JP3271410B2 - Fuel cell and its solid polymer electrolyte membrane and electrode - Google Patents

Fuel cell and its solid polymer electrolyte membrane and electrode

Info

Publication number
JP3271410B2
JP3271410B2 JP35465493A JP35465493A JP3271410B2 JP 3271410 B2 JP3271410 B2 JP 3271410B2 JP 35465493 A JP35465493 A JP 35465493A JP 35465493 A JP35465493 A JP 35465493A JP 3271410 B2 JP3271410 B2 JP 3271410B2
Authority
JP
Japan
Prior art keywords
layer
catalyst
electrolyte membrane
catalyst layer
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35465493A
Other languages
Japanese (ja)
Other versions
JPH07201346A (en
Inventor
誠司 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP35465493A priority Critical patent/JP3271410B2/en
Publication of JPH07201346A publication Critical patent/JPH07201346A/en
Application granted granted Critical
Publication of JP3271410B2 publication Critical patent/JP3271410B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、対向する電極と固体高
分子電解質膜とを有し該固体高分子電解質膜を電極で挟
持した燃料電池と、対向する電極間に位置し触媒を担持
した導電性粒子からなる触媒層を介在させて前記電極に
挟持される固体高分子電解質膜と、ガス拡散性を有する
電極基材から形成され、触媒を担持した導電性粒子から
なる触媒層を介在させて電解質を挟持する電極に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell having an opposed electrode and a solid polymer electrolyte membrane, wherein the solid polymer electrolyte membrane is sandwiched between the electrodes, and a catalyst which is located between the opposed electrodes and carries a catalyst. A solid polymer electrolyte membrane sandwiched between the electrodes with a catalyst layer made of conductive particles interposed therebetween, and a catalyst layer made of conductive particles formed of an electrode substrate having gas diffusivity and carrying a catalyst interposed therebetween. And an electrode for sandwiching the electrolyte.

【0002】[0002]

【従来の技術】固体高分子電解質膜および電極を用いた
燃料電池(固体高分子電解質型燃料電池)では、電極反
応を促進させるための触媒層を併用し、固体高分子電解
質膜の両膜面に触媒層を介在させて固体高分子電解質膜
を電極で挟持する。このような燃料電池を作成するに当
たっては、固体高分子電解質膜,触媒層および電極をポ
ットプレスすることが行なわれている。このような燃料
電池の陽極(酸素極)および陰極(水素極)において進
行する電極反応は、以下の通りである。 陰極(水素極): 2H2 →4H+ +4e- … 陽極(酸素極): 4H+ +4e- +O2 →2H2O …
2. Description of the Related Art In a fuel cell using a solid polymer electrolyte membrane and electrodes (solid polymer electrolyte type fuel cell), a catalyst layer for accelerating an electrode reaction is used in combination, and both membrane surfaces of the solid polymer electrolyte membrane are used. A solid polymer electrolyte membrane is sandwiched between electrodes with a catalyst layer interposed therebetween. In producing such a fuel cell, a solid polymer electrolyte membrane, a catalyst layer, and an electrode are pot-pressed. The electrode reactions that proceed at the anode (oxygen electrode) and cathode (hydrogen electrode) of such a fuel cell are as follows. Cathode (hydrogen electrode): 2H 2 → 4H + + 4e - ... anode (oxygen electrode): 4H + + 4e - + O 2 → 2H 2 O ...

【0003】そして、陰極での反応式により生成した
水素イオンがH+ x2O)の水和状態で固体高分子電
解質膜を透過(拡散)して陽極に至り、の反応式が進
行するのである。なお、陰極には反応に必要な水素(ガ
ス)が供給され、陽極には酸素(ガス)が供給されてい
る。また、触媒層は、白金等の触媒を担持した導電性粒
子、例えばカーボン粒子を凝集・積層して形成されてい
る。
Then, the hydrogen ions generated by the reaction formula at the cathode permeate (diffuse) through the solid polymer electrolyte membrane in the hydrated state of H + ( xH 2 O) to reach the anode, and the reaction formula proceeds. You do it. The cathode is supplied with hydrogen (gas) necessary for the reaction, and the anode is supplied with oxygen (gas). The catalyst layer is formed by aggregating and laminating conductive particles, such as carbon particles, carrying a catalyst such as platinum.

【0004】上記した燃料電池を運転中に、陰極に供給
される水素ガス中に何らかの原因で酸素が混じることが
有り得る。例えば、水素ガスの供給配管に異物の衝突等
により僅かな損傷,亀裂等が生じると、当該配管中に大
気が流入し水素ガス中に大気中の酸素が混じる。また、
水素ガス供給装置、例えば低級アルコールの改質器にお
いて酸素が混入することも有り得る。或いは、燃料電池
における電極と固体高分子電解質膜との間のシール不良
或いはシール劣化により、陰極周辺に酸素が残留する場
合がある。
During operation of the above-described fuel cell, oxygen may be mixed in the hydrogen gas supplied to the cathode for some reason. For example, when slight damage, cracks, or the like occur in a hydrogen gas supply pipe due to collision of foreign matter or the like, the atmosphere flows into the pipe, and oxygen in the atmosphere mixes with the hydrogen gas. Also,
Oxygen may be mixed in a hydrogen gas supply device, for example, a lower alcohol reformer. Alternatively, oxygen may remain around the cathode due to poor sealing or deterioration of the seal between the electrode and the solid polymer electrolyte membrane in the fuel cell.

【0005】このような事態に到ることは希ではある
が、陰極に酸素が存在すると陰極において水素の燃焼
(水素と酸素の反応)が起きることが予想される。この
ような燃焼は電極反応を促進させる触媒層の外周縁で起
きると考えられ、当該外周縁で燃焼が起きると、その時
に発生する熱により固体高分子電解質膜が損傷を受け、
電池性能の低下或いは運転停止を招く虞がある。
[0005] It is rare that such a situation occurs, but when oxygen is present at the cathode, it is expected that hydrogen combustion (reaction between hydrogen and oxygen) will occur at the cathode. Such combustion is considered to occur at the outer peripheral edge of the catalyst layer that promotes the electrode reaction, and when combustion occurs at the outer peripheral edge, the heat generated at that time damages the solid polymer electrolyte membrane,
There is a possibility that the battery performance may be reduced or the operation may be stopped.

【0006】ところで、このような事態を回避するため
に、特開平5−174845には、固体高分子電解質膜
と電極との間にフッ素樹脂等の樹脂被膜を電極の周縁と
重なるよう設ける技術が提案されている。
In order to avoid such a situation, Japanese Patent Application Laid-Open No. HEI 5-174845 discloses a technique in which a resin film such as a fluororesin is provided between a solid polymer electrolyte membrane and an electrode so as to overlap the periphery of the electrode. Proposed.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記し
た樹脂被膜を設けても、図11に示すように、触媒を担
持したカーボン粒子からなる触媒層100および電極1
02と固体高分子電解質膜104とをホットプレスして
密着した場合、樹脂被膜106の厚みによっては、樹脂
被膜106の内周縁と触媒層100との間に、空隙10
8が生じることがある。このような場合には、この空隙
108において上記した燃焼が起きると固体高分子電解
質膜104の損傷は避けられない。また、触媒層100
の外周縁にあっては燃焼による熱は当初は樹脂被膜10
6に遮られるものの、当該被膜が熱による損傷を受けれ
ば固体高分子電解質膜104もやがて損傷を受けること
になる。つまり、樹脂被膜を設けても、固体高分子電解
質膜、延いては燃料電池の耐久性に欠ける場合があっ
た。
However, even if the above-mentioned resin film is provided, as shown in FIG. 11, the catalyst layer 100 made of carbon particles carrying the catalyst and the electrode 1
02 and the solid polymer electrolyte membrane 104 by hot pressing, the gap 10 between the inner peripheral edge of the resin coating 106 and the catalyst layer 100 depends on the thickness of the resin coating 106.
8 may occur. In such a case, if the above-described combustion occurs in the gap 108, damage to the solid polymer electrolyte membrane 104 cannot be avoided. Further, the catalyst layer 100
The heat generated by the combustion at the outer peripheral edge of the
6, if the coating is damaged by heat, the solid polymer electrolyte membrane 104 will eventually be damaged. That is, even if the resin coating is provided, the solid polymer electrolyte membrane, and hence the fuel cell, sometimes lacks durability.

【0008】本発明は、上記問題点を解決するためにな
され、燃料電池における固体高分子電解質膜の耐久性を
向上させることを目的とする。
The present invention has been made to solve the above problems, and has as its object to improve the durability of a solid polymer electrolyte membrane in a fuel cell.

【0009】[0009]

【課題を解決するための手段】かかる目的を達成するた
めに発明の採用した手段は、請求項1記載の燃料電池で
は、対向する電極と固体高分子電解質膜とを有し、該固
体高分子電解質膜を電極で挟持した燃料電池であって、
前記固体高分子電解質膜と電極との間に、触媒を担持し
た導電性粒子からなる触媒層と、該触媒層をその外周縁
に沿って取り囲み該触媒層の占める領域を区画する触媒
隣接領域に、耐火性を有する粒子を敷設してなる耐火層
とを備えることをその要旨とする。
According to a first aspect of the present invention, there is provided a fuel cell comprising: a fuel cell having an electrode and a solid polymer electrolyte membrane facing each other; A fuel cell in which an electrolyte membrane is sandwiched between electrodes,
Between the solid polymer electrolyte membrane and the electrode, a catalyst layer composed of conductive particles carrying a catalyst, and a catalyst adjacent region which surrounds the catalyst layer along its outer peripheral edge and partitions the region occupied by the catalyst layer. And a fire-resistant layer on which particles having fire resistance are laid.

【0010】一方、請求項2記載の固体高分子電解質膜
では、対向する電極間に位置し、触媒を担持した導電性
粒子からなる触媒層を介在させて前記電極に挟持される
固体高分子電解質膜であって、前記触媒層が接触する触
媒接触領域を該領域の外周縁に沿って取り囲み前記触媒
接触領域を区画する触媒隣接領域に、耐火性を有する粒
子を膜面に敷設してなる耐火層を備えることをその要旨
とする。
On the other hand, in the solid polymer electrolyte membrane according to the second aspect, the solid polymer electrolyte is sandwiched between the electrodes with a catalyst layer made of conductive particles carrying a catalyst interposed therebetween. A fire-resistant film, comprising: a catalyst contact area where the catalyst layer is in contact with the surrounding area of the catalyst along the outer peripheral edge of the area; The gist is to provide a layer.

【0011】また、上記目的を達成するために電極につ
いて本発明の採用した手段は、請求項3記載の電極で
は、ガス拡散性を有する電極基材から形成され、触媒を
担持した導電性粒子からなる触媒層を介在させて電解質
を挟持する電極であって、前記電解質と対向する触媒層
をその外周縁に沿って取り囲み該触媒層の占める領域を
区画する触媒隣接領域に、耐火性を有する粒子を敷設し
てなる耐火層を備えることをその要旨とする。
In order to achieve the above-mentioned object, the means adopted by the present invention for the electrode is, in the electrode according to the third aspect, formed from an electrode substrate having gas diffusibility and comprising conductive particles carrying a catalyst. An electrode sandwiching an electrolyte with a catalyst layer interposed therebetween, the catalyst layer surrounding the catalyst layer facing the electrolyte along the outer peripheral edge thereof and a catalyst-adjacent region defining a region occupied by the catalyst layer; The main point is to provide a fireproof layer formed by laying.

【0012】[0012]

【作用】上記構成を有する請求項1記載の燃料電池で
は、固体高分子電解質膜と電極との間に備える耐火層の
敷設領域を、触媒層をその外周縁に沿って取り囲みこの
触媒層の占める領域を区画する触媒隣接領域とした。こ
のため、耐火層を耐火性を有する粒子(耐火性粒子)で
敷設したことと相俟って、導電性粒子からなる触媒層の
外周縁においては、触媒層の導電性粒子と耐火層の耐火
性粒子とを接触させる。従って、触媒層の外周縁と耐火
層との間に不用意に空隙を残さなくなり、この耐火層
で、触媒層の外周縁で水素と酸素の反応が生じた場合の
熱を遮る。
In the fuel cell according to the first aspect of the present invention, the laid area of the refractory layer provided between the solid polymer electrolyte membrane and the electrode surrounds the catalyst layer along its outer peripheral edge and occupies the catalyst layer. The region was defined as an adjacent region to the catalyst. Therefore, in combination with the fact that the refractory layer is laid with particles having fire resistance (fire-resistant particles), the conductive particles of the catalyst layer and the fire-resistant layer of the fire-resistant layer are formed at the outer periphery of the catalyst layer made of conductive particles. Contact with conductive particles. Therefore, a gap is not inadvertently left between the outer peripheral edge of the catalyst layer and the refractory layer, and the refractory layer blocks heat when a reaction between hydrogen and oxygen occurs at the outer peripheral edge of the catalyst layer.

【0013】請求項2記載の固体高分子電解質膜では、
耐火層の敷設領域を、固体高分子電解質膜の膜面に接触
する触媒層の触媒接触領域をその外周縁に沿って取り囲
みかつこの触媒接触領域を区画する領域とした。このた
め、耐火層を耐火性を有する粒子(耐火性粒子)で敷設
したことと相俟って、導電性粒子からなる触媒層の外周
縁においては、触媒層の導電性粒子と耐火層の耐火性粒
子とを接触させる。従って、触媒層の外周縁と耐火層と
の間に不用意に空隙を残さなくなり、この耐火層で、触
媒層の外周縁で水素と酸素の反応が生じた場合の熱を遮
る。
[0013] In the solid polymer electrolyte membrane according to the second aspect,
The laying area of the refractory layer was defined as an area surrounding the catalyst contact area of the catalyst layer in contact with the membrane surface of the solid polymer electrolyte membrane along the outer peripheral edge thereof and defining the catalyst contact area. Therefore, in combination with the fact that the refractory layer is laid with particles having fire resistance (fire-resistant particles), the conductive particles of the catalyst layer and the fire-resistant layer of the fire-resistant layer are formed at the outer periphery of the catalyst layer made of conductive particles. Contact with conductive particles. Therefore, a gap is not inadvertently left between the outer peripheral edge of the catalyst layer and the refractory layer, and the refractory layer blocks heat when a reaction between hydrogen and oxygen occurs at the outer peripheral edge of the catalyst layer.

【0014】請求項3記載の電極では、耐火層の敷設領
域を、電解質と対向する触媒層をその外周縁に沿って取
り囲みかつこの触媒層の占める領域を区画する領域とし
た。このため、耐火層を耐火性を有する粒子で敷設した
ことと相俟って、導電性粒子からなる触媒層の外周縁に
おいては、触媒層の導電性粒子と耐火層の耐火性粒子と
を接触させる。従って、触媒層の外周縁と耐火層との間
に不用意に空隙を残さなくなり、触媒層を介在させて電
解質を挟持した場合には、固体高分子電解質膜の膜面に
おいては、触媒層の外周縁に電極の耐火層の耐火性粒子
を接触させて触媒層を電極の耐火層で取り囲む。この結
果、触媒層の外周縁で水素と酸素の反応が生じた場合の
熱は、電極の耐火層で遮られる。
According to the third aspect of the present invention, the laying area of the refractory layer surrounds the catalyst layer facing the electrolyte along the outer peripheral edge thereof and defines a region occupied by the catalyst layer. For this reason, in combination with the fact that the refractory layer is laid with the particles having fire resistance, the conductive particles of the catalyst layer and the refractory particles of the fire layer are in contact with each other at the outer peripheral edge of the catalyst layer made of the conductive particles. Let it. Therefore, a gap is not inadvertently left between the outer peripheral edge of the catalyst layer and the refractory layer, and when the electrolyte is sandwiched with the catalyst layer interposed, the solid polymer electrolyte membrane has a catalyst layer on the membrane surface. The catalyst layer is surrounded by the refractory layer of the electrode by bringing the refractory particles of the refractory layer of the electrode into contact with the outer peripheral edge. As a result, heat generated when a reaction between hydrogen and oxygen occurs at the outer peripheral edge of the catalyst layer is blocked by the refractory layer of the electrode.

【0015】[0015]

【実施例】以上説明した本発明の構成・作用を一層明ら
かにするために、以下本発明の好適な実施例について説
明する。図1は、この実施例における燃料電池(固体高
分子型燃料電池)のセル構造の模式図である。図示する
ように、セルは、その中央に電解質膜10を備え、その
両側に、電解質膜10の膜面に密着した陽極側触媒反応
層12および陰極側触媒反応層14と、これら各触媒反
応層に密着した陽極20および陰極30と、それぞれの
極に密着するとともに電解質膜10との間でガスシール
15によりシールされた集電体40,42と、各セルを
仕切るセパレータ44を備える。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In order to further clarify the structure and operation of the present invention described above, preferred embodiments of the present invention will be described below. FIG. 1 is a schematic view of a cell structure of a fuel cell (polymer electrolyte fuel cell) in this embodiment. As shown in the figure, the cell has an electrolyte membrane 10 at the center thereof, and on both sides thereof, an anode-side catalyst reaction layer 12 and a cathode-side catalyst reaction layer 14 which are in close contact with the membrane surface of the electrolyte membrane 10; The anode 20 and the cathode 30 which are in close contact with each other, current collectors 40 and 42 which are in close contact with the respective poles and are sealed with the electrolyte membrane 10 by the gas seal 15, and a separator 44 which partitions each cell.

【0016】陽極20,陰極30は、炭素繊維の織布等
を経て得られるカーボンクロスからなり、それぞれの集
電体40,42に形成された凹所46に組み込まれてい
る。そして、陽極側触媒反応層12,陰極側触媒反応層
14の周囲には、これら触媒反応層を取り囲む耐火層1
6が電解質膜10およびそれぞれの電極面に密着して設
けられている。なお、陽極側触媒反応層12,陰極側触
媒反応層14および耐火層16の作製工程については後
述する。
The anode 20 and the cathode 30 are made of carbon cloth obtained through a woven cloth of carbon fibers or the like, and are incorporated in recesses 46 formed in the current collectors 40 and 42, respectively. Around the anode-side catalyst reaction layer 12 and the cathode-side catalyst reaction layer 14, a refractory layer 1 surrounding these catalyst reaction layers is formed.
6 are provided in close contact with the electrolyte membrane 10 and the respective electrode surfaces. The steps of forming the anode-side catalytic reaction layer 12, the cathode-side catalytic reaction layer 14, and the refractory layer 16 will be described later.

【0017】電解質膜10は、水素イオンに対するイオ
ン交換基としてスルホン基を有する高分子陽イオン交換
膜(以下、単に陽イオン交換膜ともいう)の固体高分子
電解質膜であり、水素イオンを膜厚方向に沿って選択的
に透過する。具体的に説明すると、電解質膜10は、フ
ッ素系スルホン酸高分子樹脂から作製された陽イオン交
換膜(例えばパーフルオロカーボンスルホン酸高分子膜
(商品名:ナフィオン膜, Du Pont社製))であり、そ
の膜厚は100μmである。
The electrolyte membrane 10 is a solid polymer electrolyte membrane of a polymer cation exchange membrane having a sulfone group as an ion exchange group for hydrogen ions (hereinafter, also simply referred to as a cation exchange membrane). Selectively transmits along the direction. More specifically, the electrolyte membrane 10 is a cation exchange membrane (for example, a perfluorocarbon sulfonic acid polymer membrane (trade name: Nafion membrane, manufactured by Du Pont)) made of a fluorosulfonic acid polymer resin. , And its film thickness is 100 μm.

【0018】陽極側触媒反応層12,陰極側触媒反応層
14は、後述する陽極20,陰極30と電解質膜10と
の間に介在し、これらのホットプレスを経ることで、電
解質膜10の膜面および各電極面に密着される。この陽
極側触媒反応層12,陰極側触媒反応層14は、触媒と
して白金を20wt%担持したカーボン粒子が電解質膜
10膜面に対して0.4mg/cm2 の割合となるよう
凝集・積層したカーボン粒子凝集層であり、ホットプレ
スに先立ち電解質膜10膜面或いは電極膜面に塗布さ
れ、その後のホットプレスを経て作製される。なお、こ
の作製工程については、後述する。
The anode-side catalyst reaction layer 12 and the cathode-side catalyst reaction layer 14 are interposed between the anode 20, the cathode 30, and the electrolyte membrane 10, which will be described later. Surface and each electrode surface. The anode-side catalytic reaction layer 12 and the cathode-side catalytic reaction layer 14 were agglomerated and laminated such that carbon particles supporting 20 wt% of platinum as a catalyst were in a ratio of 0.4 mg / cm 2 on the surface of the electrolyte membrane 10. This is a carbon particle aggregation layer, which is applied to the surface of the electrolyte membrane 10 or the surface of the electrode film prior to hot pressing, and is manufactured through subsequent hot pressing. This manufacturing process will be described later.

【0019】陽極20,陰極30は、平織りされたカー
ボンクロス(厚さ約0.4mm)を電極基材として用
い、このカーボンクロスにフッ素樹脂等によりはっ水処
理が施されたカーボン粒子を塗り込むことで作製されて
いる。
For the anode 20 and the cathode 30, a plain-woven carbon cloth (about 0.4 mm in thickness) is used as an electrode substrate, and carbon particles which have been subjected to a water-repellent treatment with a fluororesin or the like are applied to the carbon cloth. It is made by embedding.

【0020】集電体40,42は、多孔質でガス透過性
を有するポーラスカーボンにより形成されており、気孔
率が40ないし80%のものである。また、集電体40
には、陽極燃料である酸素含有ガスの流路であると共に
陽極20で生成する水の集水路をなす流路41が形成さ
れており、集電体42には、陰極燃料である水素含有ガ
スと水蒸気との混合ガス(加湿水素ガス)の流路43が
形成されている。この流路41,43は、セルの両端
(図1の紙面の表面側および裏面側)においてそれぞれ
の集電体端面において開口しており、この開口から燃料
ガスを供給する。なお、図中のセルの上下端面におい
て、この開口の様子を一点鎖線で示す。
The current collectors 40 and 42 are formed of porous and gas-permeable porous carbon and have a porosity of 40 to 80%. The current collector 40
In addition, a flow path 41 is formed as a flow path for an oxygen-containing gas as an anode fuel and a water collection path for water generated by the anode 20. A current collector 42 is provided with a hydrogen-containing gas as a cathode fuel. A flow path 43 for a mixed gas (humidified hydrogen gas) of water and water vapor is formed. The flow paths 41 and 43 are open at both ends of the cell (the front side and the back side of the paper surface of FIG. 1) at the end faces of the respective current collectors, and supply the fuel gas from the openings. The state of this opening is indicated by a dashed line on the upper and lower end surfaces of the cell in the figure.

【0021】セパレータ44は、カーボンを圧縮してガ
ス不透過としたガス不透過カーボンにより形成されてお
り、電解質膜10,陽極20,陰極30,集電体40,
42により構成されるセルを積層する際の隔壁をなす。
なお、本実施例では、集電体40,42およびセパレー
タ44を別体として形成したが、集電体40とセパレー
タ44をガス不透過カーボンにより一体として形成する
構成や集電体42とセパレータ44をガス不透過カーボ
ンにより一体として形成する構成、集電体40,42お
よびセパレータ44をガス不透過カーボンにより一体と
して形成する構成も好適である。
The separator 44 is made of gas-impermeable carbon which has been made gas-impermeable by compressing carbon, and has an electrolyte membrane 10, an anode 20, a cathode 30, a current collector 40,
A partition wall is formed when the cells constituted by 42 are stacked.
In the present embodiment, the current collectors 40 and 42 and the separator 44 are formed separately, but the current collector 40 and the separator 44 are integrally formed of gas impermeable carbon, or the current collector 42 and the separator 44 are formed integrally. Are preferably formed integrally with the gas-impermeable carbon, and the current collectors 40 and 42 and the separator 44 are integrally formed with the gas-impermeable carbon.

【0022】次に、陽極側触媒反応層12,陰極側触媒
反応層14および耐火層16の作製工程と燃料電池(セ
ル)の製造工程について説明する。まず、陽極20,陰
極30となるカーボンクロス50(はっ水処理が施され
たカーボン粒子の塗り込み完了品)を用意し、以下の工
程を順次行なう。この際、次の触媒層形成用のペースト
と耐火層形成用のペーストを予め準備する。
Next, the steps of forming the anode-side catalytic reaction layer 12, the cathode-side catalytic reaction layer 14, and the refractory layer 16 and the steps of manufacturing a fuel cell (cell) will be described. First, a carbon cloth 50 (a product that has been coated with water-repellent carbon particles) to be the anode 20 and the cathode 30 is prepared, and the following steps are sequentially performed. At this time, the paste for forming the next catalyst layer and the paste for forming the refractory layer are prepared in advance.

【0023】触媒層形成用のペーストは、触媒として白
金を20wt%担持したカーボン粒子(Pt0.4mg
/cm2 )を、陽イオン交換樹脂溶液、例えば電解質膜
10と同質のフッ素系スルホン酸高分子樹脂溶液(当該
樹脂の固形分5wt%をプロパノール,水の混合溶液に
配合した溶液)に徐々に加え、樹脂固形分が1mg/c
2 相当となるまでカーボン粒子を混合して得られるカ
ーボンペーストである。耐火層形成用のペーストは、触
媒を担持していない単独のカーボン粒子を、触媒層形成
用のペーストの場合と同様に上記のフッ素系スルホン酸
高分子樹脂溶液に徐々に加え、樹脂固形分が1mg/c
2 相当となるまでカーボン粒子を混合して得られるカ
ーボンペーストである。
The paste for forming the catalyst layer is made of carbon particles (Pt 0.4 mg) supporting 20 wt% of platinum as a catalyst.
/ Cm 2 ) is gradually added to a cation exchange resin solution, for example, a fluorinated sulfonic acid polymer resin solution of the same quality as the electrolyte membrane 10 (a solution in which a solid content of 5 wt% of the resin is mixed with a mixed solution of propanol and water). In addition, resin solid content is 1mg / c
It is a carbon paste obtained by mixing carbon particles to a value equivalent to m 2 . As for the paste for forming the refractory layer, single carbon particles not carrying a catalyst are gradually added to the above-mentioned fluorine-based sulfonic acid polymer resin solution as in the case of the paste for forming the catalyst layer, and the resin solid content is reduced. 1mg / c
It is a carbon paste obtained by mixing carbon particles to a value equivalent to m 2 .

【0024】最初に、図2(A)に示すように、カーボ
ンクロス50中央の触媒層形成領域52に亘って、触媒
層形成用のペーストを、白金を担持したカーボン粒子
(白金担持カーボン粒子)が0.4mg/cm2 の割合
となるよう、塗布する。このペーストの塗布を経ると、
触媒層形成領域52に亘っては、白金担持カーボン粒子
がフッ素系スルホン酸高分子樹脂溶液を介して0.4m
g/cm2 の割合で凝集・積層する。
First, as shown in FIG. 2A, a paste for forming a catalyst layer is applied to carbon particles carrying platinum (carbon particles carrying platinum) over the catalyst layer forming region 52 at the center of the carbon cloth 50. Is applied at a rate of 0.4 mg / cm 2 . After applying this paste,
Over the catalyst layer forming area 52, the platinum-supported carbon particles were 0.4 m thick via the fluorinated sulfonic acid polymer resin solution.
Aggregate and laminate at a rate of g / cm 2 .

【0025】次に、図2(B)に示すように、この触媒
層形成領域52以外の領域、即ち触媒層形成領域52を
その外周に沿って取り囲んで区画する触媒層隣接領域5
4に亘って、耐火層形成用のペーストを、カーボン粒子
が0.4mg/cm2 の割合となるよう、塗布する。こ
のペーストの塗布を経ると、触媒層隣接領域54に亘っ
ては、カーボン粒子がフッ素系スルホン酸高分子樹脂溶
液を介して0.4mg/cm2 の割合で凝集・積層す
る。そして、各領域の区画線において、白金担持カーボ
ン粒子とカーボン粒子とが接触することになる。
Next, as shown in FIG. 2 (B), a region other than the catalyst layer forming region 52, that is, a catalyst layer adjacent region 5 which surrounds and partitions the catalyst layer forming region 52 along its outer periphery.
Then, a paste for forming a refractory layer is applied over a period of 4 so that the carbon particles have a ratio of 0.4 mg / cm 2 . After application of the paste, the carbon particles are aggregated and laminated at a rate of 0.4 mg / cm 2 via the fluorine-based sulfonic acid polymer resin solution over the catalyst layer adjacent region 54. Then, the platinum-carrying carbon particles and the carbon particles come into contact with each other at the division line in each region.

【0026】上記した各工程を2枚のカーボンクロス5
0に施して、一方を陽極20に、他方を陰極30とす
る。なお、図2(B)には、触媒層隣接領域54がカー
ボンクロス50の外周縁から僅かに距離をおいて描かれ
ているが、触媒層隣接領域54は、触媒層形成領域52
をその外周に沿って取り囲んで区画するものであれば十
分であり、この外周縁にまで達するか否かは問わない。
Each of the above-described steps is performed using two carbon cloths 5
0, one as the anode 20 and the other as the cathode 30. In FIG. 2B, the catalyst layer adjacent region 54 is depicted at a slight distance from the outer peripheral edge of the carbon cloth 50. However, the catalyst layer adjacent region 54 is different from the catalyst layer forming region 52.
What is sufficient is to surround and partition along the outer periphery, and it does not matter whether or not it reaches this outer peripheral edge.

【0027】こうして陽極20,陰極30が作製できた
ので、この陽極20,陰極30をペースト塗布側が外側
になるようそれぞれの集電体40,42の凹所46に組
み込む。その後、陽極20と陰極30との間に陽極側触
媒反応層12,陰極側触媒反応層14を介在させて電解
質膜10を挟持し、これらをホットプレス(120℃,
100kg/cm2 )する。その後、集電体40,42
およびセパレータ44を密着して組み付け燃料電池(セ
ル)を完成させる。つまり、白金担持カーボン粒子が触
媒層形成領域52に亘って凝集・積層して陽極側触媒反
応層12または陰極側触媒反応層14となり、触媒を担
持しないカーボン粒子が触媒層隣接領域54に亘って凝
集・積層して耐火層16となる。そして、耐火層16が
陰極側触媒反応層14とその周囲で接触して取り囲むこ
とになる。
Since the anode 20 and the cathode 30 have been manufactured in this way, the anode 20 and the cathode 30 are incorporated into the recesses 46 of the current collectors 40 and 42 such that the paste application side is on the outside. Thereafter, the electrolyte membrane 10 is sandwiched between the anode 20 and the cathode 30 with the anode-side catalyst reaction layer 12 and the cathode-side catalyst reaction layer 14 interposed therebetween, and these are hot-pressed (120 ° C., 120 ° C.).
100 kg / cm 2 ). Then, the current collectors 40 and 42
Then, the separators 44 are brought into close contact with each other to complete an assembled fuel cell (cell). That is, the platinum-carrying carbon particles are aggregated and laminated over the catalyst layer forming region 52 to form the anode-side catalyst reaction layer 12 or the cathode-side catalyst reaction layer 14, and the carbon particles that do not carry the catalyst cover the catalyst layer adjacent region 54. The refractory layer 16 is formed by agglomeration and lamination. Then, the refractory layer 16 comes into contact with and surrounds the cathode-side catalytic reaction layer 14 at the periphery thereof.

【0028】こうして構成された燃料電池では、各極に
集電体40,42の流路41,43から燃料ガス(加湿
水素ガス,酸素ガス)が供給されると、陽極側触媒反応
層12,陰極側触媒反応層14において、上述した式
,に示す反応を進行させ、電気エネルギを生成す
る。
In the fuel cell configured as described above, when the fuel gas (humidified hydrogen gas, oxygen gas) is supplied to the respective electrodes from the flow paths 41, 43 of the current collectors 40, 42, the anode-side catalytic reaction layer 12, In the cathode-side catalytic reaction layer 14, the reaction represented by the above-described equation (1) is advanced to generate electric energy.

【0029】次に、完成した本実施例の燃料電池の性能
評価について説明する。対比する燃料電池(比較例)
は、カーボンクロス50の全面に亘って上記の触媒層形
成用のペーストを塗布して陽極側触媒反応層12,陰極
側触媒反応層14を形成したものである。つまり、本実
施例の燃料電池と対比する燃料電池とは、電極や触媒反
応層を有する点や電解質膜10の膜厚等では共通し、陽
極側触媒反応層12,陰極側触媒反応層14を取り囲む
耐火層16の有無でのみ、その構成が異なる。
Next, the performance evaluation of the completed fuel cell of this embodiment will be described. Comparative fuel cell (comparative example)
Shows a structure in which the above-mentioned paste for forming a catalyst layer is applied over the entire surface of the carbon cloth 50 to form an anode-side catalyst reaction layer 12 and a cathode-side catalyst reaction layer 14. In other words, the fuel cell in comparison with the fuel cell of the present embodiment is common in that it has electrodes and a catalytic reaction layer, the thickness of the electrolyte membrane 10 and the like, and the anode-side catalytic reaction layer 12 and the cathode-side catalytic reaction layer 14 The configuration differs only depending on the presence or absence of the surrounding refractory layer 16.

【0030】実施例燃料電池と比較例燃料電池の両燃料
電池について、通常運転時には起きることはない悪条件
下での耐久性について調べた。つまり、陰極側の集電体
42の流路43から空気を30vol%(酸素6vol
%)の割合で混入した水素ガス(酸素過剰混在水素ガ
ス)を供給し、酸素過剰混在水素ガスの供給を開始して
からの経過時間と燃料電池出力(セル電圧)の変化の様
子を調べた。なお、通常運転時における酸素の混入割合
は、1vol%以下である。
The durability of both the fuel cell of the embodiment fuel cell and the fuel cell of the comparative example under adverse conditions which do not occur during normal operation was examined. That is, 30 vol% of air is supplied from the flow path 43 of the current collector 42 on the cathode side (oxygen 6 vol.
%), And the time elapsed since the start of the supply of the oxygen-rich mixed hydrogen gas and the change in the fuel cell output (cell voltage) were examined. . The mixing ratio of oxygen during normal operation is 1 vol% or less.

【0031】比較例燃料電池では、酸素過剰混在水素ガ
スの供給を開始してから約1分経過後にセル電圧が急激
に低下し、約2〜30分経過後には電圧は0となった。
これに対して、実施例燃料電池では、約1時間経過して
も、通常運転時に得られるセル電圧の約3%しか低減し
なかった。
In the fuel cell of the comparative example, the cell voltage sharply dropped about 1 minute after the supply of the oxygen-excess mixed hydrogen gas was started, and became 0 after about 2 to 30 minutes.
On the other hand, in the example fuel cell, even after about one hour, only about 3% of the cell voltage obtained during the normal operation was reduced.

【0032】そして、比較例燃料電池のセル電圧の急激
な低下が観察された時点で両燃料電池を分解し、電解質
膜10の様子を調べた。すると、比較例燃料電池では、
陰極側触媒反応層14の外周縁近傍において電解質膜1
0の膜面に燃焼熱によるこげや変形(膜に穴があき、電
極間でクロスリークが生じた)がみられた。これに対し
て、実施例燃料電池では、焦げや変形等の異常は見られ
なかった。
When a sharp decrease in cell voltage of the fuel cell of the comparative example was observed, both fuel cells were disassembled and the state of the electrolyte membrane 10 was examined. Then, in the comparative example fuel cell,
In the vicinity of the outer peripheral edge of the cathode-side catalytic reaction layer 14, the electrolyte membrane 1
Burning and deformation due to heat of combustion (a hole was formed in the film and cross leak occurred between the electrodes) was observed on the film surface of No. 0. On the other hand, in the example fuel cell, no abnormality such as scorching or deformation was observed.

【0033】従って、陽極側触媒反応層12,陰極側触
媒反応層14とその外周縁で接触して取り囲む耐火層1
6を有する実施例燃料電池によれば、水素ガス中に30
vol%の割合の空気が混入しているという劣悪な条件
であっても、長時間に亘って電解質膜10に異常をもた
らさない。このため、実施例燃料電池によれば、電解質
膜10、延いては燃料電池自体の耐久性を向上すること
ができる。
Accordingly, the refractory layer 1 surrounding the anode-side catalyst reaction layer 12 and the cathode-side catalyst reaction layer 14 in contact with the outer peripheral edge thereof.
According to the example fuel cell having 6 in the hydrogen gas, 30
Even under the poor condition that air of vol% is mixed, the electrolyte membrane 10 does not cause abnormality for a long time. For this reason, according to the example fuel cell, the durability of the electrolyte membrane 10 and thus the fuel cell itself can be improved.

【0034】このように耐久性を向上することができる
のは、以下のようにして説明できる。実施例燃料電池で
は、図3の模式図に示すように、陰極側触媒反応層14
と耐火層16との境界(図では点線で示す)において、
白金担持カーボン粒子と白金を担持しないカーボン粒子
とが接触している。そして、陰極側触媒反応層14の外
周縁は耐火層16のカーボン粒子で隙間なく覆われるこ
とになる。このような状態にあれば、陰極側の集電体4
2の流路43から酸素過剰混在水素ガスが図中矢印で示
すように供給され白金の触媒作用により水素の燃焼が生
じても、陰極側触媒反応層14の外周縁で発生した熱
は、ガスシール15端面の空隙15aの有無に拘らず、
耐火層16の個々のカーボン粒子で遮られ電解質膜10
には直接伝わらない。また、耐火層16のカーボン粒子
は白金を担持していないので触媒作用が働かず、耐火層
16自体が電解質膜10に燃焼熱を伝えることはない。
よって、熱による変形等の異常が電解質膜10には起こ
り難く耐久性に富むといえる。
The improvement in durability can be explained as follows. In the fuel cell of the embodiment, as shown in the schematic diagram of FIG.
At the boundary (represented by a dotted line in the figure) between the
Platinum-carrying carbon particles are in contact with carbon particles that do not carry platinum. Then, the outer peripheral edge of the cathode-side catalytic reaction layer 14 is completely covered with the carbon particles of the refractory layer 16. In such a state, the current collector 4 on the cathode side
Even if the oxygen-excess mixed hydrogen gas is supplied from the second flow path 43 as shown by the arrow in the figure and the combustion of hydrogen occurs due to the catalytic action of platinum, the heat generated at the outer peripheral edge of the cathode-side catalytic reaction layer 14 is Regardless of the presence or absence of the gap 15a on the end face of the seal 15,
The electrolyte membrane 10 shielded by the individual carbon particles of the refractory layer 16
Does not reach directly. Further, since the carbon particles of the refractory layer 16 do not carry platinum, the catalytic action does not work, and the refractory layer 16 itself does not transmit combustion heat to the electrolyte membrane 10.
Therefore, it can be said that abnormalities such as deformation due to heat hardly occur in the electrolyte membrane 10 and the durability is rich.

【0035】これに対して、比較例燃料電池では、耐火
層16が存在しないので、図4の模式図に示すように、
陰極側触媒反応層14の外周縁において発生した熱は、
ガスシール15を介して間接的に、或いはガスシール1
5端面に空隙15aがあればこの空隙15aから直接に
電解質膜10に伝わる。このため、熱による電解質膜1
0の異常が起き易く、耐久性に欠けることになる。もっ
とも、ガスシール15端面の空隙15aを皆無とするこ
とは、陰極側触媒反応層14の形成工程が煩雑となるた
め現実的ではないので、電解質膜10には、空隙15a
から熱が直接伝わることになる。
On the other hand, in the fuel cell of the comparative example, since the refractory layer 16 does not exist, as shown in the schematic diagram of FIG.
The heat generated at the outer peripheral edge of the cathode-side catalytic reaction layer 14 is
Indirectly via gas seal 15 or gas seal 1
If there is a gap 15a at the end face 5, the air is directly transmitted to the electrolyte membrane 10 from this gap 15a. For this reason, the electrolyte membrane 1 by heat
An abnormality of 0 tends to occur, resulting in a lack of durability. However, since it is not practical to completely eliminate the gap 15a on the end face of the gas seal 15 because the formation process of the cathode-side catalytic reaction layer 14 is complicated, the gap 15a is not provided in the electrolyte membrane 10.
Heat is transmitted directly from the

【0036】次に、第2の実施例について説明する。こ
の第2実施例の燃料電池は、上記した第1実施例の燃料
電池と、耐火層16を形成するための耐火層形成用のペ
ーストの塗布領域が異なる。この第2実施例では、ま
ず、第1実施例と同様に、カーボンクロス50中央の触
媒層形成領域52に亘って、触媒層形成用のペーストを
塗布する(図2(A))。次に、図5に示すように、こ
の触媒層形成領域52の内側にその外周に沿って入り込
んだ領域を有する触媒層干渉隣接領域56に亘って、耐
火層形成用のペーストを塗布する。このペーストの塗布
を経ると、触媒層隣接領域54に白金担持カーボン粒子
が凝集・積層して、触媒層隣接領域54が陽極側触媒反
応層12,陰極側触媒反応層14となる。一方、触媒層
干渉隣接領域56にカーボン粒子が凝集・積層して、触
媒層干渉隣接領域56が耐火層16となる。この耐火層
16は、図5に示すように、陽極側触媒反応層12,陰
極側触媒反応層14の上にその外周縁に沿ってdの幅で
重なることになる。
Next, a second embodiment will be described. The fuel cell of the second embodiment is different from the fuel cell of the first embodiment in the application area of the paste for forming the refractory layer for forming the refractory layer 16. In the second embodiment, first, similarly to the first embodiment, a paste for forming a catalyst layer is applied over the catalyst layer forming region 52 at the center of the carbon cloth 50 (FIG. 2A). Next, as shown in FIG. 5, a paste for forming a refractory layer is applied over the catalyst layer interference adjacent region 56 having a region inside the catalyst layer forming region 52 along the outer periphery thereof. After the application of the paste, the platinum-carrying carbon particles are aggregated and stacked in the catalyst layer adjacent region 54, and the catalyst layer adjacent region 54 becomes the anode-side catalyst reaction layer 12 and the cathode-side catalyst reaction layer 14. On the other hand, the carbon particles aggregate and accumulate in the catalyst layer interference adjacent area 56, and the catalyst layer interference adjacent area 56 becomes the refractory layer 16. As shown in FIG. 5, the refractory layer 16 overlaps the anode-side catalytic reaction layer 12 and the cathode-side catalytic reaction layer 14 along the outer peripheral edge thereof with a width of d.

【0037】こうして作製した陽極20,陰極30を、
電解質膜10を挟んで第1実施例と同様にホットプレス
する。上記工程を経る第2実施例では、耐火層16周辺
は次のようになる。つまり、図6の模式図に示すよう
に、陰極側触媒反応層14の外周縁の下面には、耐火層
16のカーボン粒子が行き渡りこの耐火層16から伸び
た触媒下面耐火層16aが形成されている。このため、
陰極側触媒反応層14と耐火層16および触媒下面耐火
層16aとの境界(図では点線で示す)において、白金
担持カーボン粒子と白金を担持しないカーボン粒子とが
接触する。そして、陰極側触媒反応層14の外周縁はそ
の下面を含めてカーボン粒子で隙間なく覆われることに
なる。
The thus prepared anode 20 and cathode 30 are
Hot pressing is performed in the same manner as in the first embodiment with the electrolyte membrane 10 interposed therebetween. In the second embodiment through the above steps, the periphery of the refractory layer 16 is as follows. That is, as shown in the schematic diagram of FIG. 6, on the lower surface of the outer peripheral edge of the cathode-side catalytic reaction layer 14, a catalyst lower surface refractory layer 16 a extending from the refractory layer 16 is formed. I have. For this reason,
At the boundaries (shown by dotted lines in the figure) between the cathode-side catalytic reaction layer 14 and the refractory layer 16 and the catalyst lower-side refractory layer 16a, the platinum-carrying carbon particles and the carbon particles that do not carry platinum come into contact. Then, the outer peripheral edge of the cathode-side catalytic reaction layer 14 is completely covered with carbon particles including the lower surface thereof.

【0038】よって、上記した第2実施例の燃料電池で
あっても、水素の燃焼により陰極側触媒反応層14の外
周縁で発生した熱は、耐火層16および触媒下面耐火層
16aの個々のカーボン粒子で遮られ電解質膜10には
直接伝わらない。この結果、第2実施例の燃料電池によ
れば、熱による変形等の異常を電解質膜10に起こり難
くして、電解質膜10は勿論燃料電池自体の耐久性を向
上することができる。また、この第2実施例では、触媒
層形成用および耐火層形成用のペースト塗布範囲を幅d
に亘り重ねているので、耐火層16のカーボン粒子によ
る陰極側触媒反応層14の外周縁をより確実に隙間なく
覆うことができ、耐久性の向上に効果的である。
Therefore, even in the fuel cell of the second embodiment described above, the heat generated at the outer peripheral edge of the cathode-side catalytic reaction layer 14 due to the combustion of hydrogen is reduced to the individual levels of the refractory layer 16 and the lower catalyst refractory layer 16a. It is shielded by the carbon particles and does not directly reach the electrolyte membrane 10. As a result, according to the fuel cell of the second embodiment, abnormalities such as deformation due to heat are unlikely to occur in the electrolyte membrane 10, and the durability of the fuel cell itself as well as the electrolyte membrane 10 can be improved. In the second embodiment, the paste application range for forming the catalyst layer and the refractory layer is set to a width d.
, It is possible to more reliably cover the outer peripheral edge of the cathode-side catalytic reaction layer 14 with the carbon particles of the refractory layer 16 without gaps, which is effective in improving durability.

【0039】次に、陽極側触媒反応層12,陰極側触媒
反応層14および耐火層16の形成のために、触媒層形
成用および耐火層形成用のペーストを電解質膜10に塗
布する実施例(第3実施例,第4実施例)について説明
する。この第3実施例,第4実施例では、ペーストの塗
布対象が電解質膜10となり、その塗布順序等が異な
る。
Next, in order to form the anode-side catalytic reaction layer 12, the cathode-side catalytic reaction layer 14 and the refractory layer 16, an embodiment in which a paste for forming a catalyst layer and a paste for forming a refractory layer are applied to the electrolyte membrane 10 ( Third and fourth embodiments) will be described. In the third and fourth embodiments, the paste is applied to the electrolyte membrane 10, and the order of application is different.

【0040】即ち、第3実施例の燃料電池では、電解質
膜10の両膜面の中央の触媒層形成領域52に亘って、
触媒層形成用のペーストを塗布し、その後、この触媒層
形成領域52を取り囲む触媒層隣接領域54に亘って、
耐火層形成用のペーストを塗布する(図2参照)。つま
り、この第3実施例では、第1実施例と耐火層形成用お
よび触媒層形成用のペーストの塗布対象が電解質膜10
であるが、それぞれのペーストの塗布範囲と塗布順序は
同じである。
That is, in the fuel cell of the third embodiment, over the catalyst layer forming region 52 at the center of both membrane surfaces of the electrolyte membrane 10,
A paste for forming a catalyst layer is applied, and then, over a catalyst layer adjacent region 54 surrounding the catalyst layer formation region 52,
A paste for forming a refractory layer is applied (see FIG. 2). That is, in the third embodiment, the paste for forming the refractory layer and the catalyst layer is applied to the electrolyte membrane 10 in the first embodiment.
However, the application range and application order of each paste are the same.

【0041】ペーストの塗布を経ると、触媒層隣接領域
54には白金担持カーボン粒子が電解質膜10の膜面に
凝集・積層して、触媒層隣接領域54が陽極側触媒反応
層12,陰極側触媒反応層14となる。一方、触媒層干
渉隣接領域56にはカーボン粒子が電解質膜10の膜面
に凝集・積層して、触媒層干渉隣接領域56が耐火層1
6となる。そして、この電解質膜10を陽極20,陰極
30で挟持してホットプレスすると、この耐火層16
は、図3に示すように、陰極側触媒反応層14とその境
界において、白金担持カーボン粒子と白金を担持しない
カーボン粒子を介して接触する。このため、陰極側触媒
反応層14の外周縁は耐火層16のカーボン粒子で隙間
なく覆われることになるので、この第3実施例の燃料電
池であっても、水素の燃焼により陰極側触媒反応層14
の外周縁で発生した熱を耐火層16の個々のカーボン粒
子で遮って電解質膜10には直接伝えない。この結果、
第3実施例の燃料電池によれば、熱による変形等の異常
を電解質膜10に起こり難くして、電解質膜10は勿論
燃料電池自体の耐久性を向上することができる。
After the paste is applied, the platinum-supported carbon particles are aggregated and laminated on the surface of the electrolyte membrane 10 in the catalyst layer adjacent region 54, and the catalyst layer adjacent region 54 becomes the anode-side catalyst reaction layer 12 and the cathode side. It becomes the catalyst reaction layer 14. On the other hand, in the catalyst layer interference adjacent area 56, carbon particles are aggregated and laminated on the membrane surface of the electrolyte membrane 10, and the catalyst layer interference adjacent area 56 is
It becomes 6. Then, when the electrolyte membrane 10 is sandwiched between the anode 20 and the cathode 30 and hot pressed, the refractory layer 16
As shown in FIG. 3, the platinum-carrying carbon particles and the platinum-carrying carbon particles are not in contact with each other at the boundary between the cathode-side catalytic reaction layer 14 and the boundary thereof. For this reason, since the outer peripheral edge of the cathode-side catalytic reaction layer 14 is covered with the carbon particles of the refractory layer 16 without gaps, even in the fuel cell of the third embodiment, the cathode-side catalytic reaction is caused by the combustion of hydrogen. Layer 14
The heat generated at the outer peripheral edge is blocked by individual carbon particles of the refractory layer 16 and is not directly transmitted to the electrolyte membrane 10. As a result,
According to the fuel cell of the third embodiment, abnormalities such as deformation due to heat are less likely to occur in the electrolyte membrane 10, and the durability of the fuel cell itself as well as the electrolyte membrane 10 can be improved.

【0042】また、第4実施例の燃料電池では、まず耐
火層形成用のペーストを電解質膜10の両膜面に塗布す
る。その塗布範囲は、電解質膜10の両膜面の中央の触
媒層形成領域52とその外周縁に沿ってdの幅で重な
り、触媒層形成領域52の内側にその外周に沿って入り
込んだ触媒層干渉隣接領域56である(図5参照)。次
いで、この触媒層干渉隣接領域56と一部重なりその内
側に当たる触媒層形成領域52に亘って、触媒層形成用
のペーストを塗布する(図5参照)。つまり、この第4
実施例では、第2実施例と耐火層形成用および触媒層形
成用のペーストの塗布範囲は同一であるが、その塗布対
象と塗布順序が異なる。
In the fuel cell of the fourth embodiment, first, a paste for forming a refractory layer is applied to both surfaces of the electrolyte membrane 10. The coating range overlaps the catalyst layer forming region 52 at the center of both membrane surfaces of the electrolyte membrane 10 with a width d along the outer peripheral edge thereof, and enters the catalyst layer forming region 52 along the outer periphery inside the catalyst layer forming region 52. This is the interference adjacent area 56 (see FIG. 5). Next, a paste for forming a catalyst layer is applied to the catalyst layer formation region 52 which partially overlaps the catalyst layer interference adjacent region 56 and falls inside (see FIG. 5). In other words, this fourth
In the embodiment, the application range of the paste for forming the refractory layer and the catalyst layer is the same as that of the second embodiment, but the application target and the application order are different.

【0043】ペーストの塗布を経ると、図6に示すよう
に、陰極側触媒反応層14の外周縁の下面にまで入り込
んだ触媒下面耐火層16aを有する耐火層16で、陰極
側触媒反応層14が取り囲まれ、陰極側触媒反応層14
の外周縁はその下面を含めてカーボン粒子で隙間なく覆
われることになる。
After the paste is applied, as shown in FIG. 6, the refractory layer 16 having the catalyst lower surface refractory layer 16a penetrating into the lower surface of the outer peripheral edge of the cathode side catalytic reaction layer 14 is used. Are surrounded by the cathode-side catalytic reaction layer 14.
Is covered with carbon particles without any gaps, including the lower surface thereof.

【0044】よって、この第4実施例の燃料電池であっ
ても、水素の燃焼により陰極側触媒反応層14の外周縁
で発生した熱を耐火層16および触媒下面耐火層16a
の個々のカーボン粒子で遮り、電解質膜10に直接伝え
ない。この結果、第4実施例の燃料電池によれば、熱に
よる変形等の異常を電解質膜10に起こり難くして、電
解質膜10は勿論燃料電池自体の耐久性を向上すること
ができる。
Therefore, even in the fuel cell of the fourth embodiment, the heat generated at the outer peripheral edge of the cathode-side catalytic reaction layer 14 due to the combustion of hydrogen is transferred to the refractory layer 16 and the lower catalyst refractory layer 16a.
And is not directly transmitted to the electrolyte membrane 10. As a result, according to the fuel cell of the fourth embodiment, abnormalities such as deformation due to heat are unlikely to occur in the electrolyte membrane 10, and the durability of the fuel cell itself as well as the electrolyte membrane 10 can be improved.

【0045】次に、第5実施例について説明する。この
第5実施例は、まず、図7に示すように、カーボンクロ
ス50の片面のほぼ全面に、即ちカーボンクロスの外周
縁から僅かに控えた範囲で陽極側触媒反応層12,陰極
側触媒反応層14となる領域を含有する触媒層含有領域
58に亘って触媒層形成用のペーストを塗布する(図7
(A))。次いで、このカーボンクロス50中央の触媒
層形成領域52を取り囲む触媒層隣接領域54に亘っ
て、耐火層形成用のペーストを塗布済みの触媒層形成用
のペーストと一部重なるよう塗布する(図7(B))。
つまり、この第5実施例では、触媒層形成用のペースト
の塗布に当たり、その塗布領域が触媒層形成領域52を
含有する触媒層含有領域58である点で、第1実施例と
異なる。この場合、触媒層含有領域58をカーボンクロ
ス50の片面全面とすることもできる。
Next, a fifth embodiment will be described. In the fifth embodiment, first, as shown in FIG. 7, the anode-side catalyst reaction layer 12 and the cathode-side catalyst reaction are formed over substantially the entire surface of one side of the carbon cloth 50, that is, in a range slightly deviated from the outer periphery of the carbon cloth. A paste for forming a catalyst layer is applied over a catalyst layer containing region 58 including a region to be the layer 14 (FIG. 7).
(A)). Next, the paste for forming the refractory layer is applied so as to partially overlap the applied paste for forming the catalyst layer over the catalyst layer adjacent region 54 surrounding the catalyst layer formation region 52 at the center of the carbon cloth 50 (FIG. 7). (B)).
That is, the fifth embodiment is different from the first embodiment in that the application region of the paste for forming the catalyst layer is the catalyst layer containing region 58 including the catalyst layer formation region 52. In this case, the catalyst layer containing region 58 may be the entire surface of one side of the carbon cloth 50.

【0046】その後は、上記した各実施例と同様に、電
解質膜10を挟んでホットプレスし燃料電池を完成させ
る。上記工程を経る第5実施例における耐火層16周辺
では、図8の模式図に示すように、触媒下面耐火層16
aが、陰極側触媒反応層14の外周縁の下面において、
図6の第2実施例の場合より広い範囲で当該下面に入り
込んで形成される。
Thereafter, similarly to the above embodiments, the fuel cell is completed by hot pressing with the electrolyte membrane 10 interposed therebetween. As shown in the schematic diagram of FIG. 8, around the refractory layer 16 in the fifth embodiment through the above steps, as shown in the schematic diagram of FIG.
a, on the lower surface of the outer peripheral edge of the cathode-side catalytic reaction layer 14,
It is formed to penetrate the lower surface in a wider range than in the case of the second embodiment of FIG.

【0047】よって、上記した第5実施例の燃料電池で
あっても、水素の燃焼により陰極側触媒反応層14の外
周縁で発生した熱は、耐火層16および触媒下面耐火層
16aの個々のカーボン粒子で遮られ電解質膜10には
直接伝わらない。この結果、第5実施例の燃料電池によ
れば、熱による変形等の異常を電解質膜10に起こり難
くして、電解質膜10は勿論燃料電池自体の耐久性を向
上することができる。また、この第5実施例では、触媒
層形成用および耐火層形成用のペーストを広い範囲で重
ねて塗布しているので、耐火層16のカーボン粒子によ
る陰極側触媒反応層14の外周縁をより確実に隙間なく
覆うことができ、耐久性の向上に効果的である。更に、
触媒層形成用のペーストの塗布に当たり、その塗布領域
を大まかな触媒層含有領域58とし触媒層形成領域52
を考慮する必要がない。よって、第5実施例によれば、
塗布工程を簡略化することができる。
Therefore, even in the fuel cell of the fifth embodiment described above, the heat generated at the outer peripheral edge of the cathode-side catalytic reaction layer 14 due to the combustion of hydrogen is reduced to the individual levels of the refractory layer 16 and the lower catalyst refractory layer 16a. It is shielded by the carbon particles and does not directly reach the electrolyte membrane 10. As a result, according to the fuel cell of the fifth embodiment, abnormalities such as deformation due to heat are unlikely to occur in the electrolyte membrane 10, and the durability of the fuel cell itself as well as the electrolyte membrane 10 can be improved. In the fifth embodiment, the paste for forming the catalyst layer and the paste for forming the refractory layer are applied over a wide range, so that the outer peripheral edge of the cathode-side catalytic reaction layer 14 formed by the carbon particles of the refractory layer 16 can be further improved. Covering can be reliably performed without any gaps, which is effective in improving durability. Furthermore,
When the paste for forming the catalyst layer is applied, the applied area is roughly set as the catalyst layer containing area 58 and the catalyst layer forming area 52 is formed.
Need not be considered. Therefore, according to the fifth embodiment,
The application step can be simplified.

【0048】この第5実施例は、ペーストの塗布対象を
電解質膜10とし、ペーストの塗布順序を変更するよう
に変形することもできる。つまり、電解質膜10の両膜
面に触媒層形成領域52を取り囲む触媒層隣接領域54
に亘って、耐火層形成用のペースト塗布し(図7(B)
参照)、次いで、触媒層形成領域52を含有する触媒層
含有領域58に亘って、触媒層形成用のペーストを塗布
する(図7(A)参照)。そして、この電解質膜10を
陽極20,陰極30となるカーボンクロス50で挟持し
てホットプレスする。この変形例にあっても、図8の模
式図に示すように、触媒下面耐火層16aを有する耐火
層16が得られるので、上記の第5実施例と同様の効果
を奏することができる。
The fifth embodiment can be modified so that the paste is applied to the electrolyte membrane 10 and the order of applying the paste is changed. That is, the catalyst layer adjacent region 54 surrounding the catalyst layer formation region 52 is provided on both membrane surfaces of the electrolyte membrane 10.
, A paste for forming a refractory layer is applied (FIG. 7 (B)).
Next, a paste for forming a catalyst layer is applied over the catalyst layer containing region 58 including the catalyst layer forming region 52 (see FIG. 7A). Then, the electrolyte membrane 10 is hot-pressed while being sandwiched between carbon cloths 50 serving as the anode 20 and the cathode 30. Also in this modified example, as shown in the schematic diagram of FIG. 8, the fire-resistant layer 16 having the catalyst lower-surface fire-resistant layer 16a can be obtained, so that the same effect as in the fifth embodiment can be obtained.

【0049】次に、第6実施例について説明する。この
第6実施例では、陽極側触媒反応層12,陰極側触媒反
応層14はそれぞれのカーボンクロス50にペーストの
塗布を経て形成し、耐火層16は電解質膜10にペース
トの塗布を経て形成する。つまり、図9に示すように、
カーボンクロス50中央の触媒層形成領域52に亘って
触媒層形成用のペーストを塗布し(図9(A))、両電
極(陽極20,陰極30)を用意する。一方、電解質膜
10の膜面中央の触媒層形成領域52を取り囲む触媒層
隣接領域54に亘って、電解質膜10の両膜面に耐火層
形成用のペーストを塗布し(図9(B))、電解質膜1
0を用意する。その後は、上記した各実施例と同様に、
電解質膜10を両電極(陽極20,陰極30)挟んでホ
ットプレスし燃料電池を完成させる。上記工程を経る第
6実施例における耐火層16周辺では、既述した第1実
施例と同様に(図3参照)、陰極側触媒反応層14の外
周縁は耐火層16のカーボン粒子で隙間なく覆われるこ
とになる。上記の第1実施例と同様の効果を奏すること
ができる。
Next, a sixth embodiment will be described. In the sixth embodiment, the anode-side catalytic reaction layer 12 and the cathode-side catalytic reaction layer 14 are formed by applying paste to the respective carbon cloths 50, and the refractory layer 16 is formed by applying paste to the electrolyte membrane 10. . That is, as shown in FIG.
A paste for forming a catalyst layer is applied over the catalyst layer formation region 52 at the center of the carbon cloth 50 (FIG. 9A), and both electrodes (anode 20 and cathode 30) are prepared. On the other hand, a paste for forming a refractory layer is applied to both membrane surfaces of the electrolyte membrane 10 over a catalyst layer adjacent area 54 surrounding the catalyst layer formation area 52 at the center of the membrane surface of the electrolyte membrane 10 (FIG. 9B). , Electrolyte membrane 1
Prepare 0. After that, as in each of the above-described embodiments,
The fuel cell is completed by hot pressing the electrolyte membrane 10 with both electrodes (anode 20 and cathode 30) interposed therebetween. Around the refractory layer 16 in the sixth embodiment through the above steps, the outer peripheral edge of the cathode-side catalytic reaction layer 14 is made of carbon particles of the refractory layer 16 without gaps in the same manner as in the first embodiment described above (see FIG. 3). Will be covered. The same effects as in the first embodiment can be obtained.

【0050】この第6実施例は、電解質膜10の両膜面
に触媒層形成領域52に亘って触媒層形成用のペースト
を塗布し(図9(A)参照)、カーボンクロス50の片
面に触媒層隣接領域54に亘って、耐火層形成用のペー
ストを塗布する(図9(B)参照)よう変形することが
できる。また、カーボンクロス50における触媒層形成
用のペーストの塗布領域を、触媒層形成領域52より広
い触媒層含有領域58やカーボンクロス50の全面とし
たり(図7(A)参照)、電解質膜10における耐火層
形成用のペーストの塗布領域を、触媒層形成領域52と
一部重なった触媒層干渉隣接領域56とする(図5参
照)よう変形することができる。このように触媒層形成
用のペーストをカーボンクロス50の全面に塗布した場
合には、陰極側触媒反応層14の外周縁周辺では、図1
0に示すように、その下面にまで入り込んだ触媒下面耐
火層16aを有する耐火層16が形成され、触媒下面耐
火層16aの範囲のカーボン粒子がホットプレスにより
電解質膜10膜面に埋没するので、陰極側触媒反応層1
4はその外周縁下端において耐火層16表層部のカーボ
ン粒子にて取り囲まれることになる。この場合であって
も、水素の燃焼により陰極側触媒反応層14の外周縁で
発生した熱は、耐火層16表層および触媒下面耐火層1
6aの個々のカーボン粒子で遮られ電解質膜10には直
接伝わらないので、電解質膜10は勿論燃料電池自体の
耐久性を向上することができる。
In the sixth embodiment, a paste for forming a catalyst layer is applied to both surfaces of the electrolyte membrane 10 over the catalyst layer formation region 52 (see FIG. 9A). It can be modified so as to apply a paste for forming a refractory layer over the catalyst layer adjacent region 54 (see FIG. 9B). Further, the application area of the catalyst layer forming paste on the carbon cloth 50 may be a catalyst layer containing area 58 wider than the catalyst layer forming area 52 or the entire surface of the carbon cloth 50 (see FIG. 7A). The application region of the paste for forming the refractory layer can be modified to be a catalyst layer interference adjacent region 56 that partially overlaps with the catalyst layer formation region 52 (see FIG. 5). As described above, when the paste for forming the catalyst layer is applied to the entire surface of the carbon cloth 50, around the outer peripheral edge of the cathode-side catalytic reaction layer 14, FIG.
As shown in FIG. 0, the refractory layer 16 having the catalyst lower surface refractory layer 16a penetrating to the lower surface thereof is formed, and the carbon particles in the range of the catalyst lower surface refractory layer 16a are buried in the membrane surface of the electrolyte membrane 10 by hot pressing. Cathode side catalytic reaction layer 1
4 is surrounded by carbon particles in the surface layer of the refractory layer 16 at the lower end of the outer peripheral edge. Even in this case, the heat generated at the outer peripheral edge of the cathode-side catalytic reaction layer 14 due to the combustion of hydrogen is reduced by the surface layer of the refractory layer 16 and the refractory layer 1 under the catalyst.
Since the individual carbon particles 6a do not directly transmit to the electrolyte membrane 10, the durability of the electrolyte membrane 10 as well as the fuel cell itself can be improved.

【0051】以上本発明の一実施例について説明した
が、本発明はこの様な実施例になんら限定されるもので
はなく、本発明の要旨を逸脱しない範囲において種々な
る態様で実施し得ることは勿論である。
Although the embodiment of the present invention has been described above, the present invention is not limited to such an embodiment, and may be implemented in various modes without departing from the gist of the present invention. Of course.

【0052】例えば、陽極側触媒反応層12,陰極側触
媒反応層14を取り囲む耐火層16を形成するための耐
火層形成用のペーストを、はっ水処理が施されたカーボ
ン粒子のペーストとすることもできる。このようにすれ
ば、耐火層16においてはっ水性を呈することで、電極
から水分を除去して水分の電極内滞留を防止することが
でき好ましい。また、耐火層16の形成のためのカーボ
ン粒子を、耐火性を有する他の粒子、例えば、Al23
(アルミナ),BN(窒化ホウ素),SiC(炭化ケイ
素)等としたり、陽極側触媒反応層12,陰極側触媒反
応層14の形成のためのカーボン粒子を、導電性および
耐腐食性を有する他の粒子とすることもできる。
For example, the paste for forming the refractory layer for forming the refractory layer 16 surrounding the anode-side catalytic reaction layer 12 and the cathode-side catalytic reaction layer 14 is a paste of water-repellent carbon particles. You can also. This is preferable because the refractory layer 16 exhibits water repellency, thereby removing water from the electrode and preventing the water from staying in the electrode. Further, carbon particles for forming the refractory layer 16 are replaced with other particles having fire resistance, for example, Al 2 O 3.
(Alumina), BN (boron nitride), SiC (silicon carbide) or the like, or carbon particles for forming the anode-side catalyst reaction layer 12 and the cathode-side catalyst reaction layer 14 which have conductivity and corrosion resistance. Particles.

【0053】[0053]

【発明の効果】以上詳述したように請求項1記載の燃料
電池では、固体高分子電解質膜と電極との間に備える触
媒層と耐火層とを、触媒層の外周縁において触媒層の導
電性粒子と耐火層の耐火性粒子により接触させる。従っ
て、請求項1記載の燃料電池では、触媒層の外周縁で水
素と酸素の反応が生じた場合の熱が固体高分子電解質膜
に伝わることを、触媒層の外周縁と耐火層との間の空隙
をこの粒子で埋めることができることを通して、この耐
火層で抑制する。この結果、請求項1記載の燃料電池に
よれば、熱による固体高分子電解質膜の劣化の抑制を通
して、固体高分子電解質膜の耐久性は勿論、電解質膜の
耐久性をも向上することができる。
As described above in detail, in the fuel cell according to the first aspect, the catalyst layer and the refractory layer provided between the solid polymer electrolyte membrane and the electrode are electrically connected to each other at the outer periphery of the catalyst layer. The particles are brought into contact with the refractory particles of the refractory layer. Therefore, in the fuel cell according to the first aspect, the fact that heat generated when a reaction between hydrogen and oxygen occurs at the outer peripheral edge of the catalyst layer is transmitted to the solid polymer electrolyte membrane between the outer peripheral edge of the catalyst layer and the refractory layer. The voids can be filled with these particles, thereby suppressing the refractory layer. As a result, according to the fuel cell of the first aspect, it is possible to improve not only the durability of the solid polymer electrolyte membrane but also the durability of the electrolyte membrane through suppression of deterioration of the solid polymer electrolyte membrane due to heat. .

【0054】請求項2記載の固体高分子電解質膜では、
固体高分子電解質膜の膜面に接触する触媒層と耐火層と
を、触媒層の外周縁において触媒層の導電性粒子と耐火
層の耐火性粒子により接触させる。従って、請求項2記
載の固体高分子電解質膜では、触媒層の外周縁と耐火層
との間の空隙をこの粒子で埋めることができることを通
して、この耐火層で、触媒層の外周縁で水素と酸素の反
応が生じた場合の熱を遮ることができる。この結果、請
求項2記載の固体高分子電解質膜によれば、燃料電池に
おける固体高分子電解質膜の耐久性を向上することがで
きる。
In the solid polymer electrolyte membrane according to the second aspect,
The catalyst layer and the refractory layer that are in contact with the membrane surface of the solid polymer electrolyte membrane are brought into contact with the conductive particles of the catalyst layer and the refractory particles of the refractory layer at the outer periphery of the catalyst layer. Therefore, in the solid polymer electrolyte membrane according to claim 2, the gap between the outer peripheral edge of the catalyst layer and the refractory layer can be filled with the particles. Heat can be blocked when an oxygen reaction occurs. As a result, according to the solid polymer electrolyte membrane of the second aspect, the durability of the solid polymer electrolyte membrane in the fuel cell can be improved.

【0055】請求項3記載の電極では、触媒層を介在さ
せて電解質を挟持した場合には、固体高分子電解質膜の
膜面においては、触媒層の外周縁と電極の耐火層との間
の間隙を耐火性粒子で埋めた状態で、触媒層を電極の耐
火層で取り囲む。この結果、請求項3記載の電極によれ
ば、触媒層の外周縁で水素と酸素の反応が生じた場合の
熱を電極の耐火層で遮ることを通して、固体高分子電解
質膜の耐久性を向上することができる。
In the electrode according to the third aspect, when the electrolyte is sandwiched with the catalyst layer interposed, the outer periphery of the catalyst layer and the refractory layer of the electrode are formed on the membrane surface of the solid polymer electrolyte membrane. With the gaps filled with refractory particles, the catalyst layer is surrounded by the refractory layer of the electrode. As a result, according to the electrode of the third aspect, the durability of the solid polymer electrolyte membrane is improved by blocking the heat when the reaction between hydrogen and oxygen occurs at the outer peripheral edge of the catalyst layer with the refractory layer of the electrode. can do.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる実施例の燃料電池のセル構造の
模式図。
FIG. 1 is a schematic view of a cell structure of a fuel cell according to an embodiment of the present invention.

【図2】第1実施例の燃料電池の製造工程を説明するた
めの説明図。
FIG. 2 is an explanatory diagram for explaining a manufacturing process of the fuel cell according to the first embodiment.

【図3】第1実施例燃料電池における陰極側触媒反応層
14の外周縁周辺の様子を示す模式図。
FIG. 3 is a schematic diagram showing a state around an outer peripheral edge of a cathode-side catalytic reaction layer 14 in the fuel cell of the first embodiment.

【図4】比較例燃料電池における陰極側触媒反応層14
の外周縁周辺の様子を示す模式図。
FIG. 4 shows a cathode-side catalytic reaction layer 14 in a fuel cell of a comparative example.
FIG. 2 is a schematic diagram showing a state around an outer peripheral edge of the circumstance.

【図5】第2実施例の燃料電池の製造工程を説明するた
めの説明図。
FIG. 5 is an explanatory diagram for explaining a manufacturing process of the fuel cell according to the second embodiment.

【図6】第2実施例燃料電池における陰極側触媒反応層
14の外周縁周辺の様子を示す模式図。
FIG. 6 is a schematic diagram showing a state around an outer peripheral edge of a cathode-side catalytic reaction layer 14 in the fuel cell of the second embodiment.

【図7】第5実施例の燃料電池の製造工程を説明するた
めの説明図。
FIG. 7 is an explanatory diagram for explaining a manufacturing process of the fuel cell according to the fifth embodiment.

【図8】第5実施例燃料電池における陰極側触媒反応層
14の外周縁周辺の様子を示す模式図。
FIG. 8 is a schematic diagram showing a state around an outer peripheral edge of a cathode-side catalytic reaction layer in a fifth embodiment fuel cell.

【図9】第6実施例の燃料電池の製造工程を説明するた
めの説明図。
FIG. 9 is an explanatory diagram for explaining a manufacturing process of the fuel cell according to the sixth embodiment.

【図10】第6実施例の変形例における陰極側触媒反応
層14の外周縁周辺の様子を示す模式図。
FIG. 10 is a schematic view showing a state around an outer peripheral edge of a cathode-side catalytic reaction layer in a modification of the sixth embodiment.

【図11】従来の燃料電池における問題点を説明するた
めの説明図。
FIG. 11 is an explanatory diagram for explaining a problem in a conventional fuel cell.

【符号の説明】[Explanation of symbols]

10…電解質膜 12…陽極側触媒反応層 14…陰極側触媒反応層 15…ガスシール 15a…空隙 16…耐火層 16a…触媒下面耐火層 20…陽極 30…陰極 50…カーボンクロス 52…触媒層形成領域 54…触媒層隣接領域 56…触媒層干渉隣接領域 58…触媒層含有領域 DESCRIPTION OF SYMBOLS 10 ... Electrolyte membrane 12 ... Anode side catalytic reaction layer 14 ... Cathode side catalytic reaction layer 15 ... Gas seal 15a ... Void 16 ... Refractory layer 16a ... Catalyst lower surface refractory layer 20 ... Anode 30 ... Cathode 50 ... Carbon cloth 52 ... Catalyst layer formation Area 54: catalyst layer adjacent area 56: catalyst layer interference adjacent area 58: catalyst layer containing area

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 対向する電極と固体高分子電解質膜とを
有し、該固体高分子電解質膜を電極で挟持した燃料電池
であって、 前記固体高分子電解質膜と電極との間に、 触媒を担持した導電性粒子からなる触媒層と、 該触媒層をその外周縁に沿って取り囲み該触媒層の占め
る領域を区画する触媒隣接領域に、耐火性を有する粒子
を敷設してなる耐火層とを備えることを特徴とする燃料
電池。
1. A fuel cell comprising an opposed electrode and a solid polymer electrolyte membrane, wherein the solid polymer electrolyte membrane is sandwiched between electrodes, wherein a catalyst is provided between the solid polymer electrolyte membrane and the electrode. A catalyst layer made of conductive particles carrying the same, and a fire-resistant layer formed by laying fire-resistant particles in a catalyst-adjacent region surrounding the catalyst layer along its outer peripheral edge and defining a region occupied by the catalyst layer. A fuel cell comprising:
【請求項2】 対向する電極間に位置し、触媒を担持し
た導電性粒子からなる触媒層を介在させて前記電極に挟
持される固体高分子電解質膜であって、 前記触媒層が接触する触媒接触領域を該領域の外周縁に
沿って取り囲み前記触媒接触領域を区画する触媒隣接領
域に、耐火性を有する粒子を膜面に敷設してなる耐火層
を備えることを特徴とする固体高分子電解質膜。
2. A solid polymer electrolyte membrane sandwiched between said electrodes with a catalyst layer made of conductive particles carrying a catalyst interposed therebetween, said catalyst being in contact with said catalyst layer. A solid polymer electrolyte, comprising a refractory layer formed by laying refractory particles on a membrane surface in a catalyst-adjacent region surrounding the contact region along an outer peripheral edge of the region and defining the catalyst contact region; film.
【請求項3】 ガス拡散性を有する電極基材から形成さ
れ、触媒を担持した導電性粒子からなる触媒層を介在さ
せて電解質を挟持する電極であって、 前記電解質と対向する触媒層をその外周縁に沿って取り
囲み該触媒層の占める領域を区画する触媒隣接領域に、
耐火性を有する粒子を敷設してなる耐火層を備えること
を特徴とする電極。
3. An electrode formed from an electrode substrate having gas diffusivity and sandwiching an electrolyte with a catalyst layer made of conductive particles carrying a catalyst interposed therebetween, wherein the catalyst layer facing the electrolyte is In a catalyst adjacent region surrounding the outer peripheral edge and defining a region occupied by the catalyst layer,
An electrode comprising a fire-resistant layer on which particles having fire resistance are laid.
JP35465493A 1993-12-29 1993-12-29 Fuel cell and its solid polymer electrolyte membrane and electrode Expired - Fee Related JP3271410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35465493A JP3271410B2 (en) 1993-12-29 1993-12-29 Fuel cell and its solid polymer electrolyte membrane and electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35465493A JP3271410B2 (en) 1993-12-29 1993-12-29 Fuel cell and its solid polymer electrolyte membrane and electrode

Publications (2)

Publication Number Publication Date
JPH07201346A JPH07201346A (en) 1995-08-04
JP3271410B2 true JP3271410B2 (en) 2002-04-02

Family

ID=18439010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35465493A Expired - Fee Related JP3271410B2 (en) 1993-12-29 1993-12-29 Fuel cell and its solid polymer electrolyte membrane and electrode

Country Status (1)

Country Link
JP (1) JP3271410B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1729361A2 (en) 2005-06-02 2006-12-06 Mitsubishi Heavy Industries, Ltd. Solid polyelectrolyte fuel cell

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3773325B2 (en) * 1997-03-17 2006-05-10 ジャパンゴアテックス株式会社 Gas diffusion layer material for polymer electrolyte fuel cell and its joined body
JP4917737B2 (en) * 2003-11-12 2012-04-18 日産自動車株式会社 ELECTROLYTE MEMBRANE FOR FUEL CELL AND FUEL CELL
JP4930821B2 (en) * 2005-05-19 2012-05-16 トヨタ自動車株式会社 Manufacturing method of fuel cell
US8129073B2 (en) 2005-11-25 2012-03-06 Panasonic Corporation Catalyst-coated membrane, membrane-electrode assembly, fuel cell and fuel cell stack
CN101385174B (en) * 2006-02-16 2010-08-25 松下电器产业株式会社 Film-catalyst layer assembly, film-electrode assembly, and polymer electrolyte type fuel cell
JP5011749B2 (en) * 2006-02-27 2012-08-29 株式会社エクォス・リサーチ Fuel cell device
US20150200402A1 (en) 2012-07-06 2015-07-16 Daikin Industries, Ltd. Sheet, electrode and fuel cell
JP5900311B2 (en) * 2012-12-18 2016-04-06 トヨタ自動車株式会社 Fuel cell and manufacturing method thereof
WO2018038931A1 (en) * 2016-08-26 2018-03-01 Ballard Power Systems Inc. Fuel cell with improved durability

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1729361A2 (en) 2005-06-02 2006-12-06 Mitsubishi Heavy Industries, Ltd. Solid polyelectrolyte fuel cell
US7670708B2 (en) 2005-06-02 2010-03-02 Mitsubishi Heavy Industries, Ltd. Solid polyelectrolyte fuel cell

Also Published As

Publication number Publication date
JPH07201346A (en) 1995-08-04

Similar Documents

Publication Publication Date Title
CA2490877C (en) Humidity controlled solid polymer electrolyte fuel cell assembly
JP3052536B2 (en) Solid polymer electrolyte fuel cell
JP5223849B2 (en) Fuel cell
JP5214602B2 (en) Fuel cell, membrane-electrode assembly, and membrane-catalyst layer assembly
JP3271410B2 (en) Fuel cell and its solid polymer electrolyte membrane and electrode
JP3459615B2 (en) Electrode for fuel cell and fuel cell
JP5321086B2 (en) Fuel cell
JP4493954B2 (en) Polymer electrolyte membrane-electrode assembly and polymer electrolyte fuel cell using the same
JP5124900B2 (en) Fuel cell having a stack structure
JPH11135133A (en) Solid polymer electrolyte fuel cell
JP3354550B2 (en) Polymer electrolyte fuel cell and polymer electrolyte fuel cell stack
JPH08167416A (en) Cell for solid high polymer electrolyte fuel cell
JPH08321315A (en) Fuel cell
JP3500086B2 (en) Fuel cell and fuel cell using the same
JP5341321B2 (en) Electrolyte membrane / electrode structure for polymer electrolyte fuel cells
JP2002216777A (en) Polymer electrolyte fuel cell
JP3736475B2 (en) Fuel cell
JP2001338656A (en) Fuel cell
JPH06267562A (en) Solid high polymer electrolyte fuel cell
JP2001023661A (en) Fuel cell and solid polymer electrolyte membrane
JP4314696B2 (en) Polymer electrolyte fuel cell stack
JPH08138697A (en) Fuel cell
JP2004185904A (en) Fuel cell
JP2000228205A (en) High polymer electrolyte fuel cell
KR101093706B1 (en) Fuel cell and stack used thereto

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080125

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100125

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees