JP3198614B2 - Degassing device - Google Patents
Degassing deviceInfo
- Publication number
- JP3198614B2 JP3198614B2 JP12977692A JP12977692A JP3198614B2 JP 3198614 B2 JP3198614 B2 JP 3198614B2 JP 12977692 A JP12977692 A JP 12977692A JP 12977692 A JP12977692 A JP 12977692A JP 3198614 B2 JP3198614 B2 JP 3198614B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- gas
- treated
- filler layer
- blower
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Degasification And Air Bubble Elimination (AREA)
- Physical Water Treatments (AREA)
Description
【0001】[0001]
【産業上の利用分野】この発明は、水中に溶存するCO
2 、O2 を効率よく除去する脱ガス装置に関するもの
で、市水中のCO2 、O2 を除去したり、超純水を前後
2段のRO装置(膜分離装置)で処理して製造する際
に、上記RO装置に供給する原料水中のCO2 、O2 を
除去し、RO装置によって処理した超純水の水質を向上
することを目的とする。BACKGROUND OF THE INVENTION The present invention relates to a method for dissolving CO in water.
2, O 2 relates degasser to remove efficiently, or to remove the CO 2, O 2 of the city water to produce treated ultrapure water RO system before and after the two-stage (the membrane separator) At this time, an object is to remove CO 2 and O 2 in the raw water supplied to the RO device and improve the quality of ultrapure water treated by the RO device.
【0002】[0002]
【従来の技術】従来、水中の溶存ガスCO2 の除去には
脱炭酸装置が、O2 の除去にはN2 脱気装置が一般に使
用されている。脱炭酸装置は処理塔内に設けた充填材層
に上から被処理水を散布すると共に、該層に下からブロ
ワーで空気を送風し、充填材層中で被処理水と空気を向
流接触させ、水中のCO2 を空気によって除去する。
又、N2 脱気装置は処理塔内に設けた充填材層に上から
被処理水を散布すると共に、該層に下から高純度のN2
ガスを供給し、充填材層中で被処理水とN2 ガスを向流
接触し、水中の主にO2 をN2 ガスによって除去する。Conventionally, the CO 2 removal unit for removing the water of dissolved gas CO 2, for the removal of O 2 N 2 degassing device is generally used. The decarbonation device sprays water to be treated from above on the packing layer provided in the treatment tower, and blows air from below to this layer with a blower to bring counter-current contact between the water to be treated and air in the packing layer. And remove the CO 2 in the water by air.
In addition, the N 2 degassing device sprays the water to be treated from the top onto the filler layer provided in the treatment tower, and supplies high-purity N 2 from the bottom to the bed.
The gas is supplied, the water to be treated and the N 2 gas are brought into countercurrent contact in the filler layer, and mainly O 2 in the water is removed by the N 2 gas.
【0003】[0003]
【発明が解決しようとする課題】上記した従来の脱炭酸
装置では被処理水の給水流量の15倍以上の空気を送風
してCO2 を除去するのであるが、送風する空気中に存
在するCO2 の影響で処理水の到達CO2 濃度には限界
がある。特にCO2 は水中からの拡散速度が遅いため、
現状の装置では処理水のCO2 濃度を2〜8ppmas
CO2 にするのが限度で、それ以下の低濃度にすること
はできない。又、空気を送風するため被処理水に溶存す
るO2 は除去できない。又、N2 脱気装置では高純度の
N2 ガスを用いるため、水中のO2 、CO2 を同時に除
去することは可能であるが、水中からのCO2 の拡散速
度はO2 にくらべると非常に低く、約1/27であるた
め、処理水のCO2 濃度を上記脱炭酸装置による場合と
同レベルにするには多量のN2 ガスが必要で、ランニン
グコストが嵩むため、N2 ガスの使用量を減らし、主に
O2 の除去に使用している。このため、水中に溶存する
CO2 とO2 を除去するには、現状では脱炭酸装置と、
N2 脱気装置を併用している。In the above-described conventional decarbonation apparatus, air of 15 times or more of the supply flow rate of the water to be treated is blown to remove CO 2 , but CO 2 existing in the blown air is removed. Due to the effect of 2, there is a limit to the CO 2 concentration that can be reached in the treated water. In particular, CO 2 has a low diffusion rate from water,
With the current equipment, the CO 2 concentration of the treated water is 2 to 8 ppmas
It is limited to CO 2 , and it cannot be made lower. Further, since air is blown, O 2 dissolved in the water to be treated cannot be removed. Since N 2 degassing equipment uses high-purity N 2 gas, it is possible to simultaneously remove O 2 and CO 2 in water, but the diffusion rate of CO 2 from water is lower than that of O 2. very low, because it is about 1/27, the CO 2 concentration in the treated water to the same level as the case of the CO 2 removal unit is required a large amount of N 2 gas, since the increase running costs, N 2 gas It is used mainly for removing O 2 . Therefore, in order to remove CO 2 and O 2 dissolved in water, at present, a
A N 2 degassing device is also used.
【0004】[0004]
【課題を解決するための手段】そこで本発明は、水中の
CO2 とO2 とを1つの処理塔で効率よく除去するため
に開発されたのであって、充填材層を内蔵した処理塔内
に、該充填材層に上から被処理水を散布する給水装置
と、下から窒素ガスを供給する窒素ガス給気装置とを設
けた脱ガス装置において、充填材層の途中に送風する送
風装置を設けたことを特徴とする。SUMMARY OF THE INVENTION Accordingly, the present invention has been developed to efficiently remove CO 2 and O 2 in water with a single processing tower. In a degassing device provided with a water supply device for spraying water to be treated from above on the filler layer and a nitrogen gas supply device for supplying nitrogen gas from below, a blower for blowing air in the middle of the filler layer Is provided.
【0005】[0005]
【実施例】図示の実施例において、1は縦形の処理塔、
2は塔内に設けた充填材層、3は充填材層に上から被処
理水を散布する給水装置、4は充填材層に下から窒素ガ
スを供給する給気装置であり、処理塔1は、充填材層中
を下向流した処理水を受ける処理水槽5上に立設してあ
る。DESCRIPTION OF THE PREFERRED EMBODIMENTS In the illustrated embodiment, 1 is a vertical treatment tower,
2 is a filler layer provided in the tower, 3 is a water supply device for spraying water to be treated on the filler layer from above, and 4 is an air supply device for supplying nitrogen gas to the filler layer from below. Is set up on a treated water tank 5 for receiving treated water flowing downward in the filler layer.
【0006】図1の実施例では、処理塔1の頂部と、塔
外の送風装置、例えばブロワー6の吸気口とを抜出管7
で接続すると共に、ブロワーの排気口と、処理塔の高さ
の途中とを送気管8で接続してある。したがって、ブロ
ワー6を運転すると、充填材層2中を下から上に吹き抜
けた窒素ガスを含むガスは抜出管7でブロワーに吸い込
まれ、ブロワーはそのガスを送気管8で充填材層2の高
さの途中に吹込み、かくして上記ガスを循環する。尚、
ブロワーの送気口、又は送気管8の途中に排気口9を設
け、処理塔内に供給される窒素ガスと同量のガスを上記
排気口から系外に排出し、循環するガス量をほゞ一定に
保つ。In the embodiment shown in FIG. 1, the top of the processing tower 1 and a blower 6 outside the tower, for example, an intake port of a blower 6 are connected to an extraction pipe 7.
, And the exhaust port of the blower and the middle of the height of the processing tower are connected by an air supply pipe 8. Therefore, when the blower 6 is operated, the gas containing nitrogen gas blown from the bottom into the top of the filler layer 2 is sucked into the blower by the extraction pipe 7, and the blower sends the gas to the filler layer 2 through the air supply pipe 8. Blowing in the middle of the height, thus circulating the gas. still,
An exhaust port 9 is provided in the blower air supply port or in the middle of the air supply pipe 8, and the same amount of nitrogen gas supplied into the processing tower is discharged out of the system through the exhaust port to reduce the amount of circulating gas.保 つ Keep constant.
【0007】ブロワー6を運転しながら、充填材層2に
上から給水装置3で被処理水を散布すると共に、下から
給気装置4で窒素ガスを供給すると、送気管8の接続位
置よりも下の充填材層2の下部2aでは充填材層中を下
向流する被処理水と、該層中を上向流する窒素ガスとが
向流接触し、被処理水中のO2 とCO2 、主としてO2
を除去する。又、送気管8の接続位置よりも上の充填材
層の上部2bでは該層の下部2aから吹き上る窒素ガス
と、ブロワーにより送気管8から供給されるガスとが一
緒に上向流して下向流する被処理水と向流接触し、上向
流するガス量が増加した分、気液接触効率が向上し、C
O2 とO2 (主としてCO2 )をよく除去する。When the water to be treated is sprayed on the filler layer 2 from above with the water supply device 3 and the nitrogen gas is supplied from below with the air supply device 4 while operating the blower 6, In the lower portion 2a of the lower filler layer 2, the water to be treated flowing downward in the filler layer and the nitrogen gas flowing upward in the layer come into countercurrent contact with each other, and O 2 and CO 2 in the water to be treated become countercurrent. , Mainly O 2
Is removed. In the upper part 2b of the filler layer above the connection position of the air supply pipe 8, the nitrogen gas blown up from the lower part 2a of the layer and the gas supplied from the air supply pipe 8 by the blower flow upward together. The gas-liquid contacting efficiency is improved by the amount of the gas flowing upward, which is in countercurrent contact with the water to be treated, which is countercurrent.
O 2 and O 2 (mainly CO 2 ) are removed well.
【0008】図2の実施例では、処理塔外に設けたブロ
ワー6の排気口と、処理塔の高さの途中とを送気管8で
接続し、塔外の空気をブロワー6と送気管8によって充
填材層2の高さの途中に吹込み、充填材層2を下から上
に吹抜けたガスは塔頂に設けた排気管10で大気に放出
するようにしてある。この実施例では送気管の接続位置
よりも下の充填材層の下部2bで被処理水中の主として
O2 を効率的に除去し、該層の上部2aで被処理水中の
主としてCO2 を効率的に除去する。In the embodiment shown in FIG. 2, the exhaust port of the blower 6 provided outside the processing tower and the middle of the height of the processing tower are connected by an air supply pipe 8, and the air outside the tower is connected to the blower 6 and the air supply pipe 8. As a result, the gas blown in the middle of the height of the filler layer 2 and the gas blown through the filler layer 2 from below to above is discharged to the atmosphere through an exhaust pipe 10 provided at the top of the tower. In this embodiment, mainly O 2 in the water to be treated is efficiently removed in the lower portion 2b of the filler layer below the connection position of the air supply pipe, and mainly CO 2 in the water to be treated is efficiently removed in the upper portion 2a of the layer. To be removed.
【0009】図1,図2のどちらの実施例でも、充填材
層の上部2aの層高は約1.5〜2m、下部2bの層高
はO2 除去の保証値によって変わるが約3〜8mにす
る。In both of the embodiments shown in FIGS. 1 and 2, the height of the upper layer 2a of the filler layer is about 1.5 to 2 m, and the height of the lower layer 2b is about 3 to 3 depending on the guaranteed value of O 2 removal. 8m.
【0010】A市の市水〔25℃、pH=4.0(H2
SO4 添加)〕を被処理水として1m3 /時で供給し、
従来の脱炭酸装置とN2 脱気装置とで順番に処理した場
合と、図1の装置で処理した場合の結果を次に示す。 従来法(脱炭酸装置→N2 脱気装置) 脱炭酸装置運転条件 :送風量=15Nm3 /時 N2 脱気装置運転条件:N2 ガス量=1Nm3 /時 処理水 CO2 濃度=2.0ppmasCO2 O2 濃度=5ppmasO 本発明装置 運転条件:送風量=15Nm3 /時 Nガス量=1Nm3 /時 処理水 CO2 濃度=0.1ppmasCO2 O2 濃度=1ppmasO 以上で明らかなように、送風するのに同じエネルギーを
使用し、同量のN2 ガスを使用して、本発明では処理水
のCO2 濃度を1/20、O2 濃度を1/5に低下させ
ることができた。City water of city A [25 ° C., pH = 4.0 (H 2
SO 4 added) at a rate of 1 m 3 / hour as water to be treated,
The results obtained in the case where the treatment is performed sequentially with the conventional decarbonation device and the N 2 degassing device and in the case where the treatment is performed with the device in FIG. 1 are shown below. Conventional method (Decarbonation equipment → N 2 degassing equipment) Operating condition of decarbonating equipment: Air flow rate = 15 Nm 3 / hour Operating condition of N 2 degassing apparatus: N 2 gas amount = 1 Nm 3 / hour Treated water CO 2 concentration = 2 0.0 ppmasCO 2 O 2 concentration = 5 ppmasO Device of the present invention Operating conditions: Air flow rate = 15 Nm 3 / hour N gas amount = 1 Nm 3 / hour Treated water CO 2 concentration = 0.1 ppmasCO 2 O 2 concentration = 1 ppmasO By using the same energy for blowing and using the same amount of N 2 gas, the present invention was able to reduce the CO 2 concentration of the treated water to 1/20 and the O 2 concentration to 1/5. .
【0011】又、超純水を二段RO装置で処理して製造
する際、従来は脱炭酸装置でCO2を原料水から除去し
ていたが、脱炭酸装置では除去しきれないため、二段R
O装置が製造した水の水質の比抵抗は0.5MΩ・Cm
程度であり、製造した超純水中に残存するCO2 を、再
生型イオン交換装置で除去しなけらばならないが、この
再生型イオン交換装置は樹脂の分離、再生等の煩雑な操
作を要し、トラブルが生じた。しかし、本発明の脱ガス
装置を使用すると二段RO装置で処理する原料水中のC
O2 を脱炭酸装置の20倍も除去できるため二段RO装
置で製造した超純水の水質の比抵抗は5.5MΩ・Cm
以上にすることができ、再生型でない、取扱い容易な非
再生型イオン交換装置を使用し、TOCが10ppb以
下の超純水を安定して得ることができる(図3参照)。Further, when ultrapure water is processed by a two-stage RO apparatus to produce CO2, CO 2 has been conventionally removed from the raw water by a decarbonation apparatus. However, CO2 cannot be removed by a decarbonation apparatus. Step R
The specific resistance of the water quality of the water produced by the O device is 0.5 MΩ · Cm
On the order, principal of CO 2 remaining in the ultrapure water produced, but must kicked such removed by regenerative ion exchanger, the regenerative ion exchanger is a resin separation, complicated operations such as reproduction Then, trouble occurred. However, when the degassing apparatus of the present invention is used, the C in the raw water to be treated by the two-stage RO apparatus is reduced.
Since O 2 can be removed 20 times as much as a decarbonation device, the specific resistance of the water quality of the ultrapure water produced by the two-stage RO device is 5.5 MΩ · Cm.
By using a non-regenerative non-regenerative ion exchange apparatus that is not a regenerative type, ultrapure water having a TOC of 10 ppb or less can be stably obtained (see FIG. 3).
【0012】[0012]
【発明の効果】水中に溶存するO2 、CO2 を効率よく
除去する要因は気相中の分圧差の低下と、気液の接触効
率の向上である。本発明では充填材層の下部2aに下か
ら純粋な窒素ガスを供給することで液相中からO2 、C
O2 を除去し、又、充填材層の上部2aでは、下部2b
から吹き上げる窒素ガスと、充填材層の高さの途中から
吹き込まれた循環ガス、又は空気とが混合した大量の混
合ガスを上向流させることで気液の接触効率を高め、被
処理水の主にCO2 を除去する。特に、充填材層の上部
2aでは、CO2 分圧の低い(≒O)N2 ガスが循環ガ
スと混合して、循環ガス中のCO2 分圧を低下させるこ
とと気液接触効率の向上により液中からCO2 が十分に
除去される。又、下部2bでは、上部で除去されたCO
2 を更に分圧の低いN2 ガスと接触させることにより除
去(ポリッシング)するものであり、下部ではCO2 と
O2 が除去できる。The factors for efficiently removing O 2 and CO 2 dissolved in water are a reduction in the partial pressure difference in the gas phase and an improvement in the gas-liquid contact efficiency. In the present invention, pure nitrogen gas is supplied from below to the lower portion 2a of the filler layer to allow O 2 and C from the liquid phase.
O 2 is removed, and in the upper part 2a of the filler layer, the lower part 2b
The gas and liquid contact efficiency is increased by flowing upward a large amount of a mixed gas in which the nitrogen gas blown from the gas and the circulating gas blown from the middle of the height of the filler layer or the air are mixed, and the water to be treated is It mainly removes CO 2 . In particular, in the upper part 2a of the filler layer, the (≒ O) N 2 gas having a low CO 2 partial pressure is mixed with the circulating gas to lower the CO 2 partial pressure in the circulating gas and to improve the gas-liquid contact efficiency. Thereby, CO 2 is sufficiently removed from the liquid. In the lower portion 2b, CO2 removed in the upper portion is used.
2 is removed (polished) by being brought into contact with N 2 gas having a lower partial pressure, and CO 2 and O 2 can be removed below.
【0013】このため従来の脱炭酸装置とN2 脱気装置
を併用する場合に使用したのと同じ量の送風量、N2 ガ
ス使用量で運転すると、前述したようにCO2 除去量は
20倍、O2 除去量は5倍になり、除去効率は格段と向
上する。又、処理水のCO2濃度、及びO2 濃度を、従
来の脱炭酸装置とN2 脱気装置を併用した場合と同レベ
ルにするのであれば、送風するためのエネルギー使用
量、N2 ガスの使用量は少なくてよいのでランニングコ
ストは約半分に低減できる。For this reason, when the conventional decarbonation apparatus and the N 2 deaerator are used in combination, when the operation is performed with the same amount of blowing air and the same amount of N 2 gas used as described above, the CO 2 removal amount becomes 20 as described above. And the amount of O 2 removal increases by a factor of five, and the removal efficiency is significantly improved. Also, if the CO 2 concentration and the O 2 concentration of the treated water are set to the same level as when the conventional decarbonation device and the N 2 degassing device are used in combination, the energy consumption for blowing air and the N 2 gas The running cost can be reduced to about half since the amount of used is small.
【0014】更に、併用する場合は脱炭酸装置の処理塔
と、N2 脱気装置の処理塔の2塔が必要であったが、本
発明では処理塔は1塔でよいため設備費も半減する。Furthermore, when used together, two towers, a processing tower for a decarbonation apparatus and a processing tower for an N 2 degassing apparatus, were required. However, in the present invention, only one processing tower is required, so that the equipment cost is reduced by half. I do.
【図1】本発明の1実施例の断面図である。FIG. 1 is a cross-sectional view of one embodiment of the present invention.
【図2】本発明の他の1実施例の断面図である。FIG. 2 is a sectional view of another embodiment of the present invention.
【図3】本発明の脱ガス装置を超純水製造装置に組み込
んだフローシートである。FIG. 3 is a flow sheet in which the degassing apparatus of the present invention is incorporated in an ultrapure water production apparatus.
1 処理塔 2 充填材層 3 被処理水の給水装置 4 窒素ガスの給気装置 5 処理水槽 6 送風装置(ブロワー) 8 送気管 DESCRIPTION OF SYMBOLS 1 Treatment tower 2 Packing material layer 3 Water supply device of treated water 4 Nitrogen gas supply device 5 Treatment water tank 6 Blower 8 Blower tube
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C02F 1/20 B01D 19/00 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 7 , DB name) C02F 1/20 B01D 19/00
Claims (1)
材層に上から被処理水を散布する給水装置と、下から窒
素ガスを供給する窒素ガス給気装置とを設けた脱ガス装
置において、充填材層の途中に送風する送風装置を設け
たことを特徴とする脱ガス装置。1. A degassing system comprising a water supply device for spraying water to be treated from above on a filler layer and a nitrogen gas supply device for supplying nitrogen gas from below in a treatment tower containing a filler layer. What is claimed is: 1. A degassing device, comprising: a gas device provided with a blowing device for blowing air in the middle of the filler layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12977692A JP3198614B2 (en) | 1992-04-24 | 1992-04-24 | Degassing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12977692A JP3198614B2 (en) | 1992-04-24 | 1992-04-24 | Degassing device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05301089A JPH05301089A (en) | 1993-11-16 |
JP3198614B2 true JP3198614B2 (en) | 2001-08-13 |
Family
ID=15017937
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12977692A Expired - Fee Related JP3198614B2 (en) | 1992-04-24 | 1992-04-24 | Degassing device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3198614B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1994023816A1 (en) * | 1993-04-14 | 1994-10-27 | Nippon Sanso Corporation | Dissolved oxygen reducing apparatus |
JP5382282B2 (en) * | 2006-04-26 | 2014-01-08 | 栗田工業株式会社 | Pure water production equipment |
-
1992
- 1992-04-24 JP JP12977692A patent/JP3198614B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH05301089A (en) | 1993-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9180402B2 (en) | System and method for treating natural gas that contains methane | |
JPH05220480A (en) | Pure water manufacturing apparatus | |
JP2557346B2 (en) | Water treatment equipment | |
JP3198614B2 (en) | Degassing device | |
JPH06182325A (en) | Removing method for ammonium ion in liquid | |
JP2865452B2 (en) | Removal device for dissolved gas in raw water | |
JP3009789B2 (en) | Removal of dissolved oxygen in water | |
JP2772362B2 (en) | Removal device for dissolved carbon dioxide in liquid | |
JP3304412B2 (en) | Pure water production method | |
JPH01315301A (en) | Device for removing dissolved gas in pure water | |
JPS6291287A (en) | Apparatus for making pure water | |
JPH1057802A (en) | Gas-liquid contacting apparatus | |
JP3662337B2 (en) | Method for removing dissolved carbon dioxide | |
JPH0790215B2 (en) | Method for removing dissolved carbon dioxide gas in pure water production equipment | |
JP3057890B2 (en) | Method and apparatus for producing pure water | |
JP2000107511A (en) | Decarbonation treating method | |
JP3306521B2 (en) | Exhaust gas purification method and apparatus | |
JPH01171689A (en) | Two stage type reverse osmotic membrane device | |
CN115849610A (en) | Energy-saving full-membrane-process filtering equipment | |
JPH07265854A (en) | Desalted water production device | |
JPS6316086A (en) | Apparatus for removing dissolved oxygen in liquid | |
JP2002363113A (en) | Method and apparatus for separating and recovering perfluoro compound gas | |
JPH08103648A (en) | Packed tower type gas-liquid contact device | |
JP2885997B2 (en) | Degassing device | |
JPH0694028B2 (en) | Method for reducing anion load in ultrapure water equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |