JP3200158B2 - Infrared radiator - Google Patents

Infrared radiator

Info

Publication number
JP3200158B2
JP3200158B2 JP13431592A JP13431592A JP3200158B2 JP 3200158 B2 JP3200158 B2 JP 3200158B2 JP 13431592 A JP13431592 A JP 13431592A JP 13431592 A JP13431592 A JP 13431592A JP 3200158 B2 JP3200158 B2 JP 3200158B2
Authority
JP
Japan
Prior art keywords
fine powder
ceramic fine
infrared
ceramic
infrared radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13431592A
Other languages
Japanese (ja)
Other versions
JPH05301788A (en
Inventor
正受 前嶋
光一 猿渡
隆吉 臼杵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP13431592A priority Critical patent/JP3200158B2/en
Publication of JPH05301788A publication Critical patent/JPH05301788A/en
Application granted granted Critical
Publication of JP3200158B2 publication Critical patent/JP3200158B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、暖房、調理、加熱乾
燥、材料の熱処理、その他各種の輻射加熱のために赤外
線を放射する赤外線放射体に関するものであり、特に波
長の短い遠赤外領域の赤外線(遠赤外線)の放射特性に
優れた赤外線放射体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared radiator that emits infrared rays for heating, cooking, heating and drying, heat treatment of materials, and various other types of radiant heating. The present invention relates to an infrared radiator having excellent infrared (far infrared) radiation characteristics.

【0002】[0002]

【従来の技術】一般に赤外線を利用したヒーター類にお
いては、放射体の赤外線放射率が高く、しかも100℃
以上の比較的低い表面温度で可視領域の放射が少ない反
面、遠赤外線領域の放射の多いものが要求される。この
ような要求を満たす放射体としては、従来はアルミナ、
グラファイト、ジルコニア等の各種セラミック材料で構
成したものが実用化されている。そしてこれらの材料の
うちでも、遠赤外線放射特性と耐熱性の点でアルミナが
他のセラミック材料と比較して優れた性能を有すること
が知られている。
2. Description of the Related Art Generally, in heaters utilizing infrared rays, the radiator has a high infrared emissivity,
At the relatively low surface temperature described above, radiation in the visible region is small, but radiation in the far infrared region is large. As a radiator satisfying such requirements, conventionally, alumina,
Those made of various ceramic materials such as graphite and zirconia have been put to practical use. Among these materials, it is known that alumina has excellent performance as compared with other ceramic materials in terms of far-infrared radiation characteristics and heat resistance.

【0003】しかしながら従来のセラミック材料からな
る赤外線放射体は、その重量が大きく、また割れ易く、
さらには薄いものを作成することが困難であり、また熱
伝導性が劣るため放射体の加熱効率が悪い等の問題があ
った。
However, the conventional infrared radiator made of a ceramic material has a large weight and is easily broken.
Furthermore, there are problems that it is difficult to produce a thin material, and the heat conductivity of the radiator is poor due to poor thermal conductivity.

【0004】そこで金属基材の表面にセラミックを溶射
した放射体も実用化されているが、この場合は製造に高
コストを要し、また薄板や複雑形状の放射体を得ること
が困難である等の問題がある。
Therefore, a radiator in which ceramic is sprayed on the surface of a metal substrate has been put to practical use. However, in this case, a high cost is required for production, and it is difficult to obtain a thin plate or a radiator having a complicated shape. There are problems such as.

【0005】一方、最近ではアルミニウム合金展伸材の
表面に陽極酸化皮膜を施して、厚さ20μm程度以上の
陽極酸化皮膜(アルマイト皮膜)を形成した赤外線放射
体も知られている。この場合、表面の陽極酸化皮膜は、
波長が7μm程度以上の赤外線については、放射率0.
8以上の優れた放射特性を示すことが知られている。ま
たこのような赤外線放射体は、基材がアルミニウム合金
展伸材であるため、全体がセラミック材料からなる場合
と比較して軽量でかつ割れにくく、各種の成形加工も容
易で、さらには熱伝導性も良好である等の各種の長所を
有する。
On the other hand, recently, an infrared radiator in which an anodized film (alumite film) having a thickness of about 20 μm or more is formed by applying an anodized film to the surface of a wrought aluminum alloy is also known. In this case, the anodic oxide film on the surface is
For an infrared ray having a wavelength of about 7 μm or more, the emissivity is not more than 0.
It is known to exhibit excellent radiation characteristics of 8 or more. In addition, since such an infrared radiator is made of a wrought aluminum alloy base material, it is lighter and less susceptible to cracking than a case where the whole is made of a ceramic material, is easy to perform various forming processes, and further has a heat conduction property. It has various advantages such as good properties.

【0006】[0006]

【発明が解決しようとする課題】前述のようにアルミニ
ウム合金展伸材の表面に陽極酸化皮膜を生成してなる赤
外線放射体は、波長7μm以上では優れた放射特性を示
すものの、7μm以下の波長域では放射率が極端に低下
する欠点があった。またアルミニウム合金展伸材の陽極
酸化皮膜は、その耐熱性が低く、表面温度150℃程度
以上での長時間使用や、常温と200℃程度以上の高温
との間のヒートサイクル的な使用によって皮膜にクラッ
クが生じやすい問題がある。そしてこのように陽極酸化
皮膜にクラックが生じれば、放射率が不安定になるとと
もに、耐食性が低下してしまう。また陽極酸化皮膜を生
成したアルミニウム合金展伸材の厚みが薄い場合には、
150℃程度以上の長時間使用やヒートサイクル的な使
用によって熱変形が生じ、赤外線放射体に反りや異常変
形を招いてしまう問題もあった。
As described above, an infrared radiator obtained by forming an anodized film on the surface of a wrought aluminum alloy has excellent radiation characteristics at a wavelength of 7 μm or more, but has a wavelength of 7 μm or less. There was a drawback that the emissivity dropped extremely in the region. The anodic oxide film of wrought aluminum alloy has low heat resistance, and can be used for a long time at a surface temperature of about 150 ° C or more, or by a heat cycle between normal temperature and a high temperature of about 200 ° C or more. There is a problem that cracks are likely to occur. If such cracks occur in the anodic oxide film, the emissivity becomes unstable and the corrosion resistance decreases. If the thickness of the wrought aluminum alloy with anodized film is small,
There is also a problem that thermal deformation occurs due to long-time use at about 150 ° C. or more or use in a heat cycle, which causes the infrared radiator to warp or abnormally deform.

【0007】この発明は以上の事情を背景としてなされ
たもので、前述のように7μm以上の波長域で優れた放
射特性を示すアルミニウム陽極酸化皮膜の特性を有効に
活用すると同時に、アルミニウム合金展伸材に陽極酸化
皮膜を形成した従来の赤外線放射体の欠点を解消した、
新規な赤外線放射体を提供することを目的とするもので
ある。具体的には、7μm以上の波長域のみならず7μ
m以下の短い波長域でも放射特性が優れ、しかも耐熱性
が優れていて、150〜200℃を越える高温でもクラ
ックが生じることなく、300℃程度まで安定した放射
性能を示すとともに、熱変形も生じにくい赤外線放射体
を提供することを目的とするものである。
The present invention has been made in view of the above circumstances. As described above, the characteristics of an aluminum anodic oxide film exhibiting excellent radiation characteristics in a wavelength range of 7 μm or more are effectively utilized, and at the same time, the aluminum alloy is spread. Solved the disadvantages of conventional infrared radiators that formed anodized film on the material,
It is intended to provide a new infrared radiator. Specifically, not only the wavelength range of 7 μm or more but also 7 μm
m, it has excellent radiation characteristics even in a short wavelength range of less than m, and also has excellent heat resistance. It does not crack even at high temperatures exceeding 150 to 200 ° C, shows stable radiation performance up to about 300 ° C, and also generates thermal deformation. It is intended to provide a hard infrared radiator.

【0008】[0008]

【課題を解決するための手段】前述のような課題を解決
するため、請求項1の発明の赤外線放射体は、基本的に
は、アルミニウムもしくはアルミニウム合金からなる母
材中に2〜50 vol%のセラミック微粉末粒子が分散さ
れている複合焼結体を基材とし、その基材表面に厚さ1
0μm以上の陽極酸化皮膜を形成した構成とし、かつ前
記セラミック微粉末粒子として、Al,Si,Mg,N
i,Cr,Zr,Cu,Fe,Mn、Tiの各酸化物も
しくはそれらの複合酸化物またはSiCのうちから選ば
れた1種または2種以上を用いることとしている。
In order to solve the above-mentioned problems, the infrared radiator according to the first aspect of the present invention basically comprises 2 to 50 vol% in a base material made of aluminum or an aluminum alloy. The base material is a composite sintered body in which ceramic fine powder particles are dispersed, and a thickness of 1
0 μm or more of an anodic oxide film is formed, and Al, Si, Mg, N
One or two or more selected from oxides of i, Cr, Zr, Cu, Fe, Mn, and Ti or composite oxides thereof or SiC are used.

【0009】[0009]

【0010】さらに請求項2の発明の赤外線放射体は、
請求項1の赤外線放射体において、前記セラミック微粉
末粒子が−325メッシュの粒径のものを用いることと
している。
[0010] The infrared radiator of the invention according to claim 2 further comprises:
The infrared radiator according to claim 1, wherein the ceramic fine powder particles have a particle size of -325 mesh.

【0011】[0011]

【作用】この発明の赤外線放射体の概念的な構成を図1
に示す。図1において、基材1は、アルミニウムもしく
はアルミニウム合金からなる母材2中にセラミック微粉
末粒子3が均一に分散された複合焼結体からなるもので
あり、したがってその基材表面に形成した陽極酸化皮膜
4中にもセラミック微粉末粒子3が均一に分散している
ことになる。ここで、アルミニウム材料の陽極酸化皮膜
は、それ自体が良好な赤外線放射特性、特に7μm以上
での優れた放射特性を有しているに加え、その中に分散
しているセラミック微粒子が優れた赤外線放射特性、特
に7μm以上の波長域のみならず7μm以下の短い波長
域でも優れた放射特性を有しており、しかもセラミック
微粉末粒子の分散によって皮膜の色調が濁ってその明度
が下がっている。そしてこれらが相乗的に作用する結
果、セラミック微粉末粒子が均一に分散した陽極酸化皮
膜は優れた赤外線放射特性を示し、特に7μm以上の波
長域のみならず7μm以下の短い波長域でも優れた放射
特性を示すことになる。
FIG. 1 shows a conceptual configuration of the infrared radiator of the present invention.
Shown in In FIG. 1, a substrate 1 is made of a composite sintered body in which ceramic fine powder particles 3 are uniformly dispersed in a base material 2 made of aluminum or an aluminum alloy. This means that the ceramic fine powder particles 3 are evenly dispersed in the oxide film 4. Here, the anodic oxide film of the aluminum material itself has good infrared radiation characteristics, particularly excellent radiation characteristics of 7 μm or more, and further, the ceramic fine particles dispersed therein have excellent infrared radiation characteristics. It has excellent radiation characteristics, especially not only in the wavelength region of 7 μm or more but also in the short wavelength region of 7 μm or less, and the color tone of the film becomes turbid due to the dispersion of the ceramic fine powder particles, and the lightness is lowered. As a result of these acting synergistically, the anodic oxide film in which the ceramic fine powder particles are uniformly dispersed exhibits excellent infrared radiation characteristics, and particularly, excellent radiation not only in the wavelength region of 7 μm or more but also in the short wavelength region of 7 μm or less. Characteristics.

【0012】また陽極酸化皮膜中に均一に分散したセラ
ミック微粉末粒子は応力の緩和点になるため、ヒートサ
イクル等による熱歪によって皮膜にクラックが発生する
おそれが少なく、さらに、仮にクラックが発生したとし
てもクラックの伝播がセラミック微粉末粒子によって阻
止されるため、クラックの成長が防止される。すなわ
ち、皮膜に熱歪によるクラックが発生したり、成長した
りするおそれが少ないから、皮膜の耐熱性が優れ、高温
での長時間連続使用や、常温と高温との間でのヒートサ
イクル的な使用に対してもクラックを生じることなく、
300℃程度まで安定して優れた赤外線放射特性を示
す。
Further, since the fine ceramic powder particles uniformly dispersed in the anodic oxide film serve as a stress relaxation point, the film is less likely to crack due to thermal strain caused by a heat cycle or the like. Even so, crack propagation is prevented by the ceramic fine powder particles, so that crack growth is prevented. That is, cracks due to thermal strain are generated in the film, or the film is less likely to grow, so the heat resistance of the film is excellent, continuous use at high temperature for a long time, or heat cycle between normal temperature and high temperature. Without cracking for use,
It shows excellent infrared radiation characteristics stably up to about 300 ° C.

【0013】また基材自体がアルミニウムもしくはアル
ミニウム合金中にセラミック微粉末粒子を分散させた複
合焼結体からなり、このような複合焼結体はアルミニウ
ムもしくはアルミニウム合金からなる展伸材と比較して
格段に高い強度、特に高い高温強度を有しており、その
ため高温で基材自体が熱歪により変形するおそれも少な
く、300℃程度の高温まで充分に使用することができ
る。そしてまた、基材が焼結体であるため、切削加工等
による成形加工が困難な複雑な形状の赤外線放射体を、
精度良く容易かつ安価に得ることができる。
Further, the base material itself is made of a composite sintered body in which ceramic fine powder particles are dispersed in aluminum or an aluminum alloy, and such a composite sintered body is compared with a wrought material made of aluminum or an aluminum alloy. It has remarkably high strength, particularly high high-temperature strength, so that the substrate itself is less likely to be deformed due to thermal strain at a high temperature, and can be sufficiently used up to a high temperature of about 300 ° C. In addition, since the base material is a sintered body, an infrared radiator having a complicated shape that is difficult to form by cutting or the like,
It can be obtained accurately, easily and inexpensively.

【0014】さらに陽極酸化皮膜は基材の表面に陽極酸
化処理を施すことによって形成されるものであって、基
材部分と一体化して両者は完全に密着しており、また陽
極酸化皮膜中のセラミック微粉末粒子は陽極酸化皮膜内
に分散された状態で埋込まれているから、そのセラミッ
ク微粉末粒子が脱落するおそれも少ない。
Further, the anodic oxide film is formed by subjecting the surface of the base material to an anodic oxidation treatment. The anodic oxide film is integrated with the base material portion and both are completely adhered to each other. Since the ceramic fine powder particles are embedded in a state of being dispersed in the anodic oxide film, there is little risk of the ceramic fine powder particles falling off.

【0015】基材中におけるセラミック微粉末粒子の配
合割合は、合計で2〜50 vol%の範囲内とする必要が
ある。セラミック微粉末の割合が2 vol%未満では前述
のように7μm以下の短い波長域でも優れた放射特性を
得る効果が充分に得られない。一方セラミック微粉末の
割合が50 vol%を越えれば、欠陥の少ない健全な焼結
体を製造することが困難となるとともに、陽極酸化処理
性が悪くなって均一な陽極酸化皮膜を生成することが困
難となる。なお2〜50 vol%の範囲内でも特に5〜2
5 vol%の範囲内が好ましく、その間でも特に10〜2
0 vol%の範囲内が最適である。
The mixing ratio of the ceramic fine powder particles in the base material must be in the range of 2 to 50 vol% in total. If the proportion of the ceramic fine powder is less than 2 vol%, the effect of obtaining excellent radiation characteristics cannot be sufficiently obtained even in a short wavelength range of 7 μm or less as described above. On the other hand, when the proportion of the ceramic fine powder exceeds 50 vol%, it becomes difficult to produce a sound sintered body with few defects, and the anodizing property is deteriorated, so that a uniform anodic oxide film can be formed. It will be difficult. In addition, even in the range of 2 to 50 vol%,
It is preferably within the range of 5 vol%, and especially between 10 and 2 vol%.
The optimum range is 0 vol%.

【0016】またセラミック微粉末粒子としては、A
l,Si,Mg,Ni,Cr,Zr,Cu,Fe,M
n、Tiの各酸化物もしくはそれらの複合酸化物または
SiCのうちから選ばれた1種または2種以上の混合粉
末とすることが適当である。具体的には、例えばAl2
3 ,SiO2 ,MgO,SiC,NiO,Cr
2 3 ,ZrO2 ,CuO,Fe2 3 ,MnO2 が代
表的であり、これらの1種または2種以上を用いれば良
い。本発明者等の実験によれば、これらのセラミック微
粉末は、いずれも陽極酸化皮膜中に均一に分散させるこ
とによって、7μm以下の短い波長域でも優れた赤外線
放射特性を陽極酸化皮膜に与えるに寄与し、かつ皮膜の
耐熱性を向上させるに寄与することが判明している。ま
たこの発明の赤外線放射体を製造するにあたっては、酸
もしくはアルカリの水溶液によって陽極酸化処理を行な
うことが必須であり、したがってセラミック粉末粒子が
陽極酸化処理時にこれらの処理液によって溶解したり、
構造の変化を招いたりすることは避けなければならない
が、前に列挙した各セラミック材料はこの点でも特に問
題がない。
As the ceramic fine powder particles, A
1, Si, Mg, Ni, Cr, Zr, Cu, Fe, M
It is appropriate to use one or two or more mixed powders selected from the oxides of n and Ti or their composite oxides or SiC. Specifically, for example, Al 2
O 3 , SiO 2 , MgO, SiC, NiO, Cr
Typical are 2 O 3 , ZrO 2 , CuO, Fe 2 O 3 and MnO 2 , and one or more of these may be used. According to experiments conducted by the present inventors, these ceramic fine powders are capable of imparting excellent infrared radiation characteristics even in a short wavelength range of 7 μm or less to an anodized film by being uniformly dispersed in the anodized film. It has been found to contribute to improving the heat resistance of the film. Further, in producing the infrared radiator of the present invention, it is essential to perform anodizing treatment with an acid or alkali aqueous solution, and therefore, the ceramic powder particles are dissolved by these treating solutions during the anodizing treatment,
Although it is necessary to avoid causing structural change, each of the above-listed ceramic materials has no particular problem in this regard.

【0017】なお前述の10種類のセラミック材料のう
ち、1種のみを使用することもできるが、セラミック材
料によって少なくとも若干はその放射特性が異なるか
ら、複数の種類のセラミック材料を組合せて用い、各セ
ラミック材料の異なる放射特性を平均化して、平均的に
優れた放射特性を示すようにすることが望ましい。なお
1種のみのセラミック材料を用いる場合は、7μm以下
の短い波長域でも安定して優れた放射特性を得るために
は、セラミック微粉末の配合割合は5 vol%以上とする
ことが望ましい。
Although only one of the above-mentioned ten types of ceramic materials may be used, the radiation characteristics of the ceramic materials differ at least slightly depending on the ceramic material. Therefore, a plurality of types of ceramic materials may be used in combination. It is desirable to average out the different emission characteristics of the ceramic material so as to exhibit, on average, excellent emission characteristics. When only one type of ceramic material is used, the mixing ratio of the ceramic fine powder is desirably 5 vol% or more in order to stably obtain excellent radiation characteristics even in a short wavelength range of 7 μm or less.

【0018】さらに前記セラミック微粉末粒子としては
その粒度が−325メッシュ(325メッシュアンダ
ー、すなわち約44μm以下)のものを用いることが望
ましい。これよりも粒径が大きければ、前述のような効
果を充分に得ることが困難となる。
Further, it is desirable that the ceramic fine powder particles have a particle size of -325 mesh (under 325 mesh, that is, about 44 μm or less). If the particle size is larger than this, it is difficult to sufficiently obtain the above-described effects.

【0019】基材の複合焼結体の母材となるアルミニウ
ムもしくはアルミニウム合金としては任意のものを使用
できるが、通常は純度99%以上の純アルミニウムを用
いることが望ましい。また焼結前における母材(アルミ
ニウムもしくはアルミニウム合金)粉末の粒径は特に限
定しないが、通常はセラミック微粉末粒子と同様に−3
25メッシュ程度とすることが好ましい。
Although any material can be used as aluminum or aluminum alloy as a base material of the composite sintered body of the substrate, it is usually desirable to use pure aluminum having a purity of 99% or more. The particle size of the base material (aluminum or aluminum alloy) powder before sintering is not particularly limited, but is usually -3 as in the case of the ceramic fine powder particles.
It is preferable to set it to about 25 mesh.

【0020】陽極酸化皮膜の膜厚は、10μm以上が必
要である。膜厚が10μm未満では、赤外線放射性能が
悪くなり、広い波長域にわたって安定して高い放射率を
得ることが困難となる。
The thickness of the anodic oxide film needs to be 10 μm or more. If the film thickness is less than 10 μm, the infrared radiation performance deteriorates, and it becomes difficult to stably obtain a high emissivity over a wide wavelength range.

【0021】基材の複合焼結体を製造するための具体的
方法は特に限定されないが、アルミニウムもしくはアル
ミニウム合金の粉末と1種または2種以上のセラミック
微粉末とを所定の配合比で混合、撹拌した後、その混合
粉末に対して、通常のアルミニウム系焼結材に適用され
ると同様な方法にて成形・焼結を施せば良く、プレス成
形法、押出成形法、ラバープレス法、爆発力を利用した
圧粉成形法、高温加圧法(ホットプレス)、連続的にス
トリップを得る方法、あるいはスリップキャスティング
法など、任意の方法を適用することができる。
The specific method for producing the composite sintered body of the substrate is not particularly limited, but a powder of aluminum or an aluminum alloy and one or more kinds of ceramic fine powders are mixed at a predetermined compounding ratio. After stirring, the mixed powder may be molded and sintered in the same manner as applied to a normal aluminum-based sintered material. Press molding, extrusion molding, rubber pressing, explosion An arbitrary method such as a powder compaction method using a force, a high-temperature pressing method (hot pressing), a method of continuously obtaining a strip, or a slip casting method can be applied.

【0022】さらに基材の表面に陽極酸化処理を施す方
法は特に限定されるものではなく、例えば酸性電解液の
場合、硫酸、シュウ酸などの無機酸、あるいは有機酸、
さらにはこれらの混合酸などの電解浴を用い、電解波形
として直流、交流、あるいは交直併用、交直重畳波形な
ど、任意の波形を用いて陽極酸化処理を行なえば良い。
但し経済性や作業効率の観点からは、硫酸浴において直
流電流を用いることが望ましい。このように基材に陽極
酸化処理を施せば、基材中のセラミック微粉末粒子がそ
のまま取込まれた状態で陽極酸化皮膜が成長し、皮膜内
にセラミック微粉末が均一に分散した陽極酸化皮膜が形
成される。
Further, the method of anodizing the surface of the substrate is not particularly limited. For example, in the case of an acidic electrolyte, an inorganic acid such as sulfuric acid or oxalic acid, or an organic acid,
Further, the anodizing treatment may be performed by using an electrolytic bath such as a mixed acid thereof and using an arbitrary waveform such as a direct current, an alternating current, a combined AC / DC, or a superimposed AC / DC waveform as an electrolytic waveform.
However, from the viewpoint of economy and work efficiency, it is desirable to use a direct current in the sulfuric acid bath. If the base material is subjected to anodizing treatment in this way, the anodic oxide film grows in a state where the ceramic fine powder particles in the base material are taken in as it is, and the ceramic fine powder is uniformly dispersed in the film. Is formed.

【0023】[0023]

【実施例】表1のNo.1〜No.19に示すような配
合割合で1種または2種以上のセラミック微粉末(粒度
−325メッシュ)と純アルミニウム粉末(粒度−32
5メッシュ)を配合し、混合、撹拌後、ラバープレスに
よって直径50mm、長さ100mmの円柱状の圧粉成形体
を作成し、これを焼結して焼結体とした。各円柱状焼結
体から5mm×30mm×30mmの正方形平板状の試片を切
出し、硫酸電解浴を用いて直流によって陽極酸化処理を
施し、5μm、10μm、20μm、30μm、40μ
mの種々の厚みの陽極酸化皮膜を形成した。
Embodiment No. 1 in Table 1 1 to No. One or more types of ceramic fine powder (grain size-325 mesh) and pure aluminum powder (grain size-32
After mixing and stirring, a cylindrical compact having a diameter of 50 mm and a length of 100 mm was prepared by a rubber press and sintered to obtain a sintered body. A 5 mm × 30 mm × 30 mm square plate-shaped specimen was cut out from each cylindrical sintered body, anodized by direct current using a sulfuric acid electrolytic bath, and subjected to 5 μm, 10 μm, 20 μm, 30 μm, and 40 μm.
Anodized films having various thicknesses of m were formed.

【0024】各試料について、波長3μm〜30μmま
での分光放射率曲線を温度300℃で調べ、その場合の
全放射率を算出した。その結果を、各試料について、陽
極酸化皮膜の各膜厚ごとに表2に示す。また各試料のう
ち、試料番号No.5の試料(10種類のセラミック微
粉末を配合した複合焼結体を用いたもの)について膜厚
30μmの陽極酸化皮膜を形成した場合の300℃での
分光放射率曲線を図2の曲線No.5で示し、また試料
番号No.1の試料(セラミック微粉末を配合しないア
ルミニウム単独焼結体を用いたもの)について膜厚30
μmの陽極酸化皮膜を形成した場合の300℃での分光
放射率曲線を図2の曲線No.1で示す。さらに、試料
番号No.4,6,7,8,9,10についての前記同
様な条件下での分光放射率曲線を図2の曲線No.4,
6,7,8,9,10で示す。また比較のため、焼結体
ではない従来の通常の純アルミニウム展伸材に30μm
の陽極酸化皮膜を形成した場合の300℃での分光放射
率曲線を図3に示す。
For each sample, a spectral emissivity curve from a wavelength of 3 μm to 30 μm was examined at a temperature of 300 ° C., and the total emissivity in that case was calculated. The results are shown in Table 2 for each sample for each film thickness of the anodic oxide film. In each sample, the sample number No. The spectral emissivity curve at 300 ° C. in the case of forming a 30 μm-thick anodic oxide film on the sample No. 5 (using a composite sintered body in which ten types of ceramic fine powders are blended) is shown by curve No. 2 in FIG. 5 and the sample number No. A film thickness of 30 for one sample (using a sintered body of aluminum alone without blending ceramic fine powder)
The spectral emissivity curve at 300 ° C. when an anodized film having a thickness of μm is formed is shown in FIG. Indicated by 1. Further, the sample number No. The spectral emissivity curves of the samples Nos. 4, 6, 7, 8, 9, and 10 under the same conditions as those described above are shown by curve Nos. 4,
Indicated by 6, 7, 8, 9, 10. For comparison, 30 μm was added to a conventional ordinary pure aluminum wrought material that was not a sintered body.
FIG. 3 shows a spectral emissivity curve at 300 ° C. when the anodic oxide film was formed.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 [Table 2]

【0027】表2から明らかなように、10種類のセラ
ミック微粉末を1.5 vol%ずつ、合計15 vol%配合
した複合焼結体を用いたNo.5の試料では、陽極酸化
皮膜膜厚30μmの場合に300℃での全放射率は0.
98もの著しく高い値を示し、セラミック微粉末を配合
しなかった焼結体を用いたNo.1の試料の同じ膜厚、
同じ温度での全放射率0.68と比較して著しく高いこ
とが判る。そしてこのNo.5の試料の場合、図2の曲
線No.5で示したように、波長7μm以下の短い波長
域においても安定して高い放射率が得られることが確認
された。
As is clear from Table 2, No. 1 using a composite sintered body in which 10 kinds of ceramic fine powders were blended in a total of 15 vol% each in 1.5 vol%. In sample No. 5, the total emissivity at 300 ° C. was 0.3 when the anodic oxide film thickness was 30 μm.
No. 98, which is a remarkably high value, and uses a sintered body containing no ceramic fine powder. The same thickness of one sample,
It can be seen that it is significantly higher than the total emissivity of 0.68 at the same temperature. And this No. In the case of the sample No. 5, the curve No. of FIG. As shown in No. 5, it was confirmed that a high emissivity was stably obtained even in a short wavelength range of 7 μm or less.

【0028】またNo.2〜No.4の試料は、いずれ
も2種類のセラミック微粉末を合計10 vol%配合した
焼結体を用いたものであり、この場合No.5の試料よ
りは低いが、セラミック微粉末を含まない焼結体を用い
たNo.1の試料よりも格段に高い全放射率の値(0.
85)が膜厚30μmで得られた。これらの試料No.
2〜No.4のうち、No.4について図2に分光放射
率曲線を示すが、この図から、波長7μm以下の短い波
長域で比較的安定な高い放射率が得られていることが判
る。
No. 2-No. Sample No. 4 used a sintered body in which two types of ceramic fine powder were mixed in a total of 10 vol%. No. 5 using a sintered body which is lower than the sample of No. 5 but does not contain the ceramic fine powder. The value of the total emissivity is significantly higher than that of the sample No. 1 (0.
85) was obtained with a film thickness of 30 μm. These sample Nos.
2-No. No. 4 among No. 4 FIG. 2 shows a spectral emissivity curve for No. 4 which shows that a relatively stable high emissivity is obtained in a short wavelength range of 7 μm or less.

【0029】さらに、No.6〜No.10の試料はい
ずれもセラミック微粉末としてアルミナ1種類を用い、
その配合量を1〜15 vol%の範囲で変化させたもので
あるが、表2に示すように、その配合量が2 vol%以上
であれば膜厚10μm以上で全放射率0.7以上の高い
放射率が得られること、そして図2に示すように短い波
長域でも比較的高い放射率が得られことが判る。
Further, in the case of 6-No. All 10 samples used one kind of alumina as ceramic fine powder,
The blending amount was changed in the range of 1 to 15 vol%. As shown in Table 2, if the blending amount was 2 vol% or more, the total emissivity was 0.7 or more at a film thickness of 10 μm or more. It can be seen that a high emissivity can be obtained, and a relatively high emissivity can be obtained even in a short wavelength region as shown in FIG.

【0030】そしてまたNo.11〜No.19の試料
は、いずれも1種類のセラミック微粉末を5 vol%配合
した焼結体を用いたものであり、この場合も、表2に示
すようにNo.1の試料よりも高い全放射率の値が得ら
れた。
And also No. 11-No. Sample No. 19 used a sintered body in which one type of ceramic fine powder was blended at 5 vol%. Total emissivity values higher than one sample were obtained.

【0031】[0031]

【発明の効果】この発明の赤外線放射体によれば、波長
7μm以下の短い波長域でも7μm以上の波長域と同様
に安定して高い赤外線放射率を得ることができ、また陽
極酸化皮膜の耐熱性が高く、300℃程度の高温での使
用によっても表面の陽極酸化皮膜にクラックが生じたり
することなく、安定して高い放射率を得ることができ、
また基材自体の耐熱性、高温強度も優れているため、3
00℃程度の高温でも熱歪によって基材の反り、変形が
発生したりするおそれが少なく、結局300℃程度の高
温までその高温での連続使用あるいは常温と高温との間
でのヒートサイクル的使用の如何にかかわらず、安定し
て使用することができる。
According to the infrared radiator of the present invention, a high infrared emissivity can be obtained stably even in a short wavelength region of 7 μm or less, as in a wavelength region of 7 μm or more. High emissivity can be obtained stably without cracking of the anodic oxide film on the surface even when used at a high temperature of about 300 ° C.,
In addition, since the base material itself has excellent heat resistance and high-temperature strength, 3
Even at a high temperature of about 00 ° C, there is little risk that the substrate will be warped or deformed due to thermal strain. Eventually, it can be used continuously at a high temperature of about 300 ° C or a heat cycle between normal temperature and high temperature. Regardless of the above, it can be used stably.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の赤外線放射体の一例の断面構造を概
念的に示す模式図である。
FIG. 1 is a schematic view conceptually showing a cross-sectional structure of an example of an infrared radiator of the present invention.

【図2】実施例の赤外線放射体における分光放射率曲線
を示す特性図である。
FIG. 2 is a characteristic diagram showing a spectral emissivity curve of the infrared radiator of the example.

【図3】従来の通常のアルミニウム展伸材を用いた赤外
線放射体における分光放射率曲線を示す特性図である。
FIG. 3 is a characteristic diagram showing a spectral emissivity curve of a conventional infrared radiator using a normal aluminum wrought material.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−19796(JP,A) 特開 平1−165796(JP,A) 特開 昭63−145797(JP,A) (58)調査した分野(Int.Cl.7,DB名) C25D 11/00 C25D 11/38 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-61-19796 (JP, A) JP-A-1-165796 (JP, A) JP-A-63-145797 (JP, A) (58) Investigation Field (Int. Cl. 7 , DB name) C25D 11/00 C25D 11/38

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 アルミニウムもしくはアルミニウム合金
からなる母材中にAl,Si,Mg,Ni,Cr,Z
r,Cu,Fe,Mn、Tiの各酸化物もしくはそれら
の複合酸化物またはSiCのうちから選ばれた1種また
は2種以上のセラミック微粉末粒子が2〜50 vol%分
散されている複合焼結体を基材とし、その基材表面に厚
さ10μm以上の陽極酸化皮膜が形成されていることを
特徴とする赤外線放射体。
An Al, Si, Mg, Ni, Cr, Z metal in a base material made of aluminum or an aluminum alloy.
Composite firing in which one to two or more ceramic fine powder particles selected from oxides of r, Cu, Fe, Mn, Ti or their composite oxides or SiC are dispersed in 2 to 50 vol%. An infrared radiator comprising: a base material; and an anodic oxide film having a thickness of 10 μm or more formed on a surface of the base material.
【請求項2】 前記セラミック微粉末粒子が−325メ
ッシュの粒径のものである請求項1に記載の赤外線放射
体。
2. The infrared radiator according to claim 1, wherein said ceramic fine powder particles have a particle size of -325 mesh.
JP13431592A 1992-04-27 1992-04-27 Infrared radiator Expired - Fee Related JP3200158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13431592A JP3200158B2 (en) 1992-04-27 1992-04-27 Infrared radiator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13431592A JP3200158B2 (en) 1992-04-27 1992-04-27 Infrared radiator

Publications (2)

Publication Number Publication Date
JPH05301788A JPH05301788A (en) 1993-11-16
JP3200158B2 true JP3200158B2 (en) 2001-08-20

Family

ID=15125432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13431592A Expired - Fee Related JP3200158B2 (en) 1992-04-27 1992-04-27 Infrared radiator

Country Status (1)

Country Link
JP (1) JP3200158B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6653037B2 (en) 2000-11-20 2003-11-25 Ricoh Company, Ltd. Toner for developing latent electrostatic images, and image forming method and device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100398487C (en) * 2005-01-06 2008-07-02 高庆昌 Highly effective intense adsorption energy-saving reinforcer and its preparation method
KR101018717B1 (en) * 2008-06-17 2011-03-04 한국표준과학연구원 Method and standard block for the performance evaluation of an infrared thermography system inspecting PCBA

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6653037B2 (en) 2000-11-20 2003-11-25 Ricoh Company, Ltd. Toner for developing latent electrostatic images, and image forming method and device

Also Published As

Publication number Publication date
JPH05301788A (en) 1993-11-16

Similar Documents

Publication Publication Date Title
JP2609212B2 (en) Creep resistant alloy composed of high melting point metal and its manufacturing method
US4613455A (en) Ceramic heater and a method for its production
EP0479429A2 (en) Infrared radiation element and process of producing the same
CN107217281B (en) Compound resistance tritium coating of one kind and preparation method thereof
WO2022089379A1 (en) Silicon nitride/titanium carbide ceramic material preparation method based on spark plasma sintering
EP0119438B1 (en) Molybdenum board and process of manufacturing the same
JP3200158B2 (en) Infrared radiator
JP2001064080A (en) Silicon nitride sintered body and its production
EP0170889B1 (en) Zrb2 composite sintered material
JPH0563430B2 (en)
JP3279885B2 (en) Method for producing alumina-based sintered body
KR20140132866A (en) Aluminum Nitride ceramics with high strength and the method of low temperature sintering thereof
JPH07126061A (en) Magnesia-based sintered material and production thereof
JP4108943B2 (en) Molybdenum sintered body, molybdenum plate material, and manufacturing method thereof
JP3131071B2 (en) Ceramic heating element
KR101436468B1 (en) High strength Aluminum Nitride ceramics and the method of low temperature sintering thereof
JPH02258670A (en) Low temperature expandable ceramics
JP2675187B2 (en) Gradient silicon nitride composite material and method of manufacturing the same
JPS63319263A (en) Silicon nitride-based ceramic
JP3225873B2 (en) MgO composite ceramics and method for producing the same
JP3311915B2 (en) Alumina sintered body
JP2849702B2 (en) Method for producing highly conductive carbon-based composite material
JP2568521B2 (en) Composite sintered body
JP2647347B2 (en) Manufacturing method of aluminum nitride sintered body heat sink
KR20090103281A (en) Far-infrared generating unit material

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010605

LAPS Cancellation because of no payment of annual fees