JP3191826B2 - Method of forming manganese cobalt oxide thin film - Google Patents

Method of forming manganese cobalt oxide thin film

Info

Publication number
JP3191826B2
JP3191826B2 JP07635392A JP7635392A JP3191826B2 JP 3191826 B2 JP3191826 B2 JP 3191826B2 JP 07635392 A JP07635392 A JP 07635392A JP 7635392 A JP7635392 A JP 7635392A JP 3191826 B2 JP3191826 B2 JP 3191826B2
Authority
JP
Japan
Prior art keywords
manganese
cobalt
thin film
substrate
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07635392A
Other languages
Japanese (ja)
Other versions
JPH05238744A (en
Inventor
政 米沢
清二 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP07635392A priority Critical patent/JP3191826B2/en
Priority to US07/984,216 priority patent/US5273776A/en
Priority to FR9214798A priority patent/FR2684794B1/en
Priority to GB9225339A priority patent/GB2262107B/en
Priority to DE4240928A priority patent/DE4240928C2/en
Publication of JPH05238744A publication Critical patent/JPH05238744A/en
Application granted granted Critical
Publication of JP3191826B2 publication Critical patent/JP3191826B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Chemically Coating (AREA)
  • Thin Magnetic Films (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はマンガンコバルト酸化物
薄膜の形成方法に関する。更に詳しくはNTCサーミス
タの表面に形成される感熱性抵抗膜に適するマンガンコ
バルト酸化物薄膜に関するものである。
The present invention relates to a method for forming a manganese cobalt oxide thin film. More specifically, the present invention relates to a manganese cobalt oxide thin film suitable for a heat-sensitive resistance film formed on the surface of an NTC thermistor.

【0002】[0002]

【従来の技術】従来、この種のマンガンコバルト系酸化
物薄膜は、乾式法ではターゲット材料にマンガンとコバ
ルトを含む複合酸化物を用いたスパッタリング法により
基体の表面に形成されている(National Technical Rep
ort Vol.29 No.3,1983)。また湿式法ではMn−Co−
Niの3成分のβ−ジケトナート錯体のメタノール溶液
をディッピング法によりガラス又は石英基板上に塗布
し、450℃に仮焼した後、この塗布と仮焼を繰返して
Mn−Co−Ni系薄膜が形成されている(金子正治
ら,第4回日本セラミックス協会秋季シンポジウム予稿
集(1991), p140)。
2. Description of the Related Art Conventionally, a manganese-cobalt-based oxide thin film of this type has been formed on the surface of a substrate by a sputtering method using a composite oxide containing manganese and cobalt as a target material in a dry method (National Technical Report).
ort Vol.29 No.3,1983). In the wet method, Mn-Co-
A methanol solution of a three-component β-diketonate complex of Ni is coated on a glass or quartz substrate by dipping, and calcined at 450 ° C., and the application and calcining are repeated to form a Mn—Co—Ni thin film. (Kaneko Masaharu et al., Proceedings of the 4th Autumn Meeting of the Ceramic Society of Japan (1991), p140).

【0003】[0003]

【発明が解決しようとする課題】しかし、前者のスパッ
タリング法をはじめとする物理蒸着法では、緻密で広範
囲に均質な薄膜を得るのが困難なうえ、製造コストが高
価になる問題点があった。また、後者の方法では、β−
ジケトナート錯体をメタノール溶液に溶解する際に、各
成分の析出速度が不均一になり易く、また焼成時に各成
分の揮発性の相違に起因して薄膜の組成が所望の組成か
ら外れる不具合があった。本発明の目的は、簡易な操作
により緻密で広範囲に均質なマンガンコバルト酸化物薄
膜を安価に形成する方法を提供することにある。
However, in the physical vapor deposition method including the former sputtering method, it is difficult to obtain a dense and uniform thin film over a wide area, and the production cost is high. . In the latter method, β-
When dissolving the diketonate complex in a methanol solution, the deposition rate of each component tends to be uneven, and the composition of the thin film deviates from the desired composition due to the difference in volatility of each component during firing. . An object of the present invention is to provide a method for forming a dense, wide and homogeneous manganese cobalt oxide thin film at low cost by a simple operation.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に、本発明の薄膜の形成方法は、先ず硝酸マンガン、酢
酸マンガン、炭酸マンガン及び塩化マンガンからなる群
より選ばれた1種又は2種以上のマンガン化合物と硝酸
コバルト、酢酸コバルト、炭酸コバルト及び塩化コバル
トからなる群より選ばれた1種又は2種以上のコバルト
化合物をエチレングリコール、ジエチレングリコール及
びグリセリンからなる群より選ばれた1種又は2種以上
の多価アルコールに溶解してアルコール溶液を調製す
る。次いでこのアルコール溶液にシュウ酸、マロン酸、
コハク酸、グルタル酸及びアジピン酸からなる群より選
ばれた1種又は2種以上のジカルボン酸を添加混合して
コーティング溶液を調製する。このコ−ティング溶液を
耐熱性のある基体の表面に塗布して塗膜を形成する。塗
膜を形成した基体を乾燥熱処理してマンガンとコバルト
の複合酸化物前駆体を生成し、この複合酸化物前駆体を
600〜1000℃の温度で焼成してマンガンコバルト
酸化物薄膜を得る。
In order to achieve the above object, a method of forming a thin film according to the present invention comprises a method of forming one or two kinds of manganese nitrate, manganese acetate, manganese carbonate and manganese chloride. The manganese compound and one or two or more cobalt compounds selected from the group consisting of cobalt nitrate, cobalt acetate, cobalt carbonate and cobalt chloride are selected from the group consisting of ethylene glycol, diethylene glycol and glycerin. An alcohol solution is prepared by dissolving in at least one kind of polyhydric alcohol. Then oxalic acid, malonic acid,
One or more dicarboxylic acids selected from the group consisting of succinic acid, glutaric acid and adipic acid are added and mixed to prepare a coating solution. This coating solution is applied to the surface of a heat-resistant substrate to form a coating film. The substrate on which the coating film is formed is dried and heat-treated to produce a manganese / cobalt composite oxide precursor, and the composite oxide precursor is fired at a temperature of 600 to 1000 ° C. to obtain a manganese cobalt oxide thin film.

【0005】以下、本発明を記述する。先ず硝酸マンガ
ン、酢酸マンガン、炭酸マンガン及び塩化マンガンから
なる群より選ばれた1種又は2種以上のマンガン化合物
と硝酸コバルト、酢酸コバルト、炭酸コバルト及び塩化
コバルトからなる群より選ばれた1種又は2種以上のコ
バルト化合物をエチレングリコール、ジエチレングリコ
ール及びグリセリンからなる群より選ばれた1種又は2
種以上の多価アルコールに溶解してアルコール溶液を調
製する。アルコール溶液の濃度は薄膜の厚みに応じて決
められるが、0.02〜1.00モル/Lが好ましい。
0.02モル/L未満であると希薄すぎて成膜が難し
く、1.00モル/Lを越えると溶解上問題が生じた
り、或いは成膜後クラックが発生し易くなる。ここで用
いる多価アルコールは溶剤としての機能だけでなく、構
成元素であるマンガン又はコバルトの金属元素に配位し
てアルコール溶液を安定化する機能を有する。
Hereinafter, the present invention will be described. First, one or two or more manganese compounds selected from the group consisting of manganese nitrate, manganese acetate, manganese carbonate and manganese chloride, and one selected from the group consisting of cobalt nitrate, cobalt acetate, cobalt carbonate and cobalt chloride, or Two or more cobalt compounds are selected from the group consisting of ethylene glycol, diethylene glycol and glycerin.
An alcohol solution is prepared by dissolving in at least one kind of polyhydric alcohol. The concentration of the alcohol solution is determined according to the thickness of the thin film, but is preferably 0.02 to 1.00 mol / L.
If it is less than 0.02 mol / L, it is too dilute to form a film, and if it is more than 1.00 mol / L, a problem arises in dissolution or cracks are apt to occur after the film formation. The polyhydric alcohol used here has not only a function as a solvent but also a function of stabilizing the alcohol solution by coordinating to a metal element of manganese or cobalt as a constituent element.

【0006】次いで前記アルコール溶液にシュウ酸、マ
ロン酸、コハク酸、グルタル酸及びアジピン酸からなる
群より選ばれた1種又は2種以上のジカルボン酸を添加
混合してコーティング溶液を調製する。ジカルボン酸は
上記多価アルコールと反応してエステル化し、溶液の成
膜性を向上させるように作用する。マンガン化合物とコ
バルト化合物とを合計した原料に対するジカルボン酸の
モル比は0.2〜5.0の範囲内にあることが望まし
い。0.2より少ない場合には、成膜性が不十分にな
り、5.0を越えると塗膜の再溶解が生じて塗膜面が粗
くなり易い。なお、前記混合液にメタノール、エタノー
ル、プロパノール及びブタノールからなる群より選ばれ
た1種又は2種以上のアルコールを添加混合してコーテ
ィング溶液を調製してもよい。メタノール等の低級アル
コールを添加すると、溶液の基体に対する濡れ性が向上
する。そのためこの低級アルコールは前記アルコール溶
液に対して0〜50重量%程度添加することが好まし
い。
Next, one or more dicarboxylic acids selected from the group consisting of oxalic acid, malonic acid, succinic acid, glutaric acid and adipic acid are added to the alcohol solution and mixed to prepare a coating solution. The dicarboxylic acid reacts with the above-mentioned polyhydric alcohol to be esterified, and acts to improve the film formability of the solution. It is desirable that the molar ratio of dicarboxylic acid to the total of the manganese compound and the cobalt compound be in the range of 0.2 to 5.0. When it is less than 0.2, the film formability becomes insufficient, and when it exceeds 5.0, the coating film is re-dissolved and the coating film surface tends to be rough. In addition, a coating solution may be prepared by adding and mixing one or more alcohols selected from the group consisting of methanol, ethanol, propanol and butanol to the mixture. Addition of a lower alcohol such as methanol improves the wettability of the solution to the substrate. Therefore, the lower alcohol is preferably added in an amount of about 0 to 50% by weight based on the alcohol solution.

【0007】コーティング溶液は耐熱性のある基体の表
面に塗布される。基体は次に述べる焼成温度に耐えるも
のであればよく、金、銀、白金等の金属や、これらの金
属の少なくとも1種を主成分とする合金や、ガラス、炭
素、けい素、シリカ、アルミナ、マグネシア、ジルコニ
ア、チタニア、チタン酸ストロンチウム、窒化硼素、窒
化けい素、炭化硼素、炭化けい素等のセラミックス等を
用いることができる。基体の形状は、繊維状、フィルム
状、板状、バルク状等いずれの形状であったもよい。塗
布前に基体の表面を研磨して平滑にし、更に洗浄して油
分等を除去しておくことが望ましい。塗布の方法として
は、スクリーン印刷法によりコーティング溶液を基体に
塗る方法の他に、コーティング溶液を噴霧するスプレー
コーティング法、コーティング溶液中に基体を浸漬した
後引上げるディップコーティング法、基体をスピンさせ
て塗膜の厚みの均一化と薄膜化をはかるスピンコーティ
ング法等がある。膜厚の均一性の観点からスピンコーテ
ィング法が望ましい。
[0007] The coating solution is applied to the surface of a heat-resistant substrate. The substrate may be any material that can withstand the firing temperature described below, such as metals such as gold, silver, and platinum, alloys containing at least one of these metals as main components, glass, carbon, silicon, silica, and alumina. And ceramics such as magnesia, zirconia, titania, strontium titanate, boron nitride, silicon nitride, boron carbide and silicon carbide. The shape of the substrate may be any shape such as a fiber shape, a film shape, a plate shape, and a bulk shape. It is desirable that the surface of the substrate is polished and smoothed before coating, and further washed to remove oil and the like. As a method of application, in addition to a method of applying a coating solution to a substrate by a screen printing method, a spray coating method of spraying the coating solution, a dip coating method of dipping the substrate after dipping in the coating solution, and spinning the substrate There is a spin coating method for making the thickness of the coating film uniform and thinning. The spin coating method is desirable from the viewpoint of uniformity of the film thickness.

【0008】基体表面に形成された塗膜は、室温〜20
0℃の温度で乾燥される。乾燥した基体上の塗膜はその
有機成分を除去するために300〜500℃で熱処理さ
れる。これによりマンガンとコバルトの複合酸化物前駆
体が生成される。この前駆体を大気圧下或いは酸素雰囲
気下、600〜1000℃で焼成すると、基体上にマン
ガンコバルト酸化物薄膜が形成される。上記塗膜の形成
から熱処理までの工程を反復することによって厚みを増
大でき、反復回数を調整すれば所望の厚みのマンガンコ
バルト酸化物薄膜が得られる。上記アルコール溶液の濃
度、コーティング溶液の粘度、基体の引上げ速度、噴霧
量等によって変化するが、塗膜の形成から熱処理までを
一回で行うことにより焼成後にサブミクロン厚の薄膜を
形成することができ、上記塗膜の積層数を増やすことに
より数ミクロン厚の薄膜も得られる。
[0008] The coating film formed on the surface of the substrate is at room temperature to 20
Dry at a temperature of 0 ° C. The coating on the dried substrate is heat treated at 300-500 ° C. to remove its organic components. As a result, a composite oxide precursor of manganese and cobalt is generated. When this precursor is fired at 600 to 1000 ° C. under atmospheric pressure or oxygen atmosphere, a manganese cobalt oxide thin film is formed on the substrate. The thickness can be increased by repeating the steps from the formation of the coating film to the heat treatment, and a manganese cobalt oxide thin film having a desired thickness can be obtained by adjusting the number of repetitions. It varies depending on the concentration of the alcohol solution, the viscosity of the coating solution, the pulling speed of the substrate, the amount of spraying, etc. A thin film having a thickness of several microns can be obtained by increasing the number of layers of the coating film.

【0009】[0009]

【作用】多価アルコールに溶解可能な硝酸マンガン等の
マンガン化合物と硝酸コバルト等のコバルト化合物をエ
チレングリコール等の多価アルコールに溶解し、更にジ
カルボン酸を添加することにより溶液は安定化し、コー
ティング溶液に成膜性能が発現する。このコーティング
溶液を基体に塗布乾燥すると、基体表面に溶質がサブミ
クロン以下の塗膜を形成するため、均一で極薄の塗膜が
得られる。溶液条件、塗布条件又は塗膜の積層数を制御
することにより、サブミクロン〜数ミクロン厚のマンガ
ンコバルト酸化物を基体表面に得る。
[Function] A manganese compound such as manganese nitrate and a cobalt compound such as cobalt nitrate which can be dissolved in a polyhydric alcohol are dissolved in a polyhydric alcohol such as ethylene glycol, and a dicarboxylic acid is added to stabilize the solution. The film forming performance is developed. When this coating solution is applied to a substrate and dried, a coated film having a solute of submicron or less is formed on the surface of the substrate, so that a uniform and extremely thin coating film can be obtained. By controlling the solution conditions, the application conditions, or the number of layers of the coating film, a manganese cobalt oxide having a thickness of submicron to several microns is obtained on the surface of the substrate.

【0010】[0010]

【発明の効果】以上述べたように、従来法では、緻密で
広範囲に均質な皮膜が安価に形成されなかったものが、
本発明によれば、化学的な手法によりマンガン及びコバ
ルトの構成成分を溶液化し、この溶液を熱処理して有機
成分を脱離させて薄膜にするため、厚みが1μm以下の
緻密で広範囲に均質な薄膜を簡単な操作で効率良く製造
することができる優れた効果を奏する。本発明で得られ
たマンガンコバルト酸化物薄膜は負の抵抗温度特性を有
するサーミスタの感熱性抵抗膜として用いればその感熱
応答性が高まり、かつサーミスタを基板に実装するとき
の表面実装性を向上させる。
As described above, according to the conventional method, a dense and uniform film was not formed at a low cost over a wide area.
According to the present invention, the components of manganese and cobalt are turned into a solution by a chemical method, and the solution is heat-treated to desorb organic components to form a thin film. An excellent effect that a thin film can be efficiently manufactured by a simple operation is exhibited. When the manganese cobalt oxide thin film obtained in the present invention is used as a thermosensitive resistive film of a thermistor having a negative resistance temperature characteristic, its thermoresponsiveness is enhanced, and the surface mountability when the thermistor is mounted on a substrate is improved. .

【0011】[0011]

【実施例】次に本発明の具体的態様を示すために、本発
明の実施例を説明する。以下に述べる実施例は本発明の
技術的範囲を限定するものではない。硝酸マンガン6水
和物2.01gと硝酸コバルト6水和物4.07gをエ
チレングリコール100mLに溶解した。この溶液にマ
ロン酸2.08gを添加して十分攪拌した。更にイソプ
ロピルアルコールを100mL添加して均一に混合し
た。この混合液をコーティング溶液として用い、アルミ
ナ基板の表面にディッピング法により塗布した。即ち静
置した上記コーティング溶液にアルミナ基板を浸漬し、
24mm/秒の速度で鉛直方向に引上げた。基板表面に
形成された塗膜を基板を120℃の温度で乾燥した後、
500℃で熱処理し塗膜の有機成分を除去した。上記コ
ーティング工程、乾燥工程及び熱処理工程を6回繰返し
行った後、更に大気圧下、800℃で2時間焼成したと
ころ、基板の表面にサブミクロン厚のマンガンコバルト
酸化物(MnCo24)の薄膜が得られた。
EXAMPLES Next, examples of the present invention will be described in order to show specific embodiments of the present invention. The embodiments described below do not limit the technical scope of the present invention. 2.01 g of manganese nitrate hexahydrate and 4.07 g of cobalt nitrate hexahydrate were dissolved in 100 mL of ethylene glycol. 2.08 g of malonic acid was added to this solution and stirred sufficiently. Further, 100 mL of isopropyl alcohol was added and mixed uniformly. This mixed solution was used as a coating solution and applied to the surface of an alumina substrate by dipping. That is, the alumina substrate is immersed in the coating solution that has been allowed to stand,
It was pulled vertically at a speed of 24 mm / sec. After drying the coating film formed on the substrate surface at a temperature of 120 ℃,
Heat treatment was performed at 500 ° C. to remove organic components of the coating film. After repeating the coating step, the drying step and the heat treatment step six times, and further sintering at 800 ° C. for 2 hours under atmospheric pressure, a manganese cobalt oxide (MnCo 2 O 4 ) having a submicron thickness was formed on the surface of the substrate. A thin film was obtained.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−238745(JP,A) 特開 平5−238743(JP,A) 特開 平5−186227(JP,A) 特開 平5−155628(JP,A) 特開 昭61−97159(JP,A) ────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-5-238745 (JP, A) JP-A-5-238743 (JP, A) JP-A-5-186227 (JP, A) JP-A-5-238227 155628 (JP, A) JP-A-61-97159 (JP, A)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 硝酸マンガン、酢酸マンガン、炭酸マン
ガン及び塩化マンガンからなる群より選ばれた1種又は
2種以上のマンガン化合物と硝酸コバルト、酢酸コバル
ト、炭酸コバルト及び塩化コバルトからなる群より選ば
れた1種又は2種以上のコバルト化合物をエチレングリ
コール、ジエチレングリコール及びグリセリンからなる
群より選ばれた1種又は2種以上の多価アルコールに溶
解してアルコール溶液を調製し、 前記アルコール溶液にシュウ酸、マロン酸、コハク酸、
グルタル酸及びアジピン酸からなる群より選ばれた1種
又は2種以上のジカルボン酸を添加混合してコーティン
グ溶液を調製し、 前記コ−ティング溶液を耐熱性のある基体の表面に塗布
して塗膜を形成し、 前記塗膜を形成した基体を乾燥熱処理してマンガンとコ
バルトの複合酸化物前駆体を生成し、 前記複合酸化物前駆体を600〜1000℃の温度で焼
成するマンガンコバルト酸化物薄膜の形成方法。
1. One or more manganese compounds selected from the group consisting of manganese nitrate, manganese acetate, manganese carbonate and manganese chloride, and one or more manganese compounds selected from the group consisting of cobalt nitrate, cobalt acetate, cobalt carbonate and cobalt chloride. One or more cobalt compounds are dissolved in one or more polyhydric alcohols selected from the group consisting of ethylene glycol, diethylene glycol and glycerin to prepare an alcohol solution. , Malonic acid, succinic acid,
One or more dicarboxylic acids selected from the group consisting of glutaric acid and adipic acid are added and mixed to prepare a coating solution, and the coating solution is applied to the surface of a heat-resistant substrate. A manganese-cobalt oxide, wherein a film is formed, and the substrate on which the coating film is formed is dried and heat-treated to produce a manganese-cobalt composite oxide precursor; A method for forming a thin film.
【請求項2】 ジカルボン酸を添加混合した混合液にメ
タノール、エタノール、プロパノール及びブタノールか
らなる群より選ばれた1種又は2種以上のアルコールを
添加混合してコーティング溶液を調製する請求項1記載
のマンガンコバルト酸化物薄膜の形成方法。
2. A coating solution is prepared by adding and mixing one or more alcohols selected from the group consisting of methanol, ethanol, propanol and butanol to a mixture obtained by adding and mixing dicarboxylic acids. A method for forming a manganese cobalt oxide thin film.
【請求項3】 コ−ティング溶液を基体表面にディッピ
ング法又はスピンコーティング法により塗布する請求項
1記載のマンガンコバルト酸化物薄膜の形成方法。
3. The method for forming a manganese cobalt oxide thin film according to claim 1, wherein the coating solution is applied to the surface of the substrate by dipping or spin coating.
JP07635392A 1991-12-06 1992-02-27 Method of forming manganese cobalt oxide thin film Expired - Fee Related JP3191826B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP07635392A JP3191826B2 (en) 1992-02-27 1992-02-27 Method of forming manganese cobalt oxide thin film
US07/984,216 US5273776A (en) 1991-12-06 1992-11-30 Method for forming thermistor thin film
FR9214798A FR2684794B1 (en) 1991-12-06 1992-12-03 PROCESS FOR FORMING A THERMISTOR THIN FILM.
GB9225339A GB2262107B (en) 1991-12-06 1992-12-03 Method for forming thermistor thin film
DE4240928A DE4240928C2 (en) 1991-12-06 1992-12-04 Process for forming a thermistor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07635392A JP3191826B2 (en) 1992-02-27 1992-02-27 Method of forming manganese cobalt oxide thin film

Publications (2)

Publication Number Publication Date
JPH05238744A JPH05238744A (en) 1993-09-17
JP3191826B2 true JP3191826B2 (en) 2001-07-23

Family

ID=13603001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07635392A Expired - Fee Related JP3191826B2 (en) 1991-12-06 1992-02-27 Method of forming manganese cobalt oxide thin film

Country Status (1)

Country Link
JP (1) JP3191826B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110111058A (en) * 2010-04-02 2011-10-10 주식회사 이엔드디 Crystallized manganese composite oxide, lithium-manganese composite oxide for lithium secondary battery and the method for manufacturing the same

Also Published As

Publication number Publication date
JPH05238744A (en) 1993-09-17

Similar Documents

Publication Publication Date Title
JPH01316469A (en) Superconductor and its production
US5273776A (en) Method for forming thermistor thin film
JP2002284525A (en) Solution composition containing metal complex coordinated with specific ligands onto specific metal species, solution composition for producing superconductive film of rare earths, amorphous solid of specific metal complex, method for producing solution containing metal complex coordinated with specific ligands onto specific metal species, method for producing solution for producing superconductive film of rare earths, and method for forming superconductive thin film
JP3161477B2 (en) Method of forming manganese cobalt oxide thin film
JP3191826B2 (en) Method of forming manganese cobalt oxide thin film
JP3183313B2 (en) Method of forming manganese nickel-based oxide thin film
JP3209235B2 (en) Method of forming manganese cobalt oxide thin film
JP3166786B2 (en) Method of forming manganese cobalt oxide thin film
JP3175746B2 (en) Method for forming a thermistor thin film
JP3166790B2 (en) Method of forming manganese cobalt oxide thin film
JP3183303B2 (en) Method of forming manganese cobalt oxide thin film
JP3183312B2 (en) Method of forming manganese cobalt-based oxide thin film
JP3183309B2 (en) Method of forming manganese cobalt copper oxide thin film
JP3161471B2 (en) Method for producing barium titanate thin film
JP3548802B2 (en) A solution composition containing a metal complex having a specific ligand coordinated to a specific metal species, a solution composition for producing a rare-earth superconducting film, an amorphous solid of a specific metal complex, a specific coordination to a specific metal species A method for producing a solution containing a metal complex to which a ligand is coordinated, a method for producing a solution for producing a rare earth superconducting film, and a method for producing a superconducting thin film.
JPS63270313A (en) Composition for forming film and powder of metallic oxide of rare earth element
JP3158360B2 (en) Method of forming composite oxide thin film
JPS60200403A (en) Thin film dielectric unit and method of producing same
JPH0585733A (en) Method for forming lanthanum chromite thin film
JP7119265B2 (en) Method for manufacturing dielectric film
JP3460607B2 (en) Method for producing a thermistor thin film forming agent, thermistor thin film forming agent using the same, and method for forming the thin film
JP2023152874A (en) Preparation method of liquid composition for solid electrolyte membrane formation, liquid composition for solid electrolyte membrane formation, and production method of solid electrolyte membrane
JPH04112412A (en) Manufacture of ferro-electric thin film
JPH0517157A (en) Formation of thin film of lanthanum chromite
JP3168299B2 (en) Dielectric thin film and method of manufacturing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080525

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080525

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090525

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees