-31 JP JP31147591A patent/JP3211297B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007033478A2 (en) * | 2005-09-21 | 2007-03-29 | Hydrogenics Corporation | Air independent power production |
WO2007033478A3 (en) * | 2005-09-21 | 2007-05-18 | Hydrogenics Corp | Air independent power production |
Also Published As
Publication number | Publication date |
---|---|
JPH05129022A (en) | 1993-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5922485A (en) | Solid polymer electrolyte fuel cell | |
JP6745920B2 (en) | Bipolar plate with variable width in the reaction gas channel in the inlet region of the active region, fuel cell stack, fuel cell system with such bipolar plate, and vehicle | |
JPH0696782A (en) | Internal reforming type fuel cell device and its operating method | |
JPH09259913A (en) | Fuel battery power generator and operation method thereof | |
JP5124900B2 (en) | Fuel cell having a stack structure | |
JP3211297B2 (en) | Cathode electrode oxidation method for molten carbonate fuel cell | |
JPH0831320B2 (en) | Fuel cell device for oxygen-containing fuel gas | |
JP3271410B2 (en) | Fuel cell and its solid polymer electrolyte membrane and electrode | |
JP2006147425A (en) | Electrolyte membrane for polymer electrolyte fuel cell, its manufacturing method and the polymer electrolyte fuel cell | |
WO2022045108A1 (en) | Solid polymer electrolyte fuel cell stack | |
JP4389492B2 (en) | Fuel cell separator and solid oxide fuel cell | |
JPS5998471A (en) | Melting carbonate type fuel cell device | |
JPH06267562A (en) | Solid high polymer electrolyte fuel cell | |
JPH07201347A (en) | Fused carbonate fuel cell | |
JP4240285B2 (en) | Method for producing gas diffusion layer of polymer electrolyte fuel cell | |
JP3223556B2 (en) | Method for degreasing molten carbonate fuel cell | |
JP2002270197A (en) | High molecular electrolyte type fuel cull | |
JPH0650639B2 (en) | Fuel cell | |
JP3213400B2 (en) | Method for manufacturing solid oxide fuel cell | |
JPH09161821A (en) | Solid polymer electrolytic fuel cell | |
JPH10255811A (en) | Fuel cell with dispersed characteristic electrode | |
JPH01246767A (en) | Fuel cell | |
JPH09289026A (en) | Fuel cell | |
JPH0447673A (en) | Starting method for phosphoric acid fuel cell | |
JPH08180889A (en) | Internal reforming control method for flat solid electrolytic fuel cell and device therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080719 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |