JP3195569B2 - Method for producing cocoon-shaped colloidal silica - Google Patents

Method for producing cocoon-shaped colloidal silica

Info

Publication number
JP3195569B2
JP3195569B2 JP22706697A JP22706697A JP3195569B2 JP 3195569 B2 JP3195569 B2 JP 3195569B2 JP 22706697 A JP22706697 A JP 22706697A JP 22706697 A JP22706697 A JP 22706697A JP 3195569 B2 JP3195569 B2 JP 3195569B2
Authority
JP
Japan
Prior art keywords
colloidal silica
solvent
water
methanol
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22706697A
Other languages
Japanese (ja)
Other versions
JPH1160232A (en
Inventor
守 磯
Original Assignee
守 磯
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 守 磯 filed Critical 守 磯
Priority to JP22706697A priority Critical patent/JP3195569B2/en
Publication of JPH1160232A publication Critical patent/JPH1160232A/en
Application granted granted Critical
Publication of JP3195569B2 publication Critical patent/JP3195569B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Silicon Compounds (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、繭型コロイダルシ
リカの製造方法に関し、特に、半導体の製造工程で使用
されるシリコンウエハ−の最終研磨工程、及び半導体集
積回路の製造工程における金属膜の平坦化などの鏡面状
に磨き上げるのに好適である研磨剤として有用な繭型コ
ロイダルシリカの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing cocoon-shaped colloidal silica, and more particularly to a final polishing step for a silicon wafer used in a semiconductor production step and a flattening of a metal film in a semiconductor integrated circuit production step. The present invention relates to a method for producing cocoon-shaped colloidal silica, which is useful as an abrasive suitable for polishing to a mirror surface such as surface treatment.

【0002】[0002]

【従来の技術】半導体素子の製造には、鏡面状に研磨さ
れたウエハ−が用いられているが、このウエハ−製造の
仕上げ工程である最終研磨に使用される研磨材料として
は、コロイダルシリカにアンモニア、アルカリ金属等の
研磨促進剤と界面活性効果のある湿潤剤を含有する水系
組成物が使用されている。コロイダルシリカも主として
2種類あり、その一つは水ガラスなどのアルカリ金属ケ
イ酸塩の水溶液を脱陽イオン処理することにより得られ
る球形のコロイダルシリカ(またはその会合体)であ
り、もう一つは、触媒としてアンモニアまたはアンモニ
アとアンモニウム塩の存在下でアルコキシシランと水を
アルコ−ル溶液中で反応させて得る球状または10〜2
00nmの短径と1.4以上の長径/短径比を有する粒
子である。
2. Description of the Related Art Mirror-polished wafers are used in the manufacture of semiconductor devices. Colloidal silica is used as a polishing material for the final polishing, which is a finishing step of the wafer manufacture. An aqueous composition containing a polishing accelerator such as ammonia or an alkali metal and a wetting agent having a surfactant effect has been used. There are also mainly two types of colloidal silica, one of which is a spherical colloidal silica (or an aggregate thereof) obtained by subjecting an aqueous solution of an alkali metal silicate such as water glass to decation treatment, and the other is a colloidal silica. A spherical or 10 to 2 sphere obtained by reacting an alkoxysilane and water in an alcohol solution in the presence of ammonia or ammonia and an ammonium salt as a catalyst.
The particles have a minor axis of 00 nm and a major axis / minor axis ratio of 1.4 or more.

【0003】一般に、研磨面のダメ−ジの少ない研磨に
は粒子分布が狭い研磨砥粒で、かつ表面が丸い粒子が最
も好ましいとされている。しかし、単一球状のコロイダ
ルシリカは研磨効率が十分でなく実用には向かない。単
一球状粒子で研磨効果を上げるには粒径サイズを大きく
することで目的を達成できるが、大粒径による研磨は、
研磨面のダメ−ジが多くなるという問題点があった。こ
の改善策として、球形粒子を会合させて長径/短径比が
大きい粒子を形成させることにより、表面が丸く研磨効
率の高い砥粒を得ることができる。
In general, it is considered that, for polishing with little damage to the polished surface, particles having a narrow particle distribution and abrasive grains having a round surface are most preferable. However, the single spherical colloidal silica has insufficient polishing efficiency and is not suitable for practical use. In order to increase the polishing effect with a single spherical particle, the purpose can be achieved by increasing the particle size, but polishing with a large particle size is
There is a problem that damage to the polished surface increases. As a remedy, by associating spherical particles to form particles having a large ratio of major axis / minor axis, it is possible to obtain abrasive grains having a round surface and high polishing efficiency.

【0004】このような研磨速度を著しく向上せしめる
研磨剤及び研磨方法として、特開平7−221059号
公報には、7〜1000nmの長径と0.3〜0.8の
短径/長径比を有するコロイダルシリカでシリコンウエ
ハ−等を研磨することの優位性と、実施例としてケイ酸
ナトリウム水溶液を原料とした製造方法が開示されてい
る。
Japanese Patent Application Laid-Open No. 7-221059 discloses a polishing agent and a polishing method for remarkably improving the polishing rate, which have a major axis of 7 to 1000 nm and a minor axis / major axis ratio of 0.3 to 0.8. The advantages of polishing a silicon wafer or the like with colloidal silica and a production method using an aqueous solution of sodium silicate as a raw material are disclosed as examples.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、この方
法で得られたシリカゾルには、ケイ素以外にCa、M
g、Baなどのアルカリ土類金属、更に原料ケイ酸ナト
リウムに由来するNaが介在し、これらのアルカリ金属
やアルカリ土類金属がウエハ研磨時にウエハ表面に不純
物として付着し、その結果ウエハ表面が汚染されて半導
体特性に悪影響を及ぼしたり、ウエハ表面に酸化膜を形
成させたときに酸化膜の電気特性を低下させるという問
題点があった。
However, the silica sol obtained by this method contains Ca, M in addition to silicon.
g, Ba and other alkaline earth metals, and Na from the raw material sodium silicate intervene, and these alkali metals and alkaline earth metals adhere to the wafer surface as impurities during wafer polishing, resulting in contamination of the wafer surface. As a result, the semiconductor characteristics are adversely affected, and when an oxide film is formed on the wafer surface, the electrical characteristics of the oxide film are deteriorated.

【0006】本発明は、このような従来の課題に鑑みて
なされたものであり、ケイ素以外の金属を含まないコロ
イダルシリカを研磨剤として使用して、シリコンウエハ
の表面に何等ダメ−ジを与えることなく研磨速度を著し
く向上せしめるだけでなく、ウエハ表面の電気特性を全
く低下させることもないウエハの研磨剤として極めて好
適なコロイダルシリカの製造方法を提供することを目的
とする。
The present invention has been made in view of such a conventional problem, and uses a colloidal silica containing no metal other than silicon as an abrasive to give any damage to the surface of a silicon wafer. It is an object of the present invention to provide a method for producing colloidal silica which is extremely suitable as a polishing agent for a wafer without significantly increasing the polishing rate without deteriorating the electrical characteristics of the wafer surface at all.

【0007】[0007]

【課題を解決するための手段】本発明者は、上記の課題
を解決すべく鋭意検討の結果、アルコキシシランと水の
反応による長径/短径比の大きいコロイダルシリカによ
り上記の目的が達成できることを見出し、本発明を完成
するに至った。
Means for Solving the Problems The present inventors have made intensive studies to solve the above-mentioned problems, and as a result, have found that colloidal silica having a large ratio of major axis / minor axis by the reaction of alkoxysilane and water can achieve the above object. As a result, the present invention has been completed.

【0008】請求項1に記載の発明にあっては、ケイ酸
メチル、又はケイ酸メチルとメタノ−ルとの混合物を、
水、メタノ−ル及びアンモニア、又は水、メタノ−ル、
アンモニア及びアンモニウム塩からなる混合溶媒中に、
前記溶媒中のアンモニウムイオンの含量が、前記溶媒の
全重量に基づいて0.5〜3重量%であって、反応が1
0〜30℃の温度で行われるように、撹拌下に10〜4
0分間で滴下し、ケイ酸メチルと水とを反応させて10
〜200nmの短径と1.4〜2.2の長径/短径比を
有するコロイダルシリカを生成することを特徴とする繭
型コロイダルシリカの製造方法である。請求項2に記載
の発明にあっては、前記溶媒中の水の量が、ケイ酸メチ
ルの加水分解に必要な理論値の2〜5倍であることを特
徴とする請求項1に記載の繭型コロイダルシリカの製造
方法とすることができる。請求項3に記載の発明にあっ
ては、前記溶媒中のメタノールの量が、ケイ酸メチルに
混合したメタノ−ルと合わせてケイ酸メチルの重量の5
倍以上であることを特徴とする請求項1又は2に記載の
繭型コロイダルシリカの製造方法とすることができる。
According to the first aspect of the present invention, methyl silicate or a mixture of methyl silicate and methanol is used.
Water, methanol and ammonia, or water, methanol,
In a mixed solvent consisting of ammonia and ammonium salt,
When the content of ammonium ion in the solvent is 0.5 to 3% by weight based on the total weight of the solvent,
With stirring, 10 to 4 to be carried out at a temperature of 0 to 30 ° C.
The solution was added dropwise in 0 minutes, and the methyl silicate and water were allowed to react with each other.
A method for producing cocoon-shaped colloidal silica, which comprises producing colloidal silica having a minor axis of about 200 nm and a major axis / minor axis ratio of 1.4 to 2.2. In the invention according to claim 2, the amount of water in the solvent is 2 to 5 times the theoretical value required for hydrolysis of methyl silicate. A method for producing cocoon-shaped colloidal silica can be provided. According to the third aspect of the present invention, the amount of methanol in the solvent is 5% by weight of methyl silicate together with methanol mixed with methyl silicate.
The method for producing cocoon-shaped colloidal silica according to claim 1 or 2, wherein the ratio is at least twice.

【0009】[0009]

【発明の実施の形態】アルコキシシランと水の反応によ
るコロイダルシリカの製造工程に関しては、C.J.B
rinker & G.W.Scherer, Sol
−GelScience(Academic pres
s Inc.,1990)のCHAPTER 3などに
は、アルコキシシランが加水分解してケイ酸が生成し、
それが縮合してシリカが生成することが記載されてい
る。これに拠れば、アルコ−ル溶媒、アンモニアの存在
下でアルコキシシランと水を反応させるとゲル化する前
に球状の粒子をコロイドとして得ることが出来る。
BEST MODE FOR CARRYING OUT THE INVENTION A process for producing colloidal silica by reacting an alkoxysilane with water is described in C.I. J. B
linker & G. W. Scherer, Sol
-GelScience (Academic pres
s Inc. , 1990) CHAPTER 3 and the like, alkoxysilane is hydrolyzed to produce silicic acid,
It is described that it condenses to form silica. According to this, spherical particles can be obtained as a colloid before gelling when an alkoxysilane and water are reacted in the presence of an alcohol solvent and ammonia.

【0010】本発明者は、上記文献に記載の技術に基づ
いて、アルコキシシランと水の反応による長径/短径比
が大きいコロイダルシリカを製造する方法について種々
実験を行ない、下記の事実を実験結果として知見、確認
した。
The present inventors have conducted various experiments on a method for producing colloidal silica having a large ratio of major axis / minor axis by the reaction of alkoxysilane and water, based on the technology described in the above-mentioned literature, and have confirmed the following facts. It was found and confirmed.

【0011】アルコキシシランと水の反応で、ケイ酸に
加水分解する反応工程を経て、粒径が10〜200nm
近辺の球状コロイダルシリカを製造する工程で、球状の
一次粒子2〜4個を局部的に結合させ、二次粒子を形成
させることにより、長径/短径比を大きくすることがで
きる。5個以上の結合では本発明の目標である長径/短
径比が1.4を超えるような粒子は得られ難い。また、
2〜4個の限られた数の一次粒子を選択的に結合させる
には多量の溶媒中で低温反応させることが、有効である
ことを実験で確かめた。
[0011] Through a reaction step of hydrolyzing to silicic acid by the reaction of alkoxysilane and water, the particle size is 10 to 200 nm.
In the process of producing the spherical colloidal silica in the vicinity, the major diameter / minor diameter ratio can be increased by locally forming two to four spherical primary particles to form secondary particles. With five or more bonds, it is difficult to obtain particles having a major axis / minor axis ratio exceeding 1.4, which is the target of the present invention. Also,
Experiments have shown that a low-temperature reaction in a large amount of solvent is effective for selectively binding a limited number of 2 to 4 primary particles.

【0012】ケイ酸には、正ケイ酸(SiO2 −2H2
O)とメタケイ酸(SiO2 −H2O)があるが、メタ
ケイ酸メチルはあまり実存しない。そこで、本発明は、
実施例で示す通り原料アルコキシシランのうち、通常シ
リカを工業的に製造するに最も対コスト効果の高い正ケ
イ酸メチルを用い、溶媒として多量のメタノ−ルを使用
し、比較的低温でケイ酸への加水分解を経て、その縮合
によりコロイダルシリカが生成される工程において、水
と正ケイ酸メチルの反応操作を最適化した。その結果、
特許請求の範囲に記述した条件で所望の長径/短径比の
コロイダルシリカを得た。
The silicic acid includes orthosilicic acid (SiO 2 -2H 2
O) and metasilicate (SiO 2 —H 2 O), but methyl metasilicate does not exist so much. Therefore, the present invention
As shown in the Examples, among the raw material alkoxysilanes, methyl orthosilicate, which is usually the most cost-effective for industrially producing silica, is used, a large amount of methanol is used as a solvent, and silicate is produced at a relatively low temperature. In the step of producing colloidal silica by condensation through hydrolysis to water, the reaction operation of water and methyl orthosilicate was optimized. as a result,
Colloidal silica having a desired ratio of major axis / minor axis was obtained under the conditions described in the claims.

【0013】粒子サイズが均一で長径/短径比が1.4
より大きい粒子を生成させることは、換言すると粒子分
布の狭い一次粒子を如何に選択的に2ないし3個を粒子
結合させることに他ならない。できれば大部分の粒子結
合が2個に限定したものが望ましい。実験の結果、原料
のケイ酸メチルの滴下時間の最適化が最も重要であるこ
とを確認した。
The particle size is uniform and the ratio of major axis / minor axis is 1.4.
Producing larger particles is, in other words, how to selectively couple two or three primary particles having a narrow particle distribution. Preferably, most of the particle bonds are limited to two. As a result of the experiment, it was confirmed that optimization of the dropping time of the raw material methyl silicate was the most important.

【0014】例えば後述する実施例1、実施例2と実施
例3では、目的とする長径/短径比が1.4より大きい
粒子を生成させることができるが、比較例1に示すよう
に、実施例1と同じ条件ながら滴下時間を6分まで短く
すると一次粒子径はさほど変化ないが、相互の粒子の結
合が促進され、長径/短径比は小さくなり、ほとんど長
径/短径比が1に近い、いわゆる球状会合体が生成す
る。これを透過型電子顕微鏡で観察すると少なくとも1
0個以上のかなり多数の一次粒子が結合して二次粒子を
形成していることが判った。
For example, in Examples 1, 2 and 3 described below, particles having a desired major axis / minor axis ratio of more than 1.4 can be produced, but as shown in Comparative Example 1, If the dropping time is reduced to 6 minutes under the same conditions as in Example 1, the primary particle diameter does not change much, but the bonding of the particles is promoted, the ratio of major axis / minor axis decreases, and the ratio of major axis / minor axis becomes almost 1 , A so-called spherical aggregate is formed. When this is observed with a transmission electron microscope, at least 1
It was found that zero or more rather large numbers of primary particles were combined to form secondary particles.

【0015】また、比較例2に示すように、実施例1と
同じ条件ながら滴下時間を48分まで長くすると、一次
粒子はそのまま安定で粒子相互間の結合は稀であること
を粒子径分析と透過型電子顕微鏡の観察で確かめた。
Further, as shown in Comparative Example 2, when the dropping time was increased to 48 minutes under the same conditions as in Example 1, it was confirmed by particle size analysis that primary particles were stable as they were and bonds between particles were rare. It was confirmed by observation with a transmission electron microscope.

【0016】シリコンウェハ−または半導体素子の金属
膜などの研磨では、研磨速度、研磨面の傷の有無とヘイ
ズの善悪などの研磨特性があり、一般に粒子が大きいも
のは研磨速度が上がる反面傷とヘイズ特性が悪化し、粒
子の小さいものはその逆の特性を示す。コロイダルシリ
カの場合では、シリコンウェハ−の最終研磨では10〜
60nmの短径の粒子が、また半導体素子の平坦化目的
の研磨では20〜200nmの短径粒子が使用されてい
る。
Polishing of a silicon wafer or a metal film of a semiconductor device has polishing characteristics such as a polishing rate, presence / absence of a scratch on a polished surface and haze quality. The haze characteristic deteriorates, and the particles having small particles show the opposite characteristic. In the case of colloidal silica, the final polishing of the silicon wafer is 10 to
Particles having a short diameter of 60 nm are used, and particles having a short diameter of 20 to 200 nm are used in polishing for planarizing a semiconductor element.

【0017】上記 C.J.Brinker等の著書が
示す如く、正ケイ酸メチルの加水分解後のアンモニアを
使用した粒子成長段階では、pHとアンモニウム塩の有
無が単独粒子成長と粒子の結合を支配する。これらの濃
度は目的とする粒子径により選定される。実施例2はよ
り大きい一次粒子を持つ、砥粒を製造する際の製造法で
あり、ここでも原料の滴下時間が粒子の会合度合を制御
する重要な因子となることを実験により確かめた。
The above C.I. J. As described by Brinker et al., In the particle growth stage using ammonia after hydrolysis of methyl orthosilicate, the pH and the presence or absence of an ammonium salt govern single particle growth and particle binding. These concentrations are selected according to the target particle size. Example 2 is a production method for producing abrasive grains having larger primary particles, and in this case also, it was confirmed by experiments that the dripping time of the raw material was an important factor for controlling the degree of association of the particles.

【0018】粒径測定には、透過型電子顕微鏡にて観察
する方法が一般的である。また、長径だけの測定なら
ば、光子相関法の原理を応用した微粒子測定器の測定値
を代用することもある。また、凝集粒子の一次粒子を測
定するには、反応生成物を水系コロイダルシリカ溶液に
して乾燥し、BET比表面積を測定し、粒子を球状と仮
定して求めた粒径を近似値とすることも可能であるが、
両者とも透過型電子顕微鏡で求めた値とはかなりの誤差
があるので、単なる目安としかならない。
For measuring the particle size, a method of observing with a transmission electron microscope is generally used. In the case of measuring only the major axis, a measured value of a fine particle measuring instrument to which the principle of the photon correlation method is applied may be used instead. In addition, to measure the primary particles of the aggregated particles, the reaction product is dried with an aqueous colloidal silica solution, the BET specific surface area is measured, and the particle size obtained assuming that the particles are spherical is to be an approximate value. Is also possible,
Since both of them have a considerable error from the values obtained by the transmission electron microscope, they are merely a guide.

【0019】[0019]

【実施例】以下、本発明を実施例により具体的に説明す
るが、本発明はこの実施例により何等限定されるもので
ない。 [実施例1]3容量の正ケイ酸メチルと1容量のメタノ
−ルを混合し、原料溶液を調製した。反応槽に予めメタ
ノ−ル、水、アンモニアを混合した反応溶媒を仕込ん
だ。反応溶媒中の水の濃度は15重量%、アンモニアは
約1重量%であった。反応溶媒の温度が20℃に保持で
きるように冷却しながら、反応溶媒9容量当たり、1容
量の原料溶液を25分間、均等速度で反応槽に滴下し
た。この反応生成液中には、短径が約45nm、長径が
約70nmのコロイダルシリカが生成された。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited by these Examples. Example 1 A raw material solution was prepared by mixing 3 volumes of methyl orthosilicate and 1 volume of methanol. A reaction solvent in which methanol, water and ammonia were previously mixed was charged into the reaction tank. The concentration of water in the reaction solvent was 15% by weight, and ammonia was about 1% by weight. While cooling so that the temperature of the reaction solvent could be maintained at 20 ° C., 1 volume of the raw material solution was dropped into the reaction vessel at an even rate for 25 minutes per 9 volumes of the reaction solvent. Colloidal silica having a minor axis of about 45 nm and a major axis of about 70 nm was produced in the reaction product solution.

【0020】[実施例2]3容量の正ケイ酸メチルと1
容量のメタノ−ルを混合し、原料溶液を調製した。反応
槽に予めメタノ−ル、水、アンモニア、炭酸アンモニウ
ムを混合した反応溶媒を仕込んだ。反応溶媒中の水の濃
度は10重量%、アンモニアは1.6重量%、炭酸アン
モニウムは0.04重量%であった。反応溶媒を攪拌
し、反応溶媒の温度が20℃に保持できるように冷却し
ながら、反応溶媒9容量当り、1容量の原料溶液を18
分間、均等速度で反応槽に滴下した。この反応生成液中
には、短径が120nm、長径が200〜250nmの
コロイダルシリカが生成された。
Example 2 3 volumes of methyl orthosilicate and 1
A volume of methanol was mixed to prepare a raw material solution. A reaction solvent in which methanol, water, ammonia, and ammonium carbonate were previously mixed was charged into the reaction tank. The concentration of water in the reaction solvent was 10% by weight, ammonia was 1.6% by weight, and ammonium carbonate was 0.04% by weight. While stirring the reaction solvent and cooling so that the temperature of the reaction solvent can be maintained at 20 ° C., 1 volume of the raw material solution per 18 volumes of the reaction solvent is added.
The solution was dropped into the reaction vessel at a uniform speed for minutes. Colloidal silica having a minor axis of 120 nm and a major axis of 200 to 250 nm was produced in the reaction product solution.

【0021】[比較例1]3容量の正ケイ酸メチルと1
容量のメタノ−ルを混合し、原料溶液を調製した。反応
槽に予めメタノ−ル、水、アンモニアを混合した反応溶
液を仕込んだ。反応溶液中の水の濃度は15重量%、ア
ンモニアは約1重量%であった。反応溶媒を攪拌し、反
応溶媒の温度が20℃に保持できるように冷却しなが
ら、反応溶媒9容量当り、1容量の原料溶液を6分間、
均等速度で反応槽に滴下した。この反応生成液中には、
一次粒子は約45nmであったが、粒子相互の結合が促
進され短径も長径も約170nmのいわゆる球状会合体
のコロイダルシリカが生成された。
Comparative Example 1 Three volumes of methyl orthosilicate and 1
A volume of methanol was mixed to prepare a raw material solution. A reaction solution in which methanol, water and ammonia were mixed in advance was charged into the reaction tank. The concentration of water in the reaction solution was 15% by weight, and the concentration of ammonia was about 1% by weight. While stirring the reaction solvent and cooling so that the temperature of the reaction solvent can be maintained at 20 ° C., 1 volume of the raw material solution per 9 volumes of the reaction solvent is applied for 6 minutes.
The solution was dropped at a uniform rate into the reaction vessel. In this reaction product solution,
Although the primary particles had a size of about 45 nm, the bonding between the particles was promoted and colloidal silica of a so-called spherical aggregate having a minor axis and a major axis of about 170 nm was produced.

【0022】[実施例3]3容量の正ケイ酸メチルと1
容量のメタノ−ルを混合し、原料溶液を調製した。反応
槽に予めメタノ−ル、水、アンモニアを混合した反応溶
媒を仕込んだ反応溶媒中の水の濃度は15重量%、アン
モニアは約1重量%であった。反応溶媒の温度が20℃
に保持できるように冷却しながら、反応溶媒9容量当
り、1容量の原料溶液を15分間、均等速度で反応槽に
滴下した。この反応生成液中には、一次粒子が約45n
mで二次粒子が約90nmのコロイダルシリカが生成さ
れた。透過型電子顕微鏡では、二次粒子は主として5か
ら7個の一次粒子の凝集体として観察できた。このよう
な2個以上の一次粒子の多数の凝集体の長径/短径比の
正確な測定は光子相関法に基づく微粒子測定器によらな
いと困難であるが、透過型電子顕微鏡で求めた値とはか
なりの誤差が生じることは前述した通りである。止むを
得ず透過型電子顕微鏡で目測した限りは、一次粒子が2
個結合した繭型粒子が更に凝集した凝集体らしき様相を
呈し、長径/短径比も辛うじて1.4程度あることが観
測された。このように、原料と溶媒の混合時間が10〜
40分間内であっても、比較的短かい下限に近いような
場合には、アンモニウムイオンの含量を高めるとか、一
次粒子相互の結合を遅くするように反応温度を低めに設
定するなど、それなりの工夫を要することが推測され
る。
Example 3 Three volumes of orthomethyl silicate and 1
A volume of methanol was mixed to prepare a raw material solution. The reaction solvent in which methanol, water and ammonia were previously mixed was charged into the reaction tank, and the concentration of water in the reaction solvent was 15% by weight, and the concentration of ammonia was about 1% by weight. The temperature of the reaction solvent is 20 ° C
1 volume of the raw material solution per 9 volumes of the reaction solvent was added dropwise to the reaction vessel at an even rate for 15 minutes while cooling so as to maintain the temperature. This reaction product solution contains about 45 n primary particles.
As a result, colloidal silica having a secondary particle of about 90 nm was formed. In the transmission electron microscope, the secondary particles were mainly observed as an aggregate of 5 to 7 primary particles. It is difficult to accurately measure the major axis / minor axis ratio of a large number of aggregates of such two or more primary particles without using a fine particle measuring instrument based on the photon correlation method, but the value obtained with a transmission electron microscope is difficult. As described above, a considerable error occurs. As far as unavoidable, the primary particles were 2
It was observed that the cocoon-shaped particles that were individually bonded exhibited an aggregate-like appearance, and the ratio of major axis / minor axis was barely about 1.4. Thus, the mixing time of the raw material and the solvent is 10 to
Even within 40 minutes, if the lower limit is relatively short, the content of ammonium ion is increased, or the reaction temperature is set lower to slow the bonding between the primary particles. It is presumed that a device is required.

【0023】[比較例2]3容量の正ケイ酸メチルと1
容量のメタノ−ルを混合し、原料溶液を調製した。反応
槽に予めメタノ−ル、水、アンモニアを混合した反応溶
媒を仕込んだ。反応溶媒中の水の濃度は15重量%、ア
ンモニアは約1重量%であった。反応溶媒を攪拌し、反
応溶媒の温度が20℃に保持できるように冷却しなが
ら、反応溶媒9容量当り、1容量の原料溶液を48分
間、均等速度で反応槽に滴下した。この反応生成液中に
は、粒径が約65nmの主として単独球コロイダルシリ
カが生成された。
Comparative Example 2 Three volumes of methyl orthosilicate and 1
A volume of methanol was mixed to prepare a raw material solution. A reaction solvent in which methanol, water and ammonia were previously mixed was charged into the reaction tank. The concentration of water in the reaction solvent was 15% by weight, and ammonia was about 1% by weight. While stirring the reaction solvent and cooling it so that the temperature of the reaction solvent could be maintained at 20 ° C., 1 volume of the raw material solution per 9 volumes of the reaction solvent was dropped into the reaction tank at a uniform speed for 48 minutes. In this reaction product, mainly spherical colloidal silica having a particle size of about 65 nm was produced.

【0024】[0024]

【発明の効果】以上詳細に説明した通り、本発明の繭型
コロイダルシリカの製造方法によれば、ケイ酸メチルと
水との反応時間を規制することにより、短径が10〜2
00nmで長径/短径比が1.4〜2.2の繭型コロイ
ダルシリカを得ることができる。このようなコロイダル
シリカは、研磨速度が著しく向上し、かつウエハ表面を
汚染する心配がなく、研磨ダメージの少ない、シリコン
ウエハなどの研磨砥粒として他に類を見ない高性能を発
揮することができる。
As described in detail above, according to the method for producing cocoon-shaped colloidal silica of the present invention, the reaction time between methyl silicate and water is regulated so that the minor axis is 10 to 2 mm.
Cocoon-shaped colloidal silica having a major axis / minor axis ratio of 1.4 to 2.2 at 00 nm can be obtained. Such a colloidal silica has a remarkably improved polishing rate, has no fear of contaminating the wafer surface, has little polishing damage, and exhibits a unique performance as polishing abrasive grains for silicon wafers and the like. it can.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ケイ酸メチル、又はケイ酸メチルとメタ
ノ−ルとの混合物を、水、メタノ−ル及びアンモニア、
又は水、メタノ−ル、アンモニア及びアンモニウム塩か
らなる混合溶媒中に、前記溶媒中のアンモニウムイオン
の含量が、前記溶媒の全重量に基づいて0.5〜3重量
%であって、反応が10〜30℃の温度で行われるよう
に、撹拌下に10〜40分間で滴下し、ケイ酸メチルと
水とを反応させて10〜200nmの短径と1.4〜
2.2の長径/短径比を有するコロイダルシリカを生成
することを特徴とする繭型コロイダルシリカの製造方
法。
1. Methyl silicate or a mixture of methyl silicate and methanol is treated with water, methanol and ammonia,
Alternatively, in a mixed solvent comprising water, methanol, ammonia and an ammonium salt, the content of ammonium ions in the solvent is 0.5 to 3% by weight based on the total weight of the solvent, and the reaction is 10%. The mixture is added dropwise with stirring for 10 to 40 minutes so that the reaction is carried out at a temperature of 3030 ° C., and methyl silicate and water are reacted to form a short diameter of 10200200 nm and a 1.4〜
2.2 A method for producing cocoon-shaped colloidal silica, which comprises producing colloidal silica having a ratio of major axis to minor axis.
【請求項2】 前記溶媒中の水の量が、ケイ酸メチルの
加水分解に必要な理論値の2〜5倍であることを特徴と
する請求項1に記載の繭型コロイダルシリカの製造方
法。
2. The method for producing cocoon-shaped colloidal silica according to claim 1, wherein the amount of water in the solvent is 2 to 5 times the theoretical value required for the hydrolysis of methyl silicate. .
【請求項3】 前記溶媒中のメタノールの量が、ケイ酸
メチルに混合したメタノ−ルと合わせてケイ酸メチルの
重量の5倍以上であることを特徴とする請求項1又は2
に記載の繭型コロイダルシリカの製造方法。
3. The method according to claim 1, wherein the amount of methanol in the solvent is at least 5 times the weight of methyl silicate when combined with methanol mixed with methyl silicate.
3. The method for producing a cocoon-shaped colloidal silica described in 1. above.
JP22706697A 1997-08-11 1997-08-11 Method for producing cocoon-shaped colloidal silica Expired - Fee Related JP3195569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22706697A JP3195569B2 (en) 1997-08-11 1997-08-11 Method for producing cocoon-shaped colloidal silica

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22706697A JP3195569B2 (en) 1997-08-11 1997-08-11 Method for producing cocoon-shaped colloidal silica

Publications (2)

Publication Number Publication Date
JPH1160232A JPH1160232A (en) 1999-03-02
JP3195569B2 true JP3195569B2 (en) 2001-08-06

Family

ID=16855007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22706697A Expired - Fee Related JP3195569B2 (en) 1997-08-11 1997-08-11 Method for producing cocoon-shaped colloidal silica

Country Status (1)

Country Link
JP (1) JP3195569B2 (en)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3563017B2 (en) * 2000-07-19 2004-09-08 ロデール・ニッタ株式会社 Polishing composition, method for producing polishing composition and polishing method
JP2003100672A (en) * 2001-09-21 2003-04-04 Rodel Nitta Co Abrasive slurry
KR101173313B1 (en) * 2003-02-18 2012-08-10 가부시끼가이샤 타이템 Alkali-resistant cocoon-shaped colloidal silica particle and process for producing the same
JP4615193B2 (en) * 2003-03-19 2011-01-19 ニッタ・ハース株式会社 Slurries for polishing metal films
JP4755805B2 (en) * 2003-04-04 2011-08-24 ニッタ・ハース株式会社 Slurry for polishing
JP4566645B2 (en) * 2003-07-25 2010-10-20 扶桑化学工業株式会社 Silica sol and method for producing the same
JP4955253B2 (en) * 2005-06-02 2012-06-20 日本化学工業株式会社 Polishing composition for polishing device wafer edge, method for producing the same, and polishing method
JP2007103463A (en) 2005-09-30 2007-04-19 Sumitomo Electric Ind Ltd POLISHING SLURRY, SURFACE TREATMENT METHOD OF GaxIn1-xAsyP1-y CRYSTAL, AND GaxIn1-xAsyP1-y CRYSTAL SUBSTRATE
JP2007194593A (en) * 2005-12-20 2007-08-02 Fujifilm Corp Polishing liquid for metal and polishing method using the same
KR101484795B1 (en) 2007-03-27 2015-01-20 후소카가쿠코교 가부시키가이샤 Colloidal silica, and method for production thereof
JP2008270584A (en) * 2007-04-23 2008-11-06 Nippon Chem Ind Co Ltd Polishing composition for semiconductor wafer and polishing processing method
JP5275595B2 (en) * 2007-08-29 2013-08-28 日本化学工業株式会社 Semiconductor wafer polishing composition and polishing method
JP5808106B2 (en) 2008-09-26 2015-11-10 扶桑化学工業株式会社 Colloidal silica containing silica secondary particles having bent structure and / or branched structure and method for producing the same
JP2010182811A (en) * 2009-02-04 2010-08-19 Nippon Chem Ind Co Ltd Semiconductor wafer polishing composition and method of manufacturing the same
JP2011171689A (en) 2009-07-07 2011-09-01 Kao Corp Polishing liquid composition for silicon wafer
JP5495880B2 (en) * 2010-03-25 2014-05-21 扶桑化学工業株式会社 Method for adjusting secondary particle size of colloidal silica
JP5477192B2 (en) 2010-06-23 2014-04-23 富士ゼロックス株式会社 Method for producing silica particles
JP5477193B2 (en) 2010-06-24 2014-04-23 富士ゼロックス株式会社 Silica particles and method for producing the same
JP5488255B2 (en) 2010-06-25 2014-05-14 富士ゼロックス株式会社 Silica particles and method for producing the same
JP5564461B2 (en) 2010-10-12 2014-07-30 株式会社フジミインコーポレーテッド Polishing composition
JP5724401B2 (en) 2011-01-19 2015-05-27 富士ゼロックス株式会社 Resin particles and method for producing the same
JP5741005B2 (en) 2011-01-20 2015-07-01 富士ゼロックス株式会社 Resin particles and method for producing the same
JP5712824B2 (en) 2011-07-06 2015-05-07 富士ゼロックス株式会社 Silica particles and method for producing the same
JP5831378B2 (en) 2011-12-01 2015-12-09 富士ゼロックス株式会社 Silica composite particles and method for producing the same
KR102244973B1 (en) 2012-02-02 2021-04-27 닛산 가가쿠 가부시키가이샤 Low refractive index film-forming composition
WO2013121932A1 (en) * 2012-02-17 2013-08-22 株式会社 フジミインコーポレーテッド Polishing composition and method for producing semiconductor substrate
JP5822356B2 (en) 2012-04-17 2015-11-24 花王株式会社 Polishing liquid composition for silicon wafer
CN104769073B (en) 2012-10-31 2017-03-08 福吉米株式会社 Composition for polishing
JP5915555B2 (en) 2013-01-28 2016-05-11 富士ゼロックス株式会社 Silica composite particles and method for producing the same
JP5893706B2 (en) 2013-10-25 2016-03-23 花王株式会社 Polishing liquid composition for silicon wafer
US9303190B2 (en) * 2014-03-24 2016-04-05 Cabot Microelectronics Corporation Mixed abrasive tungsten CMP composition
JP2015184569A (en) * 2014-03-25 2015-10-22 富士ゼロックス株式会社 Indeterminate form inorganic particle, toner for electrostatic charge image development, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method
KR102606137B1 (en) 2015-07-31 2023-11-27 가부시키가이샤 후지미인코퍼레이티드 Method for producing silica sol
JP6870219B2 (en) * 2016-06-14 2021-05-12 住友ゴム工業株式会社 Silica morphology control method
WO2018135585A1 (en) * 2017-01-20 2018-07-26 日揮触媒化成株式会社 Silica particle liquid dispersion and production method therefor
JP6854683B2 (en) 2017-03-30 2021-04-07 株式会社フジミインコーポレーテッド Manufacturing method of silica sol
KR102513062B1 (en) 2017-03-31 2023-03-22 닛키 쇼쿠바이카세이 가부시키가이샤 Method for preparing silica particle dispersion
JP6916039B2 (en) * 2017-06-05 2021-08-11 Atシリカ株式会社 Polishing composition
US10221336B2 (en) * 2017-06-16 2019-03-05 rohm and Hass Electronic Materials CMP Holdings, Inc. Aqueous silica slurry compositions for use in shallow trench isolation and methods of using them
US11274043B2 (en) 2018-06-12 2022-03-15 Evonik Operations Gmbh Increased particle loading by surface modification with polyethersilane
EP3929154A4 (en) 2019-02-21 2022-04-06 Mitsubishi Chemical Corporation Silica particles and production method therefor, silica sol, polishing composition, polishing method, semiconductor wafer production method, and semiconductor device production method
JP6756423B1 (en) 2019-02-21 2020-09-16 三菱ケミカル株式会社 Silica particles and their manufacturing method, silica sol, polishing composition, polishing method, semiconductor wafer manufacturing method and semiconductor device manufacturing method
JP2020147490A (en) * 2019-03-08 2020-09-17 三菱ケミカル株式会社 Silica particle, silica sol, polishing composition, polishing method, method of manufacturing semiconductor wafer, method of manufacturing semiconductor device, and method of evaluating silica particle
KR102302664B1 (en) * 2019-11-07 2021-09-14 한국전기연구원 Ultra-high purity, high concentration, spherical and non-spherical colloidal silica nano-sol and fabrication method thereof for semiconductor CMP slurry
EP4098615A4 (en) 2020-01-28 2023-08-02 Mitsubishi Chemical Corporation Silica particles, silica sol, polishing composition, polishing method, method for manufacturing semiconductor wafer, and method for manufacturing semiconductor device

Also Published As

Publication number Publication date
JPH1160232A (en) 1999-03-02

Similar Documents

Publication Publication Date Title
JP3195569B2 (en) Method for producing cocoon-shaped colloidal silica
JP5137521B2 (en) Konpira sugar-like sol and process for producing the same
JP5084670B2 (en) Silica sol and method for producing the same
US10160894B2 (en) Non-spherical silica sol, process for producing the same, and composition for polishing
JP5127452B2 (en) Method for producing deformed silica sol
JP4712556B2 (en) Alkali-resistant vertical colloidal silica particles and method for producing the same
JPS6374911A (en) Production of fine spherical silica
WO2010052945A1 (en) Aspherical silica sol, process for producing the same, and composition for polishing
JP3359479B2 (en) Abrasive, manufacturing method and polishing method
TW201825398A (en) Ceria-based composite fine particle dispersion, method for producing thereof, and abrasive grain dispersion for polishing containing ceria-based composite fine particle
JP6510812B2 (en) Polishing particles for polishing silicon oxide film
JP6603142B2 (en) Silica composite fine particle dispersion, method for producing the same, and polishing slurry containing silica composite fine particle dispersion
JP4549878B2 (en) Method for producing high-purity aqueous silica sol
JPH11214338A (en) Method for polishing silicon wafer
JP2021116225A (en) Method for producing silica particle, method for producing silica sol, polishing method, method for producing semiconductor wafer and method for producing semiconductor device
JP2007153692A (en) Method for manufacturing anisotropic-shape silica sol
JP2004203638A (en) Peanut-like twin colloidal silica particle, and production method therefor
JP4949209B2 (en) Non-spherical alumina-silica composite sol, method for producing the same, and polishing composition
JP2007145633A (en) Manufacturing method of anisotropic-shape silica sol
JP2002338951A (en) Hydrothermally treated colloidal silica for polishing agent
KR101121576B1 (en) A manufacturing method of colloidal silica for chemical mechenical polishing
JP5421006B2 (en) Particle-linked silica sol and method for producing the same
JP5346167B2 (en) Particle-linked alumina-silica composite sol and method for producing the same
JP2010024119A (en) Method for producing confetti-like silica sol
JP4507499B2 (en) Method for producing spherical porous body

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090601

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090601

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140601

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees