JP3195569B2 - Method for producing a cocoon-shaped colloidal silica - Google Patents

Method for producing a cocoon-shaped colloidal silica

Info

Publication number
JP3195569B2
JP3195569B2 JP22706697A JP22706697A JP3195569B2 JP 3195569 B2 JP3195569 B2 JP 3195569B2 JP 22706697 A JP22706697 A JP 22706697A JP 22706697 A JP22706697 A JP 22706697A JP 3195569 B2 JP3195569 B2 JP 3195569B2
Authority
JP
Grant status
Grant
Patent type
Prior art keywords
colloidal silica
water
methanol
solvent
le
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22706697A
Other languages
Japanese (ja)
Other versions
JPH1160232A (en )
Inventor
守 磯
Original Assignee
守 磯
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、繭型コロイダルシリカの製造方法に関し、特に、半導体の製造工程で使用されるシリコンウエハ−の最終研磨工程、及び半導体集積回路の製造工程における金属膜の平坦化などの鏡面状に磨き上げるのに好適である研磨剤として有用な繭型コロイダルシリカの製造方法に関する。 BACKGROUND OF THE INVENTION The present invention relates to a method of manufacturing a cocoon-shaped colloidal silica, in particular, silicon wafers used in the semiconductor manufacturing process - the final polishing step, and a flat metal film in the manufacturing process of the semiconductor integrated circuit the method for producing a useful cocoon-shaped colloidal silica as an abrasive which is suitable for bring polished mirror-like, such as reduction.

【0002】 [0002]

【従来の技術】半導体素子の製造には、鏡面状に研磨されたウエハ−が用いられているが、このウエハ−製造の仕上げ工程である最終研磨に使用される研磨材料としては、コロイダルシリカにアンモニア、アルカリ金属等の研磨促進剤と界面活性効果のある湿潤剤を含有する水系組成物が使用されている。 The manufacture of semiconductor devices, wafers that have been polished to a mirror-like - but is used, the wafer - as the polishing material used for the final polishing is a manufacturing finishing process, the colloidal silica ammonia, aqueous composition containing a wetting agent with a polishing accelerator and a surfactant effect, such as an alkali metal is used. コロイダルシリカも主として2種類あり、その一つは水ガラスなどのアルカリ金属ケイ酸塩の水溶液を脱陽イオン処理することにより得られる球形のコロイダルシリカ(またはその会合体)であり、もう一つは、触媒としてアンモニアまたはアンモニアとアンモニウム塩の存在下でアルコキシシランと水をアルコ−ル溶液中で反応させて得る球状または10〜2 Colloidal silica also available mainly by two, one of which is a colloidal silica obtained spherical by decationizing treating an aqueous solution of an alkali metal silicate such as water glass (or the meeting coalescence) and one , an alkoxysilane with water in the presence of ammonia or ammonia and an ammonium salt as catalyst alcohol - spherical or 10-2 obtained by reacting Le solution
00nmの短径と1.4以上の長径/短径比を有する粒子である。 Particles having a minor diameter and 1.4 or more major diameter / minor diameter ratio of nm.

【0003】一般に、研磨面のダメ−ジの少ない研磨には粒子分布が狭い研磨砥粒で、かつ表面が丸い粒子が最も好ましいとされている。 Is the less abrasive the di a narrow abrasive grains particle distribution, and surface and round particles are most preferred - [0003] In general, no good polishing surface. しかし、単一球状のコロイダルシリカは研磨効率が十分でなく実用には向かない。 However, colloidal silica single spherical unsuitable for practical polishing efficiency is not sufficient. 単一球状粒子で研磨効果を上げるには粒径サイズを大きくすることで目的を達成できるが、大粒径による研磨は、 Although the objects can be achieved by increasing the particle size size to increase the polishing effect of a single spherical particle, polishing with large grain size,
研磨面のダメ−ジが多くなるという問題点があった。 Bad of the polishing surface - there is a problem in that di increases. この改善策として、球形粒子を会合させて長径/短径比が大きい粒子を形成させることにより、表面が丸く研磨効率の高い砥粒を得ることができる。 As a remedy, by by associating spherical particles to form larger particles diameter / minor diameter ratio, it is possible to surface to obtain a high abrasive grains having rounded polishing efficiency.

【0004】このような研磨速度を著しく向上せしめる研磨剤及び研磨方法として、特開平7−221059号公報には、7〜1000nmの長径と0.3〜0.8の短径/長径比を有するコロイダルシリカでシリコンウエハ−等を研磨することの優位性と、実施例としてケイ酸ナトリウム水溶液を原料とした製造方法が開示されている。 [0004] As abrasive and a polishing method of improving such a polishing rate markedly, JP-A-7-221059, having a minor axis / major axis ratio of the major axis and 0.3 to 0.8 of 7~1000nm silicon wafers with colloidal silica - the advantage of polishing the like, a manufacturing method of a sodium silicate aqueous solution as a raw material is disclosed as example.

【0005】 [0005]

【発明が解決しようとする課題】しかしながら、この方法で得られたシリカゾルには、ケイ素以外にCa、M However [0007], the silica sol obtained by this method, Ca in addition to silicon, M
g、Baなどのアルカリ土類金属、更に原料ケイ酸ナトリウムに由来するNaが介在し、これらのアルカリ金属やアルカリ土類金属がウエハ研磨時にウエハ表面に不純物として付着し、その結果ウエハ表面が汚染されて半導体特性に悪影響を及ぼしたり、ウエハ表面に酸化膜を形成させたときに酸化膜の電気特性を低下させるという問題点があった。 g, an alkaline earth metal such as Ba, further interposed Na derived from the raw material of sodium silicate, the alkali metal or alkaline earth metal is deposited as an impurity on the wafer surface during wafer polishing, as a result the wafer surface contamination It is or adversely affect the semiconductor characteristics is, the electrical characteristics of the oxide film has a problem of lowering when forming the oxide film on the wafer surface.

【0006】本発明は、このような従来の課題に鑑みてなされたものであり、ケイ素以外の金属を含まないコロイダルシリカを研磨剤として使用して、シリコンウエハの表面に何等ダメ−ジを与えることなく研磨速度を著しく向上せしめるだけでなく、ウエハ表面の電気特性を全く低下させることもないウエハの研磨剤として極めて好適なコロイダルシリカの製造方法を提供することを目的とする。 The present invention, such has been made in consideration of the conventional problems, using a colloidal silica that does not contain metal other than silicon as an abrasive, what such bad on the surface of the silicon wafer - give di it not only allowed to considerably improve the polishing rate without an object to provide a method for producing a highly preferred colloidal silica as a wafer abrasive absolutely not reduced the electrical properties of the wafer surface.

【0007】 [0007]

【課題を解決するための手段】本発明者は、上記の課題を解決すべく鋭意検討の結果、アルコキシシランと水の反応による長径/短径比の大きいコロイダルシリカにより上記の目的が達成できることを見出し、本発明を完成するに至った。 The present inventors SUMMARY OF THE INVENTION As a result of intensive studies to solve the above problems, the larger colloidal silica major axis / minor diameter ratio by reaction of alkoxysilanes with water that the above object can be achieved heading, which resulted in the completion of the present invention.

【0008】請求項1に記載の発明にあっては、ケイ酸メチル、又はケイ酸メチルとメタノ−ルとの混合物を、 [0008] In the invention described in claim 1, methyl silicate, or methyl silicate and methanol - mixtures of Le,
水、メタノ−ル及びアンモニア、又は水、メタノ−ル、 Water, methanol - Le and ammonia, or water, methanol - le,
アンモニア及びアンモニウム塩からなる混合溶媒中に、 In a mixed solvent consisting of ammonia and ammonium salts,
前記溶媒中のアンモニウムイオンの含量が、前記溶媒の全重量に基づいて0.5〜3重量%であって、反応が1 The content of ammonium ions in said solvent, a 0.5 to 3% by weight based on the total weight of the solvent, the reaction is 1
0〜30℃の温度で行われるように、撹拌下に10〜4 As it is done at a temperature of 0 to 30 ° C., 10 to 4 under stirring
0分間で滴下し、ケイ酸メチルと水とを反応させて10 It was added dropwise at 0 minutes, by reacting methyl silicate and water to 10
〜200nmの短径と1.4〜2.2の長径/短径比を有するコロイダルシリカを生成することを特徴とする繭型コロイダルシリカの製造方法である。 A method for producing a cocoon-shaped colloidal silica, characterized in that to produce a colloidal silica having a minor diameter and 1.4 to 2.2 of the length / breadth ratio of to 200 nm. 請求項2に記載の発明にあっては、前記溶媒中の水の量が、ケイ酸メチルの加水分解に必要な理論値の2〜5倍であることを特徴とする請求項1に記載の繭型コロイダルシリカの製造方法とすることができる。 In the invention described in claim 2, the amount of water in said solvent, according to claim 1, characterized in that 2 to 5 times the theoretical value required for hydrolysis of methyl silicate it can be a method for manufacturing a cocoon-shaped colloidal silica. 請求項3に記載の発明にあっては、前記溶媒中のメタノールの量が、ケイ酸メチルに混合したメタノ−ルと合わせてケイ酸メチルの重量の5 In the invention described in claim 3, the amount of methanol in said solvent, methanol was mixed to the methyl silicate - weight of methyl silicate together with le 5
倍以上であることを特徴とする請求項1又は2に記載の繭型コロイダルシリカの製造方法とすることができる。 It can be a method for manufacturing a cocoon-shaped colloidal silica according to claim 1 or 2, characterized in that at more than double.

【0009】 [0009]

【発明の実施の形態】アルコキシシランと水の反応によるコロイダルシリカの製造工程に関しては、C. For the preparation process of the embodiment of the invention alkoxysilane and colloidal silica by the reaction of water, C. J. J. B
rinker & G. rinker & G. W. W. Scherer, Sol Scherer, Sol
−GelScience(Academic pres -GelScience (Academic pres
s Inc. s Inc. ,1990)のCHAPTER 3などには、アルコキシシランが加水分解してケイ酸が生成し、 And the CHAPTER 3 1990), silicic acid generated alkoxysilane is hydrolyzed,
それが縮合してシリカが生成することが記載されている。 It has been described that the condensation silica is produced. これに拠れば、アルコ−ル溶媒、アンモニアの存在下でアルコキシシランと水を反応させるとゲル化する前に球状の粒子をコロイドとして得ることが出来る。 According to this, alcohol - Le solvent, reacting the alkoxysilane with water in the presence of ammonia spherical particles prior to gelation can be obtained. However as a colloid.

【0010】本発明者は、上記文献に記載の技術に基づいて、アルコキシシランと水の反応による長径/短径比が大きいコロイダルシリカを製造する方法について種々実験を行ない、下記の事実を実験結果として知見、確認した。 [0010] The present inventors, based on the technique described in the literature, performs various experimental method for producing a long diameter / short diameter ratio larger colloidal silica by the reaction of alkoxysilane and water, experimental results the following facts as knowledge, it was confirmed.

【0011】アルコキシシランと水の反応で、ケイ酸に加水分解する反応工程を経て、粒径が10〜200nm [0011] In the reaction of alkoxysilane and water, through the hydrolyzing reaction step silicic acid, particle size 10~200nm
近辺の球状コロイダルシリカを製造する工程で、球状の一次粒子2〜4個を局部的に結合させ、二次粒子を形成させることにより、長径/短径比を大きくすることができる。 In the process of manufacturing the spherical colloidal silica near, 2-4 primary particles of spherical locally coupled to, by forming a secondary particle, it is possible to increase the length / breadth ratio. 5個以上の結合では本発明の目標である長径/短径比が1.4を超えるような粒子は得られ難い。 The 5 or more binding length / breadth ratio hardly obtain particles exceeding 1.4 which is a target of the present invention. また、 Also,
2〜4個の限られた数の一次粒子を選択的に結合させるには多量の溶媒中で低温反応させることが、有効であることを実験で確かめた。 The selectively coupling the 2-4 limited number of primary particles be low temperature reaction with a large amount of solvent, it was confirmed by experiment that it is effective.

【0012】ケイ酸には、正ケイ酸(SiO 2 −2H 2 [0012] The silicic acid, ortho-silicate (SiO 2 -2H 2
O)とメタケイ酸(SiO 2 −H 2 O)があるが、メタケイ酸メチルはあまり実存しない。 O) and there is a metasilicate (SiO 2 -H 2 O) to methyl metasilicate not very existence. そこで、本発明は、 Accordingly, the present invention is,
実施例で示す通り原料アルコキシシランのうち、通常シリカを工業的に製造するに最も対コスト効果の高い正ケイ酸メチルを用い、溶媒として多量のメタノ−ルを使用し、比較的低温でケイ酸への加水分解を経て、その縮合によりコロイダルシリカが生成される工程において、水と正ケイ酸メチルの反応操作を最適化した。 Of as raw material alkoxysilane shown in the Examples, typically silica with most pairs cost-effective orthosilicate methyl industrial production and large amounts as a solvent methanol - using Le, at relatively low temperatures silicate via hydrolysis to, in the step of the colloidal silica is produced by the condensation, to optimize the reaction process water and orthosilicate methyl. その結果、 as a result,
特許請求の範囲に記述した条件で所望の長径/短径比のコロイダルシリカを得た。 To give the desired length / breadth ratio of colloidal silica under the conditions described in the appended claims.

【0013】粒子サイズが均一で長径/短径比が1.4 [0013] The particle size is uniform length / breadth ratio of 1.4
より大きい粒子を生成させることは、換言すると粒子分布の狭い一次粒子を如何に選択的に2ないし3個を粒子結合させることに他ならない。 Thereby generating larger particles is nothing but three 2 to how selective the narrow particle distribution primary particles be particles bound in other words. できれば大部分の粒子結合が2個に限定したものが望ましい。 Which most particles bond if is limited to two is desirable. 実験の結果、原料のケイ酸メチルの滴下時間の最適化が最も重要であることを確認した。 Experimental results show that optimization of the dropping time of the raw material of methyl silicate is the most important.

【0014】例えば後述する実施例1、実施例2と実施例3では、目的とする長径/短径比が1.4より大きい粒子を生成させることができるが、比較例1に示すように、実施例1と同じ条件ながら滴下時間を6分まで短くすると一次粒子径はさほど変化ないが、相互の粒子の結合が促進され、長径/短径比は小さくなり、ほとんど長径/短径比が1に近い、いわゆる球状会合体が生成する。 [0014] Example 1 described below, for example, in Example 2 and Example 3, but the major diameter / minor diameter ratio of interest can be generated 1.4 larger particles, as shown in Comparative Example 1, Although much no change had a primary particle size of shorter dropping time up to 6 minutes while the same conditions as in example 1, is promoted binding of mutual particles, long diameter / short diameter ratio becomes small, almost long diameter / short diameter ratio 1 close to, the so-called spherical aggregates are produced. これを透過型電子顕微鏡で観察すると少なくとも1 This is observed by a transmission electron microscope when at least 1
0個以上のかなり多数の一次粒子が結合して二次粒子を形成していることが判った。 Zero or more any number of primary particles was found that to form secondary particles bonded.

【0015】また、比較例2に示すように、実施例1と同じ条件ながら滴下時間を48分まで長くすると、一次粒子はそのまま安定で粒子相互間の結合は稀であることを粒子径分析と透過型電子顕微鏡の観察で確かめた。 Further, as shown in Comparative Example 2, increasing to 48 minutes the dropping time while the same conditions as in Example 1, primary particles and particle size analysis that the binding between it stable particles mutually rare It was confirmed by transmission electron microscope observation.

【0016】シリコンウェハ−または半導体素子の金属膜などの研磨では、研磨速度、研磨面の傷の有無とヘイズの善悪などの研磨特性があり、一般に粒子が大きいものは研磨速度が上がる反面傷とヘイズ特性が悪化し、粒子の小さいものはその逆の特性を示す。 [0016] Silicon wafers - or polishing of a metal film of the semiconductor device, the polishing rate, has abrasive properties such as good and bad of the presence and haze scratches the polished surface, typically those particles is large and although wounds polishing rate increases haze characteristics are deteriorated, having a small particles exhibit opposite characteristics thereof. コロイダルシリカの場合では、シリコンウェハ−の最終研磨では10〜 In the case of colloidal silica, silicon wafers - 10 in the final polishing of the
60nmの短径の粒子が、また半導体素子の平坦化目的の研磨では20〜200nmの短径粒子が使用されている。 Minor axis of the particle of 60nm is also in the polishing planarization purposes of semiconductor elements being used is a short-sized particles of 20 to 200 nm.

【0017】上記 C. [0017] The C. J. J. Brinker等の著書が示す如く、正ケイ酸メチルの加水分解後のアンモニアを使用した粒子成長段階では、pHとアンモニウム塩の有無が単独粒子成長と粒子の結合を支配する。 As indicated book like Brinker, the particle growth step using ammonia after hydrolysis of orthosilicate methyl, whether pH and ammonium salts dominates the binding of a single particle growth and particle. これらの濃度は目的とする粒子径により選定される。 These concentrations are chosen by the particle size of interest. 実施例2はより大きい一次粒子を持つ、砥粒を製造する際の製造法であり、ここでも原料の滴下時間が粒子の会合度合を制御する重要な因子となることを実験により確かめた。 Example 2 has a larger primary particles, a process in the production of abrasive grain, dropping time of the raw material was confirmed by experiments that an important factor in controlling the associated degree of particle again.

【0018】粒径測定には、透過型電子顕微鏡にて観察する方法が一般的である。 [0018] The particle size measurement method of observing with a transmission electron microscope is generally used. また、長径だけの測定ならば、光子相関法の原理を応用した微粒子測定器の測定値を代用することもある。 Further, if the long diameter by the measurement, sometimes substituting measurements of particle measurement instrument based on the principle of photon correlation spectroscopy. また、凝集粒子の一次粒子を測定するには、反応生成物を水系コロイダルシリカ溶液にして乾燥し、BET比表面積を測定し、粒子を球状と仮定して求めた粒径を近似値とすることも可能であるが、 Further, in measuring the primary particles of agglomerated particles, to the reaction product was dried in an aqueous colloidal silica solution, a BET specific surface area is measured, an approximate value of particle size was determined by assuming the particles spherical but it is also possible,
両者とも透過型電子顕微鏡で求めた値とはかなりの誤差があるので、単なる目安としかならない。 Since the value obtained by transmission electron microscopy both there is a significant error, not only a mere guideline.

【0019】 [0019]

【実施例】以下、本発明を実施例により具体的に説明するが、本発明はこの実施例により何等限定されるものでない。 EXAMPLES The following is a description of the present invention embodiment, the present invention is not limited any way by the embodiments. [実施例1]3容量の正ケイ酸メチルと1容量のメタノ−ルを混合し、原料溶液を調製した。 Example 1 3 capacity orthosilicate methyl and one volume of methanol - were mixed le was prepared a raw material solution. 反応槽に予めメタノ−ル、水、アンモニアを混合した反応溶媒を仕込んだ。 Pre methanol to the reaction vessel - charged le, water, the reaction solvent obtained by mixing ammonia. 反応溶媒中の水の濃度は15重量%、アンモニアは約1重量%であった。 The concentration of water in the reaction solvent is 15 wt%, ammonia was about 1% by weight. 反応溶媒の温度が20℃に保持できるように冷却しながら、反応溶媒9容量当たり、1容量の原料溶液を25分間、均等速度で反応槽に滴下した。 While the temperature of the reaction solvent was cooled to be held in 20 ° C., per reaction solvent 9 volume, the raw material solution of 1 volume for 25 minutes, was added dropwise to the reaction vessel at a uniform rate. この反応生成液中には、短径が約45nm、長径が約70nmのコロイダルシリカが生成された。 This reaction product liquid, a short diameter of about 45 nm, the colloidal silica diameter of approximately 70nm were produced.

【0020】[実施例2]3容量の正ケイ酸メチルと1 [0020] [Example 2] orthosilicate methyl 3 volumes and 1
容量のメタノ−ルを混合し、原料溶液を調製した。 Methanol capacity - mixing le was prepared a raw material solution. 反応槽に予めメタノ−ル、水、アンモニア、炭酸アンモニウムを混合した反応溶媒を仕込んだ。 Pre methanol to the reaction vessel - charged le, water, ammonia, and the reaction solvent obtained by mixing ammonium carbonate. 反応溶媒中の水の濃度は10重量%、アンモニアは1.6重量%、炭酸アンモニウムは0.04重量%であった。 The concentration of water in the reaction solvent is 10 wt%, ammonia 1.6% by weight, ammonium carbonate was 0.04 wt%. 反応溶媒を攪拌し、反応溶媒の温度が20℃に保持できるように冷却しながら、反応溶媒9容量当り、1容量の原料溶液を18 The reaction solvent was stirred, while the temperature of the reaction solvent was cooled to be held in 20 ° C., the reaction solvent 9 volume per one volume of stock solution of 18
分間、均等速度で反応槽に滴下した。 Minutes, was added dropwise to the reaction vessel at a uniform rate. この反応生成液中には、短径が120nm、長径が200〜250nmのコロイダルシリカが生成された。 This reaction product liquid, minor diameter 120 nm, major axis colloidal silica 200~250nm was generated.

【0021】[比較例1]3容量の正ケイ酸メチルと1 [0021] [Comparative Example 1] orthosilicate methyl 3 volumes and 1
容量のメタノ−ルを混合し、原料溶液を調製した。 Methanol capacity - mixing le was prepared a raw material solution. 反応槽に予めメタノ−ル、水、アンモニアを混合した反応溶液を仕込んだ。 Pre methanol to the reaction vessel - charged le, water, the reaction solution obtained by mixing ammonia. 反応溶液中の水の濃度は15重量%、アンモニアは約1重量%であった。 The concentration of water in the reaction solution is 15 wt%, ammonia was about 1% by weight. 反応溶媒を攪拌し、反応溶媒の温度が20℃に保持できるように冷却しながら、反応溶媒9容量当り、1容量の原料溶液を6分間、 The reaction solvent was stirred, while the temperature of the reaction solvent was cooled to be held in 20 ° C., the reaction solvent 9 volume per one volume of stock solution for 6 minutes,
均等速度で反応槽に滴下した。 It was added dropwise to the reaction vessel at a uniform rate. この反応生成液中には、 This reaction product solution,
一次粒子は約45nmであったが、粒子相互の結合が促進され短径も長径も約170nmのいわゆる球状会合体のコロイダルシリカが生成された。 Primary particles but which was about 45 nm, so-called spherical aggregates of colloidal silica of approximately even longer diameter also minor promotes binding of the particles one another 170nm was generated.

【0022】[実施例3]3容量の正ケイ酸メチルと1 [0022] [Example 3] orthosilicate methyl 3 volumes and 1
容量のメタノ−ルを混合し、原料溶液を調製した。 Methanol capacity - mixing le was prepared a raw material solution. 反応槽に予めメタノ−ル、水、アンモニアを混合した反応溶媒を仕込んだ反応溶媒中の水の濃度は15重量%、アンモニアは約1重量%であった。 Pre methanol to the reaction vessel - le, water, the concentration of water in the reaction solvent were charged and the reaction solvent obtained by mixing ammonia 15 wt%, ammonia was about 1% by weight. 反応溶媒の温度が20℃ The temperature of the reaction solvent is 20 ° C.
に保持できるように冷却しながら、反応溶媒9容量当り、1容量の原料溶液を15分間、均等速度で反応槽に滴下した。 While cooling can be held in the reaction solvent 9 volume per one volume of stock solution for 15 minutes, it was added dropwise to the reaction vessel at a uniform rate. この反応生成液中には、一次粒子が約45n This reaction product solution, the primary particles of about 45n
mで二次粒子が約90nmのコロイダルシリカが生成された。 Secondary particles of colloidal silica of approximately 90nm were produced by m. 透過型電子顕微鏡では、二次粒子は主として5から7個の一次粒子の凝集体として観察できた。 The transmission electron microscope, could be observed as aggregates of secondary particles mainly from 5 seven primary particles. このような2個以上の一次粒子の多数の凝集体の長径/短径比の正確な測定は光子相関法に基づく微粒子測定器によらないと困難であるが、透過型電子顕微鏡で求めた値とはかなりの誤差が生じることは前述した通りである。 Although an accurate measurement of the long diameter / short diameter ratio of a number of aggregates of such two or more primary particles is difficult if not dependent on particle measuring apparatus based on photon correlation method, the value obtained by transmission electron microscopy that a significant error occurs and is as described above. 止むを得ず透過型電子顕微鏡で目測した限りは、一次粒子が2 As far as the visual measurement with a transmission electron microscope is unavoidable, primary particles 2
個結合した繭型粒子が更に凝集した凝集体らしき様相を呈し、長径/短径比も辛うじて1.4程度あることが観測された。 Exhibited pieces bound aggregates Rashiki aspects of cocoon-shaped particles are further agglomerated, length / breadth ratio was also barely observed that there degree 1.4. このように、原料と溶媒の混合時間が10〜 Thus, 10 to the mixing time of the raw materials and solvent
40分間内であっても、比較的短かい下限に近いような場合には、アンモニウムイオンの含量を高めるとか、一次粒子相互の結合を遅くするように反応温度を低めに設定するなど、それなりの工夫を要することが推測される。 Even within 40 minutes, if such relatively close to the short lower limit, Toka increase the content of ammonium ions, such as setting a low reaction temperature so as to slow down the binding of the primary particles one another, moderate it is estimated that requires ingenuity.

【0023】[比較例2]3容量の正ケイ酸メチルと1 [0023] [Comparative Example 2] orthosilicate methyl 3 volumes and 1
容量のメタノ−ルを混合し、原料溶液を調製した。 Methanol capacity - mixing le was prepared a raw material solution. 反応槽に予めメタノ−ル、水、アンモニアを混合した反応溶媒を仕込んだ。 Pre methanol to the reaction vessel - charged le, water, the reaction solvent obtained by mixing ammonia. 反応溶媒中の水の濃度は15重量%、アンモニアは約1重量%であった。 The concentration of water in the reaction solvent is 15 wt%, ammonia was about 1% by weight. 反応溶媒を攪拌し、反応溶媒の温度が20℃に保持できるように冷却しながら、反応溶媒9容量当り、1容量の原料溶液を48分間、均等速度で反応槽に滴下した。 The reaction solvent was stirred, while the temperature of the reaction solvent was cooled to be held in 20 ° C., the reaction solvent 9 volume per one volume of stock solution to 48 minutes, was added dropwise to the reaction vessel at a uniform rate. この反応生成液中には、粒径が約65nmの主として単独球コロイダルシリカが生成された。 This reaction product solution, the particle size is mainly singly sphere colloidal silica of approximately 65nm were produced.

【0024】 [0024]

【発明の効果】以上詳細に説明した通り、本発明の繭型コロイダルシリカの製造方法によれば、ケイ酸メチルと水との反応時間を規制することにより、短径が10〜2 As described [Effect Invention above in detail, according to the manufacturing method of the cocoon-shaped colloidal silica of the present invention, by regulating the reaction time of methyl silicate, water, minor axis 10 to 2
00nmで長径/短径比が1.4〜2.2の繭型コロイダルシリカを得ることができる。 Major axis / minor diameter ratio can be obtained cocoon-shaped colloidal silica 1.4 to 2.2 in nm. このようなコロイダルシリカは、研磨速度が著しく向上し、かつウエハ表面を汚染する心配がなく、研磨ダメージの少ない、シリコンウエハなどの研磨砥粒として他に類を見ない高性能を発揮することができる。 Such colloidal silica, a polishing rate is remarkably improved, and there is no fear of contaminating the wafer surface with less grinding damage, to exert unparalleled performance as abrasive grains, such as a silicon wafer it can.

Claims (3)

    (57)【特許請求の範囲】 (57) [the claims]
  1. 【請求項1】 ケイ酸メチル、又はケイ酸メチルとメタノ−ルとの混合物を、水、メタノ−ル及びアンモニア、 1. A methyl silicate or methyl silicate and methanol - mixtures of Le, water, methanol - Le and ammonia,
    又は水、メタノ−ル、アンモニア及びアンモニウム塩からなる混合溶媒中に、前記溶媒中のアンモニウムイオンの含量が、前記溶媒の全重量に基づいて0.5〜3重量%であって、反応が10〜30℃の温度で行われるように、撹拌下に10〜40分間で滴下し、ケイ酸メチルと水とを反応させて10〜200nmの短径と1.4〜 Or water, methanol - le, in a mixed solvent consisting of ammonia and ammonium salts, the content of ammonium ions in said solvent, a 0.5 to 3% by weight based on the total weight of the solvent, the reaction is 10 as is done at a temperature of to 30 ° C., was added dropwise at 10 to 40 minutes under stirring, by reacting methyl silicate and water and minor axis of the 10 to 200 nm 1.4 to
    2.2の長径/短径比を有するコロイダルシリカを生成することを特徴とする繭型コロイダルシリカの製造方法。 Method for producing a cocoon-shaped colloidal silica, characterized in that to produce a colloidal silica having a 2.2 length / breadth ratio.
  2. 【請求項2】 前記溶媒中の水の量が、ケイ酸メチルの加水分解に必要な理論値の2〜5倍であることを特徴とする請求項1に記載の繭型コロイダルシリカの製造方法。 The amount of wherein water in the solvent method of producing a cocoon-shaped colloidal silica according to claim 1, characterized in that 2 to 5 times the theoretical value required for hydrolysis of methyl silicate .
  3. 【請求項3】 前記溶媒中のメタノールの量が、ケイ酸メチルに混合したメタノ−ルと合わせてケイ酸メチルの重量の5倍以上であることを特徴とする請求項1又は2 The amount of methanol wherein the solvent is methanol and mixed methyl silicate - le and together, characterized in that at least 5 times the weight of methyl silicate claim 1 or 2
    に記載の繭型コロイダルシリカの製造方法。 Method for producing a cocoon-shaped colloidal silica as described in.
JP22706697A 1997-08-11 1997-08-11 Method for producing a cocoon-shaped colloidal silica Expired - Fee Related JP3195569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22706697A JP3195569B2 (en) 1997-08-11 1997-08-11 Method for producing a cocoon-shaped colloidal silica

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22706697A JP3195569B2 (en) 1997-08-11 1997-08-11 Method for producing a cocoon-shaped colloidal silica

Publications (2)

Publication Number Publication Date
JPH1160232A true JPH1160232A (en) 1999-03-02
JP3195569B2 true JP3195569B2 (en) 2001-08-06

Family

ID=16855007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22706697A Expired - Fee Related JP3195569B2 (en) 1997-08-11 1997-08-11 Method for producing a cocoon-shaped colloidal silica

Country Status (1)

Country Link
JP (1) JP3195569B2 (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3563017B2 (en) * 2000-07-19 2004-09-08 ロデール・ニッタ株式会社 Preparation and polishing method of polishing composition, the polishing composition
JP2003100672A (en) * 2001-09-21 2003-04-04 Rodel Nitta Co Abrasive slurry
WO2004074180A1 (en) * 2003-02-18 2004-09-02 Tytemn Corporation Alkali-resistant cocoon-shaped colloidal silica particle and process for producing the same
JP4615193B2 (en) * 2003-03-19 2011-01-19 ニッタ・ハース株式会社 Metal-film-polishing slurry
JP4755805B2 (en) * 2003-04-04 2011-08-24 ニッタ・ハース株式会社 Polishing slurry
JP4566645B2 (en) * 2003-07-25 2010-10-20 扶桑化学工業株式会社 Silica sol and a method of manufacturing the same
JP4955253B2 (en) * 2005-06-02 2012-06-20 日本化学工業株式会社 Device wafer edge polishing polishing composition, a method of manufacturing the same, and polishing method
JP2007103463A (en) 2005-09-30 2007-04-19 Sumitomo Electric Ind Ltd POLISHING SLURRY, SURFACE TREATMENT METHOD OF GaxIn1-xAsyP1-y CRYSTAL, AND GaxIn1-xAsyP1-y CRYSTAL SUBSTRATE
JP2007194593A (en) * 2005-12-20 2007-08-02 Fujifilm Corp Polishing liquid for metal and polishing method using the same
US9550683B2 (en) 2007-03-27 2017-01-24 Fuso Chemical Co., Ltd. Colloidal silica, and method for production thereof
JP5275595B2 (en) * 2007-08-29 2013-08-28 日本化学工業株式会社 Semiconductor wafer polishing composition and polishing method
WO2010035613A1 (en) 2008-09-26 2010-04-01 扶桑化学工業株式会社 Colloidal silica containing silica secondary particles having bent structure and/or branched structure, and method for producing same
JP2010182811A (en) * 2009-02-04 2010-08-19 Nippon Chem Ind Co Ltd Semiconductor wafer polishing composition and method of manufacturing the same
JP2011171689A (en) 2009-07-07 2011-09-01 Kao Corp Polishing liquid composition for silicon wafer
JP5495880B2 (en) * 2010-03-25 2014-05-21 扶桑化学工業株式会社 Secondary particle size adjustment method of the colloidal silica
JP5477192B2 (en) 2010-06-23 2014-04-23 富士ゼロックス株式会社 Method for producing silica particles
JP5477193B2 (en) 2010-06-24 2014-04-23 富士ゼロックス株式会社 Silica particles and manufacturing method thereof
JP5488255B2 (en) 2010-06-25 2014-05-14 富士ゼロックス株式会社 Silica particles and manufacturing method thereof
JP5564461B2 (en) 2010-10-12 2014-07-30 株式会社フジミインコーポレーテッド Polishing composition
JP5724401B2 (en) 2011-01-19 2015-05-27 富士ゼロックス株式会社 Resin particles and manufacturing method thereof
JP5741005B2 (en) 2011-01-20 2015-07-01 富士ゼロックス株式会社 Resin particles and manufacturing method thereof
JP5712824B2 (en) 2011-07-06 2015-05-07 富士ゼロックス株式会社 Silica particles and manufacturing method thereof
JP5831378B2 (en) 2011-12-01 2015-12-09 富士ゼロックス株式会社 Silica composite particles and manufacturing method thereof
JP6122783B2 (en) * 2012-02-17 2017-04-26 株式会社フジミインコーポレーテッド Method for producing a polishing composition and the semiconductor substrate
JP5822356B2 (en) 2012-04-17 2015-11-24 花王株式会社 The polishing composition for silicon wafers
JP5915555B2 (en) 2013-01-28 2016-05-11 富士ゼロックス株式会社 Silica composite particles and manufacturing method thereof
JP5893706B2 (en) 2013-10-25 2016-03-23 花王株式会社 The polishing composition for silicon wafers
JP2015184569A (en) * 2014-03-25 2015-10-22 富士ゼロックス株式会社 Indeterminate form inorganic particle, toner for electrostatic charge image development, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method
JP2018118901A (en) * 2017-01-20 2018-08-02 日揮触媒化成株式会社 Silica particle dispersion and production method of the same

Also Published As

Publication number Publication date Type
JPH1160232A (en) 1999-03-02 application

Similar Documents

Publication Publication Date Title
US5382272A (en) Activated polishing compositions
US6291535B1 (en) Silica-magnesium fluoride hydrate composite sols and process for their preparation
US6656241B1 (en) Silica-based slurry
US6340374B1 (en) Polishing slurry and polishing method
US2744001A (en) Polishing material and method of making same
US20080086951A1 (en) Spinous silica-based sol and method of producing the same
JP2006249129A (en) Method for producing polishing agent and polishing agent
JPH07221059A (en) Method for polishing semiconductor wafer
US6743267B2 (en) Gel-free colloidal abrasive polishing compositions and associated methods
US20120077419A1 (en) Raspberry-type metal oxide nanostructures coated with ceo2 nanoparticles for chemical mechanical planarization (cmp)
JPH07118008A (en) Production of slender silica sol
US4606847A (en) Process for the preparation of a dispersable product containing a cerium compound in association with a selected metal
JPH10106994A (en) Cerium oxide abrasive agent and polishing method of substrate
US2588853A (en) Method of producing silica powder
US20110209413A1 (en) Non-Spherical Silica Sol, Process for Producing the Same, and Composition for Polishing
WO2007018069A1 (en) Deformed silica sol and process for producing the same
US20070034116A1 (en) Silica sols with controlled minimum particle size and preparation thereof
JPH0881218A (en) Production of crystalline ceric oxide
WO2004074180A1 (en) Alkali-resistant cocoon-shaped colloidal silica particle and process for producing the same
JP2001150334A (en) Semiconductor wafer polishing method and abrasive
JP2001011433A (en) Composition for abrasion
CN101338082A (en) Modified silicon dioxide sol, preparation method and application thereof
JP2007153732A (en) Method for producing neutral colloidal silica
JPH10154673A (en) Cerium oxide abrasive material and substrate polishing method
JPH09142827A (en) Silica dispersion and its production

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090601

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090601

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140601

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees