JP7119265B2 - Method for manufacturing dielectric film - Google Patents

Method for manufacturing dielectric film Download PDF

Info

Publication number
JP7119265B2
JP7119265B2 JP2018149084A JP2018149084A JP7119265B2 JP 7119265 B2 JP7119265 B2 JP 7119265B2 JP 2018149084 A JP2018149084 A JP 2018149084A JP 2018149084 A JP2018149084 A JP 2018149084A JP 7119265 B2 JP7119265 B2 JP 7119265B2
Authority
JP
Japan
Prior art keywords
film
dielectric film
liquid composition
calcined
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018149084A
Other languages
Japanese (ja)
Other versions
JP2019123659A (en
Inventor
利浩 土井
信幸 曽山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Publication of JP2019123659A publication Critical patent/JP2019123659A/en
Application granted granted Critical
Publication of JP7119265B2 publication Critical patent/JP7119265B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

本発明は、Pbを含まず、Bi、K及びTiを少なくとも含む液組成物を用いてボイドのない緻密な誘電体膜を製造する方法に関するものである。 The present invention relates to a method for producing a void-free, dense dielectric film using a liquid composition containing at least Bi, K and Ti, but not containing Pb.

従来、(1-x)Bi0.5Na0.5TiO3-xBi0.50.5TiO3[BNT-BKT]薄膜を、ゾルゲル法及び急速アニールにより基板上に堆積する、鉛フリーの強誘電体薄膜の合成方法が開示されている(例えば、非特許文献1参照。)。この強誘電体薄膜を合成するために、(1-x)Bi0.5Na0.5TiO3-xBi0.50.5TiO3のxが0から0.2まで変化する薄膜(BNT-BKT)を、ゾルゲル法及び急速アニールにより合成した。具体的には、先ず、空気中70℃で、99.5%の硝酸ビスマス[Bi(NO3)3・5H2O]と、99.5%の硝酸ナトリウム[NaNO3]と、99%の硝酸カリウム[KNO3]を酢酸に適量溶解することにより、前駆体溶液を準備した。次いで、空気中の水分による加水分解を防ぐために、アセチルアセトン(99%)をチタンイソプロポキシド[Ti(OC37)4](98%、スチームケミカルズ)に添加して安定な溶液を形成した。次に、化学量論量のチタンイソプロポキシド溶液を硝酸塩の溶液に室温で添加した。そして、0.25モル/dm3の極性濃度を有する透明で安定な黄色前駆体溶液が得られるまで、混合物を絶えず攪拌した。更に、上記前駆体溶液を、Si基板上にSiO2膜及びTi膜を介して形成されたPt膜上に3000rpmの回転速度で20秒間スピンコートして塗膜を形成した後、塗膜を空気中のホットプレート上で250℃に5分間保持して乾燥させた後、酸素雰囲気の急速熱処理装置(RTP)中で700℃に5分間保持して急速アニールした。このプロセス、即ち上記スピンコート、乾燥及び急速アニールを6回繰り返して、厚さ約600nmの厚膜を得た。 Conventionally, (1-x)Bi 0.5 Na 0.5 TiO 3 -xBi 0.5 K 0.5 TiO 3 [BNT-BKT] thin film is deposited on a substrate by a sol-gel method and rapid annealing in a method for synthesizing a lead-free ferroelectric thin film. is disclosed (see, for example, Non-Patent Document 1). In order to synthesize this ferroelectric thin film, a thin film (BNT-BKT) in which x of (1-x)Bi 0.5 Na 0.5 TiO 3 -xBi 0.5 K 0.5 TiO 3 varies from 0 to 0.2 was prepared by a sol-gel method. and synthesized by rapid annealing. Specifically, first, at 70° C. in air, 99.5% bismuth nitrate [Bi(NO 3 ) 3.5H 2 O], 99.5% sodium nitrate [NaNO 3 ], 99% A precursor solution was prepared by dissolving an appropriate amount of potassium nitrate [KNO 3 ] in acetic acid. Acetylacetone (99%) was then added to titanium isopropoxide [Ti( OC3H7 ) 4 ] ( 98%, Steam Chemicals) to form a stable solution to prevent hydrolysis due to moisture in the air. . A stoichiometric amount of titanium isopropoxide solution was then added to the nitrate solution at room temperature. The mixture was then stirred constantly until a clear, stable yellow precursor solution with a polar concentration of 0.25 mol/dm 3 was obtained. Furthermore, the above precursor solution was spin-coated on a Pt film formed on a Si substrate via a SiO 2 film and a Ti film at a rotation speed of 3000 rpm for 20 seconds to form a coating film. After being dried on a hot plate at 250° C. for 5 minutes, it was rapidly annealed at 700° C. for 5 minutes in a rapid thermal processor (RTP) in an oxygen atmosphere. This process, ie spin coating, drying and rapid annealing, was repeated six times to obtain a thick film with a thickness of about 600 nm.

このように合成された強誘電体薄膜は、Pt電極上に良好に堆積され、Bi0.5Na0.5TiO3とBi0.50.5TiO3との間のモルフォトロピック相境界(MPB)がx=約0.15で決定され、更にMPBの近くにおいて、薄膜の粒度が最大となり、薄膜の誘電率εが360と最大値を示し、薄膜の分極値Prが13.8μC/cm2と最大値を示した。 The ferroelectric thin films thus synthesized are well deposited on Pt electrodes and the morphotropic phase boundary (MPB) between Bi 0.5 Na 0.5 TiO 3 and Bi 0.5 K 0.5 TiO 3 is x=˜0. .15, and further near the MPB, the grain size of the thin film is maximized, the dielectric constant ε of the thin film has a maximum value of 360, and the polarization value Pr of the thin film has a maximum value of 13.8 μC/cm 2 . .

T. Yu, K. W. Kwok, H. L. W. Chan, "The synthesis of lead-free ferroelectric Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3 thin films by sol-gel method", material letters 61 (2007) 2117-2120T. Yu, K. W. Kwok, H. L. W. Chan, "The synthesis of lead-free ferroelectric Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3 thin films by sol-gel method", material letters 61 (2007) 2117-2120

しかし、上記従来の非特許文献1に示された強誘電体薄膜の合成方法では、Bi原料として硝酸ビスマスを用いているため、強誘電体薄膜は緻密であるけれども、前駆体溶液の濡れ性が悪く、強誘電体薄膜に欠陥が発生し易い不具合があった。このため、前駆体溶液の大面積基板へのスピンコーティングによる塗布は困難となる問題点があった。 However, in the ferroelectric thin film synthesis method disclosed in the conventional non-patent document 1, since bismuth nitrate is used as the Bi raw material, the ferroelectric thin film is dense, but the wettability of the precursor solution is poor. Unfortunately, the ferroelectric thin film is prone to defects. Therefore, there is a problem that it is difficult to apply the precursor solution to a large-sized substrate by spin coating.

本発明の目的は、液組成物の基板への濡れ性が良好であり、かつ緻密で欠陥のない誘電体膜が得られる、誘電体膜の製造方法を提供することにある。 SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing a dielectric film, in which the wettability of the liquid composition to the substrate is excellent, and a dense and defect-free dielectric film can be obtained.

本発明者らは、2-エチルヘキサン酸ビスマスとカリウム原料を反応させると、熱分解性の悪い液組成物(ゾルゲル液)になる、即ち誘電体膜中にKが含まれていると、500℃前後に加熱したときに炭酸塩が生成し易く、炭素鎖も除去され難いことを赤外分光法により確認した。これらの現象は、速度論的に説明が可能であり、安定で熱分解し難い炭酸塩やその他の異相が、ペロブスカイト相の形成前に生成することが主要因であると推測し、昇温速度を変化させる試験を実施したところ、2-エチルヘキサン酸ビスマスを用いて調製した液組成物では、焼成時における500℃から600℃までの温度帯を30℃/秒未満の速度で昇温すると、誘電体膜中に炭酸塩が形成され、ボイドの生成や結晶性の悪化につながることを見出した。換言すると、上記液組成物を用いて緻密で結晶性の良好な誘電体膜を得るには上記温度帯を30℃/秒以上の速度で昇温することが必要であることを知見して、本発明をなすに至った。 The present inventors have found that when bismuth 2-ethylhexanoate is reacted with a potassium raw material, a liquid composition (sol-gel liquid) with poor thermal decomposition is formed. It was confirmed by infrared spectroscopy that carbonates are likely to form and carbon chains are difficult to remove when heated to around °C. These phenomena can be explained kinetically, and we presume that the main factor is the formation of carbonates and other heterogeneous phases that are stable and difficult to thermally decompose before the formation of the perovskite phase. When the liquid composition prepared using bismuth 2-ethylhexanoate was heated at a rate of less than 30 ° C./sec in the temperature range from 500 ° C. to 600 ° C. during firing, It was found that carbonate is formed in the dielectric film, leading to void formation and deterioration of crystallinity. In other words, having found that it is necessary to raise the temperature in the above temperature range at a rate of 30° C./second or more in order to obtain a dense dielectric film with good crystallinity using the above liquid composition, The inventors have completed the present invention.

本発明の第1の観点は、Bi、K及びTiを少なくとも含む液組成物を基板上に塗布した塗膜を仮焼成して仮焼成膜を作製しこの仮焼成膜を焼成することにより金属酸化物からなる誘電体膜を製造する方法であって、Sr及びZrを更に含み、Biの原料が2-エチルヘキサン酸ビスマスであり、前記仮焼成膜の焼成時に500℃から600℃までの昇温速度を30℃/秒以上にすることを特徴とする。 A first aspect of the present invention is to prepare a calcined film by calcining a coating film obtained by applying a liquid composition containing at least Bi, K and Ti on a substrate, and calcining the calcined film to metal oxidation. Further containing Sr and Zr, Bi raw material is bismuth 2-ethylhexanoate, and the temperature is raised from 500° C. to 600° C. during firing of the calcined film. It is characterized by setting the speed to 30° C./second or more.

本発明の第の観点は、第1の観点に基づく発明であって、更にNaを更に含むことを特徴とする。 A second aspect of the present invention is an invention based on the first aspect, characterized in that it further contains Na.

本発明の第の観点は、第1又は第2の観点に基づく発明であって、更に液組成物が一般式:y(BitsTiO3)-(1-y)(SrmZrn3)又はy(Bit(Na、K)sTiO3)-(1-y)(SrmZrn3)(但し、0.9≦y≦1、0.4≦t≦0.6、0.4≦s≦0.6、0.9≦m≦1.1、0.9≦n≦1.1)で示される化合物であることを特徴とする。 A third aspect of the present invention is an invention based on the first or second aspect, wherein the liquid composition has the general formula: y(Bit K s TiO 3 )-(1- y )(Sr m Zr n O 3 ) or y(Bit (Na, K) s TiO 3 )-(1- y ) (Sr m Zr n O 3 ) (where 0.9≤y≤1, 0.4≤t≤0 .6, 0.4≤s≤0.6, 0.9≤m≤1.1, 0.9≤n≤1.1).

本発明の第1の観点の誘電体膜の製造方法では、Biの原料として2-エチルヘキサン酸ビスマスを用いたので、液組成物の基板への濡れ性が良好である。また、仮焼成膜の焼成時に500℃から600℃までの昇温速度を30℃/秒以上にしたので、安定で熱分解し難い炭酸塩やその他の異相が、ペロブスカイト相の形成前に生成しない。この結果、誘電体膜中に炭酸塩が形成されないので、誘電体膜中にボイドが生成されず、誘電体膜の結晶性が良好になり、緻密で欠陥のない誘電体膜が得られる。
また、本発明の第1の観点の誘電体膜の製造方法では、Sr及びZrを更に含むので、より高い圧電特性を得ることができるという特長がある。
In the method for producing a dielectric film according to the first aspect of the present invention, bismuth 2-ethylhexanoate is used as the Bi raw material, so that the wettability of the liquid composition to the substrate is excellent. In addition, since the rate of temperature increase from 500° C. to 600° C. is set to 30° C./second or more during firing of the calcined film, carbonates that are stable and difficult to thermally decompose and other heterophases do not form before the perovskite phase is formed. . As a result, since carbonate is not formed in the dielectric film, voids are not generated in the dielectric film, the crystallinity of the dielectric film is improved, and a dense and defect-free dielectric film is obtained.
In addition, the method for manufacturing a dielectric film according to the first aspect of the present invention further contains Sr and Zr, so that it is possible to obtain higher piezoelectric properties.

本発明の第の観点の誘電体膜の製造方法では、Naを更に含むので、より高い圧電特性を得ることができるという特長がある。 In the method of manufacturing a dielectric film according to the second aspect of the present invention, since Na is further included, there is a feature that higher piezoelectric properties can be obtained.

本発明の第の観点の誘電体膜の製造方法では、液組成物が一般式:y(BitsTiO3)-(1-y)(SrmZrn3)又はy(Bit(Na、K)sTiO3)-(1-y)(SrmZrn3)(但し、0.9≦y≦1、0.4≦t≦0.6、0.4≦s≦0.6、0.9≦m≦1.1、0.9≦n≦1.1)で示される化合物であり、非鉛であるので、鉛系材料の誘電体膜と比較して環境負荷が小さいという特長がある。

In the method for producing a dielectric film according to the third aspect of the present invention, the liquid composition has the general formula: y(Bi t K s TiO 3 )-(1-y)(Sr m Zr n O 3 ) or y(Bi t (Na, K) s TiO 3 )-(1-y)(Sr m Zr n O 3 ) (where 0.9≦y≦1, 0.4≦t≦0.6, 0.4≦s ≤ 0.6, 0.9 ≤ m ≤ 1.1, 0.9 ≤ n ≤ 1.1). It has the advantage of light load.

次に本発明を実施するための形態を説明する。本実施の形態の誘電体膜を製造するための液組成物は、Bi、K及びTiを少なくとも含む。この液組成物は、一般式:Bix1-xTiO3(0.4≦x≦0.6)で示される化合物であることが好ましい。ここで、上記一般式において、xを0.4≦x≦0.6の範囲内に限定したのは、0.4未満では化学量論比からのずれが大き過ぎるため十分な電気特性が得られず、0.6を超えると十分な電気特性が得られないからである。また、上記金属元素の他にNaを更に含んでもよい。更に、上記金属元素の他に、Naとともに、Sr及びZrを更に含んでもよく、或いはNaを含まずに、Sr及びZrを更に含んでもよい。ここで、Naを更に含むと、より高い圧電特性が得られるという利点があり、Sr及びZrを更に含むと、より高い圧電特性が得られるという利点がある。Naを更に含む液組成物は、一般式:Bix(Nay1-y1-xTiO3(0.4≦x≦0.6、0.1≦y≦0.9)で示される化合物であることが好ましい。ここで、xを0.4≦x≦0.6の範囲内に限定したのは、0.4未満では化学量論比からのずれが大き過ぎるため十分な電気特性が得られず、0.6を超えると十分な電気特性が得られないからである。また、yを0.1≦y≦0.9の範囲内に限定したのは、0.1未満又は0.9を超えると十分な圧電特性が得られないからである。一方、Naとともに、Sr及びZrを更に含む液組成物は、一般式:y(BitsTiO3)-(1-y)(SrmZrn3)又はy(Bit(Na、K)sTiO3)-(1-y)(SrmZrn3)(但し、0.9≦y≦1、0.4≦t≦0.6、0.4≦s≦0.6、0.9≦m≦1.1、0.9≦n≦1.1)で示される化合物であることが好ましい。ここで、y、t、s、m、nを0.9≦y≦1、0.4≦t≦0.6、0.4≦s≦0.6、0.9≦m≦1.1、0.9≦n≦1.1の範囲内に限定したのは、十分な圧電定数を得るにはこの範囲内の組成で膜を形成する必要があるからである。 Next, a mode for carrying out the present invention will be described. The liquid composition for manufacturing the dielectric film of this embodiment contains at least Bi, K and Ti. This liquid composition is preferably a compound represented by the general formula: Bi x K 1-x TiO 3 (0.4≦x≦0.6). Here, in the above general formula, x is limited to the range of 0.4 ≤ x ≤ 0.6. This is because if the value exceeds 0.6, sufficient electrical characteristics cannot be obtained. Further, Na may be further included in addition to the above metal elements. Furthermore, in addition to the above metal elements, it may further contain Sr and Zr together with Na, or may further contain Sr and Zr without containing Na. Further containing Na has the advantage of obtaining higher piezoelectric properties, and further containing Sr and Zr has the advantage of obtaining higher piezoelectric properties. The liquid composition further containing Na is represented by the general formula: Bix(NayK1 -y ) 1- xTiO3 ( 0.4≤x≤0.6 , 0.1≤y≤0.9). It is preferably a compound that can be Here, the reason why x is limited to the range of 0.4≦x≦0.6 is that if it is less than 0.4, the deviation from the stoichiometric ratio is too large, and sufficient electrical characteristics cannot be obtained. This is because if it exceeds 6, sufficient electrical characteristics cannot be obtained. The reason why y is limited to the range of 0.1≦y≦0.9 is that if it is less than 0.1 or exceeds 0.9, sufficient piezoelectric characteristics cannot be obtained. On the other hand, the liquid composition further containing Sr and Zr together with Na has the general formula: y(Bi t K s TiO 3 )-(1-y)(Sr m Zr n O 3 ) or y(Bi t (Na, K) s TiO 3 )-(1-y)(Sr m Zr n O 3 ) (where 0.9≦y≦1, 0.4≦t≦0.6, 0.4≦s≦0.6 , 0.9≦m≦1.1, 0.9≦n≦1.1). Here, y, t, s, m, and n are 0.9≤y≤1, 0.4≤t≤0.6, 0.4≤s≤0.6, 0.9≤m≤1.1. , 0.9≦n≦1.1 because the film must be formed with a composition within this range in order to obtain a sufficient piezoelectric constant.

Biの原料としては、2-エチルヘキサン酸ビスマスが用いられる。ここで、Biの原料として2-エチルヘキサン酸ビスマスを用いたのは、液組成物の基板への濡れ性を良好にするためである。Kの原料としては、酢酸カリウム、2-エチルヘキサン酸カリウム、カリウムエトキシド、カリウムターシャリーブトキシド等が挙げられる。また、Ti原料としては、チタンテトラエトキシド:Ti(OEt)4、チタンテトライソプロポキシド:Ti(OiPr)4、チタンテトラn-ブトキシド:Ti(OiBu)4、チタンテトライソブトキシド:Ti(OiBu)4、チタンテトラt-ブトキシド:Ti(OtBu)4、チタンジメトキシジイソプロポキシド:Ti(OMe)2(OiPr)2等が挙げられる。更に、Na原料としては、ナトリウムメトキシド:Na2(OMe)、ナトリウムエトキシド:Na2(OEt)、ナトリウムt-ブトキシド:Na2(OtBu)等が挙げられる。 As a raw material for Bi, bismuth 2-ethylhexanoate is used. Here, the reason why bismuth 2-ethylhexanoate was used as the raw material of Bi is to improve the wettability of the liquid composition to the substrate. Raw materials for K include potassium acetate, potassium 2-ethylhexanoate, potassium ethoxide, potassium tertiary butoxide and the like. Ti raw materials include titanium tetraethoxide: Ti(OEt) 4 , titanium tetraisopropoxide: Ti(OiPr) 4 , titanium tetra-n-butoxide: Ti(OiBu) 4 , titanium tetraisobutoxide: Ti(OiBu). ) 4 , titanium tetra-t-butoxide: Ti(OtBu) 4 , titanium dimethoxydiisopropoxide: Ti(OMe) 2 (OiPr) 2 and the like. Furthermore, Na raw materials include sodium methoxide: Na 2 (OMe), sodium ethoxide: Na 2 (OEt), sodium t-butoxide: Na 2 (OtBu), and the like.

このように構成された液組成物の調製方法を説明する。
(1) Bi、K及びTiを含む誘電体膜、又はBi、Na、K及びTiを含む誘電体膜を作製する場合
Bi、K及びTiを含む誘電体膜、又はBi、Na、K及びTiを含む誘電体膜を作製するために、液組成物の調製プロセス中の揮発分を補填して、即ちBi及びK、又はBi、Na及びKをある程度過剰に添加して液組成物を合成する。先ず、Ti原料とアセチルアセトン、エタノール、1-ブタノール等の溶媒を所定の割合で混合し、80℃~160℃で30分間~180分間還流を行って第1混合液を調製する。次いで、この第1混合液に、エタノール、1-ブタノール、酢酸等の溶媒と、酢酸カリウム(K原料)と、ナトリウムエトキシド(Na原料)を混合し、80℃~160℃で30分間~180分間還流を行って第2混合液を調製する。次に、この第2混合液に2-エチルヘキサン酸ビスマス(Bi原料)を加え、80℃~160℃で30分間~180分間還流を行って第3混合液を調製した後、この第3混合液を80℃~160℃で加熱しながら減圧を行い、第3混合液中の溶媒を半分程度除去する。更に、この第3混合液を1-プロパノール、エタノール、1-ブタノール等の溶媒で希釈し、酸化物濃度で5質量%~10質量%まで希釈して液組成物を得る。ここで、酸化物濃度とは、液組成物に含まれている金属元素が全て安定な酸化物になったと仮定したときの濃度である。即ち、液組成物中に存在する金属元素Bi、Na、K及びTiが、それぞれBi23、Na2O、K2O、TiO2であると仮定したときの濃度である。
A method for preparing the liquid composition thus constituted will be described.
(1) When manufacturing a dielectric film containing Bi, K and Ti, or a dielectric film containing Bi, Na, K and Ti Dielectric film containing Bi, K and Ti, or Bi, Na, K and Ti In order to make a dielectric film containing . First, a Ti raw material and a solvent such as acetylacetone, ethanol, or 1-butanol are mixed at a predetermined ratio, and refluxed at 80° C. to 160° C. for 30 minutes to 180 minutes to prepare a first mixed solution. Next, a solvent such as ethanol, 1-butanol, or acetic acid, potassium acetate (K raw material), and sodium ethoxide (Na raw material) are mixed with this first mixed liquid, and the mixture is heated at 80° C. to 160° C. for 30 minutes to 180° C. Reflux for 1 minute to prepare a second mixture. Next, bismuth 2-ethylhexanoate (Bi raw material) is added to this second mixed liquid and refluxed at 80° C. to 160° C. for 30 minutes to 180 minutes to prepare a third mixed liquid. The pressure is reduced while heating the liquid at 80° C. to 160° C. to remove about half of the solvent in the third mixed liquid. Further, this third mixed solution is diluted with a solvent such as 1-propanol, ethanol, 1-butanol, etc. to obtain a liquid composition by diluting the oxide concentration to 5% by mass to 10% by mass. Here, the oxide concentration is the concentration when all metal elements contained in the liquid composition are assumed to be stable oxides. That is, it is the concentration when the metal elements Bi, Na, K and Ti present in the liquid composition are assumed to be Bi 2 O 3 , Na 2 O, K 2 O and TiO 2 , respectively.

(2) Bi、Na、K及びTiに、Sr及びZrを更に含む誘電体膜を作製する場合
先ず、ナトリウムエトキシド、ナトリウムターシャリーブトキシド等のNa原料と、カリウムエトキシド、カリウムターシャリーブトキシド等のK原料と、エタノール、メタノール等の溶媒とを所定の割合で混合して、室温で30分間~60分間撹拌することにより懸濁液を調製する。次いで、この懸濁液に、テトラチタンイソプロポキシド、テトラチタンブトキシド等のTi原料と、ジルコニウムブトキシド等のZr原料とを添加し、30分間~60分間還流を行って第1混合液を調製する。この第1混合液に、2-エチルヘキサン酸ビスマス等のBi原料と、酢酸ストロンチウム0.5水和物、硝酸ストロンチウム等のSr原料と、プロピレングリコール、エチレングリコール等のジオールを添加し、30分間~60分間還流を行って第2混合液を調製する。次に、この第2混合液にアセチルアセトン等の安定化剤を添加し、30分間~60分間還流を行って第3混合液を調製する。この第3混合液から溶媒を脱離して、エタノール等の溶媒及び反応副生成物を除去した後、プロピレングリコール、エチレングリコール等のジオールを添加し、酸化物換算で8質量%~12質量%まで希釈する。更に、この希釈した液に、2-ジメチルアミノエタノール、1-エタノールアミン等の安定化剤を、Ti:安定化剤がモル比で1:1となるように添加し、続けて1-ブタノール、エタノール等で液を酸化物換算で4質量%~10質量%まで希釈した後、得られた液をフィルタでろ過することによりゴミを取除いて、液組成物を得る。
(2) In the case of producing a dielectric film further containing Sr and Zr in addition to Bi, Na, K and Ti First, Na raw materials such as sodium ethoxide and sodium tertiary butoxide, potassium ethoxide, potassium tertiary butoxide and the like are prepared. and a solvent such as ethanol or methanol are mixed in a predetermined ratio and stirred at room temperature for 30 to 60 minutes to prepare a suspension. Next, a Ti raw material such as tetratitanium isopropoxide and tetratitanium butoxide and a Zr raw material such as zirconium butoxide are added to this suspension, and refluxed for 30 to 60 minutes to prepare a first mixed liquid. . A Bi raw material such as bismuth 2-ethylhexanoate, an Sr raw material such as strontium acetate pentahydrate and strontium nitrate, and a diol such as propylene glycol and ethylene glycol are added to the first mixed solution, and the mixture is stirred for 30 minutes. Reflux for ~60 minutes to prepare a second mixture. Next, a stabilizing agent such as acetylacetone is added to the second mixture, and the mixture is refluxed for 30 to 60 minutes to prepare a third mixture. After desorbing the solvent from this third mixture to remove the solvent such as ethanol and the reaction by-products, a diol such as propylene glycol or ethylene glycol is added, and the content is reduced to 8% by mass to 12% by mass in terms of oxide. Dilute. Furthermore, a stabilizer such as 2-dimethylaminoethanol or 1-ethanolamine is added to the diluted solution so that the molar ratio of Ti:stabilizer is 1:1, followed by 1-butanol, After diluting the liquid with ethanol or the like to 4% by mass to 10% by mass in terms of oxides, the resulting liquid is filtered to remove dust to obtain a liquid composition.

一方、上記液組成物を塗布するために、例えばPt電極付きシリコンウェーハを用意する。具体的には、先ず、シリコンウェーハ表面に厚さ100nm~500nmの熱酸化膜を形成する。次に、この熱酸化膜上にスパッタリング法により厚さ10nm~30nmのTi膜を形成した後、酸素雰囲気中で赤外線急速加熱装置(RTA)により700℃~800℃の温度に1分間~3分間保持して焼成することによりTiOx膜を形成する。更に、TiOx膜上に厚さ100nm~200nmのPt電極を形成して、Pt電極付きシリコンウェーハを得る。 On the other hand, for example, a silicon wafer with a Pt electrode is prepared in order to apply the liquid composition. Specifically, first, a thermal oxide film having a thickness of 100 nm to 500 nm is formed on the silicon wafer surface. Next, after forming a Ti film with a thickness of 10 nm to 30 nm on this thermal oxide film by a sputtering method, it is heated to a temperature of 700° C. to 800° C. for 1 minute to 3 minutes by an infrared rapid heating apparatus (RTA) in an oxygen atmosphere. A TiOx film is formed by holding and baking. Furthermore, a Pt electrode with a thickness of 100 nm to 200 nm is formed on the TiOx film to obtain a silicon wafer with a Pt electrode.

上記液組成物を用いてPt電極付きシリコンウェーハ上に誘電体膜を作製する方法を説明する。先ず、液組成物をメンブレンフィルタでろ過した後、この液組成物を2000rpm~3000rpmの速度でスピンコーティングを行って、Pt電極付きウェーハ上に塗膜を形成する。ここで、液組成物のBiの原料として2-エチルヘキサン酸ビスマスを用いたので、液組成物の基板への濡れ性が良好である。次に、この塗膜をホットプレート等の加熱装置により300℃~400℃の温度に3分間~10分間保持して仮焼成することにより、厚さ約50nm~100nmの仮焼成膜を作製する。この操作を複数回繰り返して厚さ100nm~200nmの仮焼成膜を得る。ここで、塗膜の仮焼成温度を300℃~400℃の範囲内に限定したのは、300℃未満では脱脂が不十分であり誘電体膜中に炭素が残り易く、400℃を超えると精密な温度制御が難しく均質な誘電体膜を得ることが困難になるからである。塗膜の仮焼成時間を3分間~10分間の範囲内に限定したのは、3分間未満では脱脂が不十分であり誘電体膜中に炭素が残り易く、10分間を超えると生産性が悪いからである。また、1回の仮焼成により形成された仮焼成膜の厚さを50nm~100nmの範囲内に限定したのは、50nm未満では生産性が悪く、100nmを超えるとクラックが発生し易くなるからである。更に、複数回の仮焼成を繰り返した後の仮焼成膜の厚さを100nm~200nmの範囲内に限定したのは、100nm未満では生産性が悪いという不具合があり、200nmを超えるとクラックが発生し易いという不具合があるからである。 A method of forming a dielectric film on a silicon wafer with a Pt electrode using the liquid composition will be described. First, after the liquid composition is filtered through a membrane filter, the liquid composition is spin-coated at a speed of 2000 rpm to 3000 rpm to form a coating film on a wafer with a Pt electrode. Here, since bismuth 2-ethylhexanoate was used as a raw material of Bi in the liquid composition, the wettability of the liquid composition to the substrate is excellent. Next, this coating film is calcined by holding it at a temperature of 300° C. to 400° C. for 3 to 10 minutes using a heating device such as a hot plate to prepare a calcined film having a thickness of about 50 nm to 100 nm. This operation is repeated several times to obtain a calcined film with a thickness of 100 nm to 200 nm. Here, the reason why the calcination temperature of the coating film is limited to the range of 300° C. to 400° C. is that if it is less than 300° C., degreasing is insufficient and carbon tends to remain in the dielectric film, and if it exceeds 400° C. This is because it is difficult to obtain a homogeneous dielectric film due to the difficulty of proper temperature control. The reason why the temporary baking time of the coating film is limited to the range of 3 minutes to 10 minutes is that if it is less than 3 minutes, degreasing is insufficient and carbon tends to remain in the dielectric film, and if it exceeds 10 minutes, productivity is poor. It is from. The reason why the thickness of the calcined film formed by one calcination is limited to within the range of 50 nm to 100 nm is that if it is less than 50 nm, the productivity is poor, and if it exceeds 100 nm, cracks are likely to occur. be. Furthermore, the reason why the thickness of the calcined film after repeated calcinations is limited to within the range of 100 nm to 200 nm is that if it is less than 100 nm, the productivity is poor, and if it exceeds 200 nm, cracks occur. This is because there is a problem that it is easy to

更に、表面に仮焼成膜が形成されたウェーハを酸素雰囲気中でRTAにより室温から650℃~800℃の範囲内の所定温度まで昇温して、この温度に所定時間保持する。詳しくは、室温から500℃まで10℃/秒~100℃/秒の速度で昇温し、本発明の特徴ある温度範囲である500℃から600℃まで30℃/秒以上の速度で昇温した後、600℃から650℃~800℃の範囲内の所定温度まで10℃/秒~100℃/秒の速度で昇温し、650℃~800℃の範囲内の所定温度に1分間~10分間の範囲内の所定時間保持することにより、ウェーハ表面に誘電体膜を作製する。ここで、仮焼成膜の焼成時の昇温速度のうち500℃から600℃までの昇温速度を30℃/秒以上に限定したのは、30℃/秒未満では速度論的に炭酸塩の生成が優勢になり、誘電体膜がポーラスになってしまうからである。500℃から600℃までの昇温速度は、速ければ速いほど良いが、100℃/秒以上の出力を有するRTAでは、装置コストが高くなるため、100℃/秒以下であることが好ましい。また、室温から500℃までの昇温速度を10℃/秒~100℃/秒の範囲内に広く設定し、600℃から650℃~800℃の範囲内の所定温度までの昇温速度を10℃/秒~100℃/秒の範囲内に広く設定したのは、特に限定する必要がないためであり、昇温速度の制御性等を考慮すると、本発明の特徴ある温度範囲である500℃から600℃までの昇温速度と同一にした方が好ましい。また、仮焼成膜の焼成温度を650℃~800℃の範囲内の所定温度に限定したのは、650℃未満では十分に結晶化が進行せず、800℃を超えると下部電極が劣化してしまうからである。更に、仮焼成膜の焼成時間を3分間~10分間の範囲内の所定時間に限定したのは、3分間未満では十分な脱脂を行うことができず誘電体膜中に炭素が残り易く、10分間を超えると生産性が悪いからである。 Further, the wafer having the calcined film formed on its surface is heated to a predetermined temperature within the range of room temperature to 650° C. to 800° C. by RTA in an oxygen atmosphere, and held at this temperature for a predetermined period of time. Specifically, the temperature was raised from room temperature to 500° C. at a rate of 10° C./sec to 100° C./sec, and then from 500° C. to 600° C., which is the characteristic temperature range of the present invention, at a rate of 30° C./sec or more. After that, the temperature is raised from 600° C. to a predetermined temperature in the range of 650° C. to 800° C. at a rate of 10° C./second to 100° C./second, and the predetermined temperature in the range of 650° C. to 800° C. is reached for 1 minute to 10 minutes. A dielectric film is formed on the wafer surface by holding for a predetermined time within the range of . Here, the reason why the temperature increase rate from 500° C. to 600° C. is limited to 30° C./sec or more among the temperature increase rates during firing of the calcined film is that if the temperature is less than 30° C./sec, the kinetics of carbonate increases. This is because the generation becomes dominant and the dielectric film becomes porous. The faster the rate of temperature rise from 500° C. to 600° C., the better. However, RTA having an output of 100° C./second or more increases the equipment cost, so it is preferably 100° C./second or less. In addition, the rate of temperature increase from room temperature to 500°C is set widely within the range of 10°C/sec to 100°C/sec, and the rate of temperature increase from 600°C to a predetermined temperature within the range of 650°C to 800°C is set to 10°C. The reason why the temperature is set widely within the range of ° C./sec to 100 ° C./sec is that there is no need to limit it. to 600° C. is preferably the same. The firing temperature of the calcined film is limited to a predetermined temperature in the range of 650° C. to 800° C. The reason is that crystallization does not proceed sufficiently below 650° C., and the lower electrode deteriorates if it exceeds 800° C. Because it will be stored away. Furthermore, the reason why the firing time of the calcined film is limited to a predetermined time in the range of 3 minutes to 10 minutes is that if it is less than 3 minutes, sufficient degreasing cannot be performed and carbon tends to remain in the dielectric film. This is because if the time exceeds one minute, the productivity is poor.

このように作製された誘電体膜では、仮焼成膜の焼成時に500℃から600℃までの昇温速度を30℃/秒以上にしたので、安定で熱分解し難い炭酸塩やその他の異相が、ペロブスカイト相の形成前に生成しない。この結果、誘電体膜中に炭酸塩が形成されないので、誘電体膜中にボイドが生成されず、誘電体膜の結晶性が良好になり、緻密で欠陥のない誘電体膜が得られる。 In the dielectric film thus produced, since the rate of temperature increase from 500° C. to 600° C. was set to 30° C./second or more during firing of the pre-fired film, stable and hard to thermally decompose carbonates and other different phases were generated. , does not form before the formation of the perovskite phase. As a result, since carbonate is not formed in the dielectric film, voids are not generated in the dielectric film, the crystallinity of the dielectric film is improved, and a dense and defect-free dielectric film is obtained.

次に本発明の実施例を比較例とともに詳しく説明する。 Next, examples of the present invention will be described in detail together with comparative examples.

<実施例1>
Bi、Na、K及びTiを含む誘電体膜を作製するために、プロセス中の揮発分を補填して、即ちBiを8質量%、Na及びKを16質量%過剰に添加して、Bi0.54(Na0.80.2)0.58TiO3となるように液組成物を合成した。具体的には、先ず、チタンイソプロポキシド(Ti原料)とアセチルアセトンをモル比で1:2として混合し、150℃で30分間還流を行って第1混合液を調製した。次いで、この第1混合液に、エタノール、酢酸カリウム(K原料)及びナトリウムエトキシド(Na原料)を混合し、150℃で30分間還流を行って第2混合液を調製した。次に、この第2混合液に2-エチルヘキサン酸ビスマス(Bi原料)を加え、150℃で30分間還流を行って第3混合液を調製した後、この第3混合液を150℃で加熱しながら減圧を行い、第3混合液中のエタノールを半分除去した。更に、この第3混合液を1-プロパノールで希釈し、酸化物濃度で8質量%まで希釈して液組成物を得た。ここで、酸化物濃度とは、液組成物に含まれている金属元素が全て安定な酸化物になったと仮定したときの濃度である。即ち、液組成物中に存在する金属元素Bi、Na、K及びTiが、それぞれBi23、Na2O、K2O、TiO2であると仮定したときの濃度である。
<Example 1>
In order to make a dielectric film containing Bi, Na, K and Ti, the volatiles in the process were compensated, i.e. 8% by weight of Bi and 16% by weight of Na and K were added in excess to obtain Bi 0.54 A liquid composition was synthesized so as to be (Na 0.8 K 0.2 ) 0.58 TiO 3 . Specifically, first, titanium isopropoxide (Ti raw material) and acetylacetone were mixed at a molar ratio of 1:2, and refluxed at 150° C. for 30 minutes to prepare a first mixed solution. Next, ethanol, potassium acetate (K raw material) and sodium ethoxide (Na raw material) were mixed with this first mixed liquid, and refluxed at 150° C. for 30 minutes to prepare a second mixed liquid. Next, bismuth 2-ethylhexanoate (Bi raw material) is added to this second mixed liquid and refluxed at 150° C. for 30 minutes to prepare a third mixed liquid, and then this third mixed liquid is heated at 150° C. While reducing the pressure, half of the ethanol in the third mixture was removed. Furthermore, this third mixture was diluted with 1-propanol to an oxide concentration of 8% by mass to obtain a liquid composition. Here, the oxide concentration is the concentration when all metal elements contained in the liquid composition are assumed to be stable oxides. That is, it is the concentration when the metal elements Bi, Na, K and Ti present in the liquid composition are assumed to be Bi 2 O 3 , Na 2 O, K 2 O and TiO 2 , respectively.

一方、上記液組成物を塗布するためのPt電極付きシリコンウェーハを用意した。具体的には、先ず、直径4インチのシリコンウェーハ表面に厚さ500nmの熱酸化膜を形成した。次に、この熱酸化膜上にスパッタリング法により厚さ20nmのTi膜を形成した後、酸素雰囲気中で赤外線急速加熱装置(RTA)により700℃の温度に1分間保持して焼成することによりTiO2膜を形成した。更に、TiO2膜上に厚さ200nmのPt電極を形成して、Pt電極付きシリコンウェーハを得た。 On the other hand, a silicon wafer with a Pt electrode was prepared for coating the liquid composition. Specifically, first, a thermal oxide film with a thickness of 500 nm was formed on the surface of a silicon wafer with a diameter of 4 inches. Next, after forming a Ti film with a thickness of 20 nm on this thermal oxide film by a sputtering method, the TiO film was fired by holding at a temperature of 700° C. for 1 minute in an oxygen atmosphere with an infrared rapid heating apparatus (RTA). 2 films were formed. Furthermore, a Pt electrode with a thickness of 200 nm was formed on the TiO 2 film to obtain a silicon wafer with a Pt electrode.

そして、上記液組成物をメンブレンフィルタでろ過した後、この液組成物を3000rpmの速度でスピンコーティングを行って、Pt電極付きウェーハ上に塗膜を形成した。スピンコーティング時の滴下時間は30秒とした。次に、この塗膜をホットプレートにより350℃の温度に5分間保持して仮焼成することにより、厚さ約67nmの仮焼成膜を作製した。この操作を3回繰り返して厚さ約200nmの仮焼成膜を得た。更に、表面に仮焼成膜が形成されたウェーハを酸素雰囲気中でRTAにより室温から700℃まで50℃/秒の速度で昇温した後、700℃に1分間保持することにより、ウェーハ表面に誘電体膜を作製した。この誘電体膜を実施例1とした。 After the liquid composition was filtered through a membrane filter, the liquid composition was spin-coated at a speed of 3000 rpm to form a coating film on the wafer with the Pt electrode. The dropping time during spin coating was 30 seconds. Next, this coating film was calcined by holding it at a temperature of 350° C. for 5 minutes on a hot plate to prepare a calcined film having a thickness of about 67 nm. This operation was repeated three times to obtain a calcined film having a thickness of about 200 nm. Further, the wafer having the calcined film formed on its surface was heated from room temperature to 700° C. at a rate of 50° C./sec by RTA in an oxygen atmosphere, and then held at 700° C. for 1 minute to obtain a dielectric film on the wafer surface. A body membrane was prepared. This dielectric film was designated as Example 1.

<実施例2~7及び比較例1~5>
実施例2~7及び比較例1~5は、Bi原料として表1に示す原料を用い、Bi、Na、K及びTiの金属原子比が表1に示す金属原子比になるように各原料を配合して、液組成物をそれぞれ調製し、仮焼成膜の焼成時の昇温速度を表1に示す値としたこと以外は、実施例1と同様にして誘電体膜を作製した。
<Examples 2 to 7 and Comparative Examples 1 to 5>
In Examples 2 to 7 and Comparative Examples 1 to 5, the raw materials shown in Table 1 were used as Bi raw materials, and each raw material was used so that the metal atomic ratios of Bi, Na, K, and Ti were the metal atomic ratios shown in Table 1. A dielectric film was produced in the same manner as in Example 1, except that the rate of temperature rise during firing of the calcined film was set to the value shown in Table 1.

<実施例8>
先ず、フラスコに、エタノール(溶媒)と、ナトリウムエトキシド(Na原料)と、カリウムエトキシド(K原料)とを入れ、室温で30分間撹拌することにより赤褐色の懸濁液を得た。次いで、この懸濁液にテトラチタンイソプロポキシド(Ti原料)と、ジルコニウムブトキシド(Zr原料)とを添加し、30分間還流を行って第1混合液を調製した。この第1混合液に、2-エチルヘキサン酸ビスマス(Bi原料)と、酢酸ストロンチウム0.5水和物(Sr原料)と、プロピレングリコール(ジオール)とを添加し、30分間還流を行って第2混合液を調製した。次に、この第2混合液にアセチルアセトン(安定化剤)を添加し、30分間還流を行って第3混合液を調製した。この第3混合液から溶媒を脱離して、エタノール(溶媒)及び反応副生成物を除去した後、プロピレングリコール(ジオール)を添加し、酸化物換算で15質量%まで希釈した。更に、この希釈した液に安定化剤として2-ジメチルアミノエタノールを、Ti:安定化剤がモル比で1:1となるように添加し、続けて1-ブタノールで液を酸化物換算で8質量%まで希釈した後、得られた液をフィルタでろ過することによりゴミを取除いて、液組成物を得た。そして、この液組成物を用いて、実施例1と同様の方法で誘電体膜を作製した。この誘電体膜を実施例8とした。
<Example 8>
First, ethanol (solvent), sodium ethoxide (Na raw material), and potassium ethoxide (K raw material) were placed in a flask and stirred at room temperature for 30 minutes to obtain a reddish brown suspension. Next, tetratitanium isopropoxide (Ti raw material) and zirconium butoxide (Zr raw material) were added to this suspension, and the mixture was refluxed for 30 minutes to prepare a first mixed liquid. Bismuth 2-ethylhexanoate (Bi raw material), strontium acetate 0.5 hydrate (Sr raw material), and propylene glycol (diol) were added to the first mixed solution, and refluxed for 30 minutes. 2 mixtures were prepared. Next, acetylacetone (stabilizer) was added to this second mixed liquid and refluxed for 30 minutes to prepare a third mixed liquid. After desorbing the solvent from this third mixture to remove ethanol (solvent) and reaction by-products, propylene glycol (diol) was added to dilute to 15 mass % in terms of oxide. Furthermore, 2-dimethylaminoethanol as a stabilizer was added to this diluted solution so that the molar ratio of Ti: stabilizer was 1:1, and then the solution was diluted with 1-butanol to 8 in terms of oxide. After diluting to % by mass, the resulting liquid was filtered to remove dust, thereby obtaining a liquid composition. Then, a dielectric film was produced in the same manner as in Example 1 using this liquid composition. This dielectric film was designated as Example 8.

<実施例9~12、比較例6及び比較例7>
実施例9~12、比較例6及び比較例7は、金属原子比を表1に示す金属原子比になるように原料を配合して、液組成物を調製するか(実施例11及び実施例12)、仮焼成膜の焼成時の昇温速度を表1に示す値に変更した(実施例9~12、比較例6及び比較例7)こと以外は、実施例1と同様にして誘電体膜を作製した。
<Examples 9 to 12, Comparative Examples 6 and 7>
In Examples 9 to 12, Comparative Examples 6 and 7, raw materials were blended so that the metal atomic ratios shown in Table 1 were obtained to prepare liquid compositions (Examples 11 and 7). 12) Dielectrics were prepared in the same manner as in Example 1, except that the rate of temperature increase during firing of the calcined film was changed to the value shown in Table 1 (Examples 9 to 12, Comparative Examples 6 and 7). A membrane was prepared.

<比較試験1及び評価>
実施例1~12及び比較例1~7の誘電体膜のボイド率及びピンホールの有無を調べた。上記ボイド率は、誘電体膜の断面をSEM(走査型電子顕微鏡:Scanning Electron Microscope)により観察し、その断面像を画像解析することにより膜部分の画像面積及び膜中のボイド部分の画像面積を算出し、[(ボイド部分の画像面積)/(膜部分の画像面積)]×100という計算を行うことにより、ボイド率(%)を算出した。また、ピンホールの有無は、誘電体膜の表面を目視により観察し、ピンホールが全く無いものを『無し』とし、ピンホールが1個以上あるものを『有り』とした。その結果を表1に示す。なお、表1のBi原料の欄において、『A』は2-エチルヘキサン酸ビスマスを示し、『B』は硝酸ビスマス五水和物を示す。また、誘電体膜のBi、Na、K、Ti、Sr及びZrの金属原子比を、液組成物のBi、Na、K、Ti、Sr及びZrの金属原子比とともに、表2に示した。更に、誘電体膜の金属原子比は蛍光X線装置(リガク社製、型式名:Primus III+)によって測定した。
<Comparative test 1 and evaluation>
The dielectric films of Examples 1 to 12 and Comparative Examples 1 to 7 were examined for void ratio and presence or absence of pinholes. The above void ratio is obtained by observing the cross section of the dielectric film with a scanning electron microscope (SEM) and analyzing the image of the cross section to obtain the image area of the film portion and the image area of the void portion in the film. Then, the void ratio (%) was calculated by calculating [(image area of void portion)/(image area of film portion)]×100. In addition, the presence or absence of pinholes was determined by visually observing the surface of the dielectric film. If there were no pinholes, it was rated as "absent", and if there were one or more pinholes, it was rated as "yes". Table 1 shows the results. In the Bi raw material column of Table 1, "A" indicates bismuth 2-ethylhexanoate and "B" indicates bismuth nitrate pentahydrate. Table 2 shows the metal atomic ratios of Bi, Na, K, Ti, Sr and Zr in the dielectric film together with the metal atomic ratios of Bi, Na, K, Ti, Sr and Zr in the liquid composition. Furthermore, the metal atomic ratio of the dielectric film was measured with a fluorescent X-ray device (manufactured by Rigaku, model name: Primus III+).

Figure 0007119265000001
Figure 0007119265000001

Figure 0007119265000002
Figure 0007119265000002

表1から明らかなように、焼成時の昇温速度が10~25℃/秒と適切な範囲(30℃/秒以上)より小さい比較例1~3、6及び7の誘電体膜では、ピンホールは無かったけれども、ボイド率が19~32%と大きくなったのに対し、焼成時の昇温速度が30~100℃/秒と適切な範囲(30℃/秒以上)内である実施例1~12では、ピンホールは無く、かつボイド率も2~12%と小さくなった。また、液組成物のBi、Na、K、Ti、Sr及びZrの金属原子比が0.54:0.464:0.116:1:0:0であり、かつ液組成物のBi原料として硝酸ビスマス五水和物を用いた比較例4及び5の誘電体膜では、焼成時の昇温速度の大きさに拘らず、ボイド率が8%及び9%と小さくなったけれども、ピンホールが発生した。これらに対し、液組成物のBi、Na、K、Ti、Sr及びZrの金属原子比が0.54:0.464:0.116:1:0:0であり、かつ液組成物のBi原料として2-エチルヘキサン酸ビスマスを用いた実施例1~3の誘電体膜では、焼成時の昇温速度が30~100℃/秒と適切な範囲(30℃/秒以上)内であるときに、ピンホールが無く、かつボイド率も4~12%と小さくなった。これらのことから、Bi原料が2エチルヘキサン酸ビスマスであるときのみ、誘電体膜の緻密化に30℃/秒以上の昇温速度が必要であることを確認できた。 As is clear from Table 1, the dielectric films of Comparative Examples 1 to 3, 6, and 7, which had a heating rate during firing of 10 to 25° C./sec, which was smaller than the appropriate range (30° C./sec or more), were not pinned. Although there were no holes, the void ratio increased to 19 to 32%, while the heating rate during firing was 30 to 100°C/sec, which was within an appropriate range (30°C/sec or more). In 1 to 12, there were no pinholes, and the void ratio was as small as 2 to 12%. Further, the metal atomic ratio of Bi, Na, K, Ti, Sr and Zr in the liquid composition is 0.54:0.464:0.116:1:0:0, and as the Bi raw material of the liquid composition In the dielectric films of Comparative Examples 4 and 5 using bismuth nitrate pentahydrate, the void ratio was as small as 8% and 9% regardless of the rate of temperature rise during firing, but pinholes were formed. Occurred. In contrast, the liquid composition has a metal atomic ratio of Bi, Na, K, Ti, Sr, and Zr of 0.54:0.464:0.116:1:0:0, and the liquid composition has a Bi In the dielectric films of Examples 1 to 3 using bismuth 2-ethylhexanoate as a raw material, when the temperature increase rate during firing is within an appropriate range of 30 to 100 ° C./sec (30 ° C./sec or more) Furthermore, there were no pinholes and the void ratio was as small as 4 to 12%. From these results, it was confirmed that a heating rate of 30° C./second or more is necessary for densification of the dielectric film only when the Bi raw material is bismuth diethylhexanoate.

また、液組成物のBi、Na、K、Ti、Sr及びZrの金属原子比が0.54:0:0.58:1:0:0であり、かつ焼成時の昇温速度が25℃/秒と適切な範囲(30℃/秒以上)より小さい比較例3の誘電体膜では、ピンホールは無かったけれども、ボイド率が19%と大きくなったのに対し、液組成物のBi、Na、K、Ti、Sr及びZrの金属原子比が0.54:0:0.58:1:0:0であり、かつ焼成時の昇温速度が50℃/秒と適切な範囲(30℃/秒以上)内である実施例7では、ピンホールは無く、かつボイド率も2%と極めて小さくなった。このことから、昇温速度を30℃/秒以上にしなければ、誘電体膜の緻密化が進行しないことを確認できた。 In addition, the metal atomic ratio of Bi, Na, K, Ti, Sr, and Zr in the liquid composition was 0.54:0:0.58:1:0:0, and the heating rate during firing was 25°C. /sec, which is smaller than the appropriate range (30°C/sec or more), the dielectric film of Comparative Example 3 did not have pinholes, but had a high void ratio of 19%. The metal atomic ratio of Na, K, Ti, Sr, and Zr is 0.54:0:0.58:1:0:0, and the heating rate during firing is 50°C/sec, which is an appropriate range (30 °C/sec), there were no pinholes, and the void fraction was extremely small at 2%. From this, it was confirmed that the densification of the dielectric film did not proceed unless the temperature increase rate was 30° C./second or more.

更に、表1及び表2から明らかなように、液組成物がSr及びZrを含み、液組成物のBi、Na、K、Ti、Sr及びZrの金属原子比が0.54:0.464:0.116:0.975:0.025:0.025であり、かつ焼成時の昇温速度が25℃/秒と適切な範囲(30℃/秒以上)より小さい比較例6及び7の誘電体膜では、誘電体膜のBiの金属原子比が0.490~0.499と液組成物のBiの金属原子比0.54からの低下率が大きかったのに対し、液組成物がSr及びZrを含み、液組成物のBi、Na、K、Ti、Sr及びZrの金属原子比が0.54:0.464:0.116:0.975:0.025:0.025であり、かつ焼成時の昇温速度が30℃/秒~100℃/秒と適切な範囲(30℃/秒以上)内である実施例8~12の誘電体膜では、これらの誘電体膜のBiの金属原子比が0.502~0.508と液組成物のBiの金属原子比0.54からの低下率は小さくなった。これは、Sr及びZrを添加することにより結晶化速度が速くなったことが要因であると考えられる。 Furthermore, as is clear from Tables 1 and 2, the liquid composition contains Sr and Zr, and the metal atomic ratio of Bi, Na, K, Ti, Sr and Zr in the liquid composition is 0.54:0.464. : 0.116: 0.975: 0.025: 0.025, and the temperature increase rate during firing is 25 ° C./sec, which is smaller than the appropriate range (30 ° C./sec or more). In the dielectric film, the metal atomic ratio of Bi in the dielectric film was 0.490 to 0.499, and the decrease rate from the metal atomic ratio of Bi in the liquid composition was 0.54. Sr and Zr are included, and the metal atomic ratio of Bi, Na, K, Ti, Sr and Zr in the liquid composition is 0.54:0.464:0.116:0.975:0.025:0.025 In the dielectric films of Examples 8 to 12, in which the rate of temperature rise during firing is within the appropriate range of 30° C./sec to 100° C./sec (30° C./sec or more), these dielectric films The metal atomic ratio of Bi was 0.502 to 0.508, and the rate of decrease from the metal atomic ratio of Bi of the liquid composition of 0.54 was small. The reason for this is thought to be that the addition of Sr and Zr increased the crystallization rate.

なお、実施例1~12の仮焼成膜の焼成時において、室温から500℃までの昇温速度を15℃/秒とし、500℃から600℃までの昇温速度を表1に記載された昇温速度とし、600℃から700℃までの昇温速度を15℃/秒としたとき、誘電体膜のボイド率は、表1に記載された実施例1~12の値とほぼ同一であり、ピンホールは無かった。 In addition, when firing the calcined films of Examples 1 to 12, the rate of temperature increase from room temperature to 500° C. was 15° C./sec, and the rate of temperature increase from 500° C. to 600° C. was set at the rate shown in Table 1. When the temperature rate is 15° C./sec from 600° C. to 700° C., the void fraction of the dielectric film is almost the same as the values of Examples 1 to 12 shown in Table 1. There were no pinholes.

本発明の誘電体膜の製造方法は、キャパシタ、インクジェットヘッド、ミラーデバイス、オートフォーカス、ジャイロセンサ、マイクロポンプなどのMEMS(Microelectromechanical Systems)アプリケーション用の誘電体膜を製造するために利用できる。 The method for producing a dielectric film of the present invention can be used to produce dielectric films for MEMS (Microelectromechanical Systems) applications such as capacitors, inkjet heads, mirror devices, autofocus, gyro sensors, and micropumps.

Claims (3)

Bi、K及びTiを少なくとも含む液組成物を基板上に塗布した塗膜を仮焼成して仮焼成膜を作製しこの仮焼成膜を焼成することにより金属酸化物からなる誘電体膜を製造する方法であって、
Sr及びZrを更に含み、
前記Biの原料が2-エチルヘキサン酸ビスマスであり、
前記仮焼成膜の焼成時に500℃から600℃までの昇温速度を30℃/秒以上にする
ことを特徴とする誘電体膜の製造方法。
A coating film obtained by applying a liquid composition containing at least Bi, K and Ti on a substrate is calcined to prepare a calcined film, and the calcined film is calcined to manufacture a dielectric film made of a metal oxide. a method,
further comprising Sr and Zr;
The Bi raw material is bismuth 2-ethylhexanoate,
A method for producing a dielectric film, wherein a rate of temperature increase from 500° C. to 600° C. is set to 30° C./second or more during firing of the calcined film.
Naを更に含む請求項1記載の誘電体膜の製造方法。 2. The method of manufacturing a dielectric film according to claim 1, further comprising Na. 前記液組成物が一般式:y(BitsTiO3)-(1-y)(SrmZrn3)又はy(Bit(Na、K)sTiO3)-(1-y)(SrmZrn3)(但し、0.9≦y≦1、0.4≦t≦0.6、0.4≦s≦0.6、0.9≦m≦1.1、0.9≦n≦1.1)で示される化合物である請求項1又は2記載の誘電体膜の製造方法。 The liquid composition has the general formula: y(Bit K s TiO 3 )-(1- y )(Sr m Zr n O 3 ) or y (Bit (Na, K) s TiO 3 )-(1-y ) (Sr m Zr n O 3 ) (where 0.9 ≤ y ≤ 1, 0.4 ≤ t ≤ 0.6, 0.4 ≤ s ≤ 0.6, 0.9 ≤ m ≤ 1.1, 3. The method for producing a dielectric film according to claim 1, wherein the compound is represented by 0.9≤n≤1.1).
JP2018149084A 2018-01-18 2018-08-08 Method for manufacturing dielectric film Active JP7119265B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018006162 2018-01-18
JP2018006162 2018-01-18

Publications (2)

Publication Number Publication Date
JP2019123659A JP2019123659A (en) 2019-07-25
JP7119265B2 true JP7119265B2 (en) 2022-08-17

Family

ID=67398003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018149084A Active JP7119265B2 (en) 2018-01-18 2018-08-08 Method for manufacturing dielectric film

Country Status (1)

Country Link
JP (1) JP7119265B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007084408A (en) 2005-09-26 2007-04-05 Hosokawa Funtai Gijutsu Kenkyusho:Kk Piezoelectric ceramic
JP2007099618A (en) 2006-10-04 2007-04-19 Tdk Corp Ferroelectric thin film
JP2011238710A (en) 2010-05-07 2011-11-24 Seiko Epson Corp Manufacturing method of liquid injection head and liquid injection device using the same, and manufacturing method of piezo-electric element
JP2012136487A (en) 2010-12-27 2012-07-19 Seiko Epson Corp Method for producing composition for forming ceramic film, piezoelectric ceramic film, and method for producing bismuth 2-ethylhexanoate
JP2016187019A (en) 2015-03-27 2016-10-27 セイコーエプソン株式会社 Piezoelectric element, piezoelectric element application device, and method for manufacturing piezoelectric element

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0969614A (en) * 1995-09-01 1997-03-11 Sharp Corp Manufacturing method for ferroelectric thin film, dielectric thin film and integrated circuit containing ferroelectric thin film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007084408A (en) 2005-09-26 2007-04-05 Hosokawa Funtai Gijutsu Kenkyusho:Kk Piezoelectric ceramic
JP2007099618A (en) 2006-10-04 2007-04-19 Tdk Corp Ferroelectric thin film
JP2011238710A (en) 2010-05-07 2011-11-24 Seiko Epson Corp Manufacturing method of liquid injection head and liquid injection device using the same, and manufacturing method of piezo-electric element
JP2012136487A (en) 2010-12-27 2012-07-19 Seiko Epson Corp Method for producing composition for forming ceramic film, piezoelectric ceramic film, and method for producing bismuth 2-ethylhexanoate
JP2016187019A (en) 2015-03-27 2016-10-27 セイコーエプソン株式会社 Piezoelectric element, piezoelectric element application device, and method for manufacturing piezoelectric element

Also Published As

Publication number Publication date
JP2019123659A (en) 2019-07-25

Similar Documents

Publication Publication Date Title
US20080175985A1 (en) Method of Preparing Stable Oxide Ceramic Precursor Sol-Gel Solutions Based on Lead, Titanium, Zirconium and Lanthanide(s) and Method of Preparing Said Ceramic
KR102384736B1 (en) Mn-doped pzt-based piezoelectric film formation composition and mn-doped pzt-based piezoelectric film
JP2001261338A (en) Raw material solution for forming titanium-containing metal oxide thin film, method of forming the same, and titanium-containing metal oxide thin film
JP2009516634A (en) Coating film manufacturing process based on oxide ceramics adapted to the shape of the substrate with relief characteristics
JP6167657B2 (en) Silicon substrate with ferroelectric film
JP6950404B2 (en) A method for producing a liquid composition for forming a piezoelectric film and a method for forming a piezoelectric film using this liquid composition.
KR20160138384A (en) Composition for forming manganese- and niobium-doped pzt piezoelectric film
JP4398727B2 (en) Method for preparing a stable sol for lead zirconate titanate and a method for producing a film from such sol
TWI680595B (en) Ptzt piezoelectric film and method of manufacturing liquid composition for forming its piezoelectric film
JP6237407B2 (en) Method for forming Mn and Nb doped PZT piezoelectric film
WO2015060003A1 (en) Liquid composition for forming lead-free dielectric thin film, method for forming said thin film, and lead-free dielectric thin film formed by said method
JP7119265B2 (en) Method for manufacturing dielectric film
JP7155730B2 (en) Liquid composition for forming piezoelectric film and method for forming piezoelectric film using this liquid composition
JP6075144B2 (en) Composition for forming LaNiO3 thin film and method for forming LaNiO3 thin film using this composition
WO2019181656A1 (en) Liquid composition for forming piezoelectric film and method for forming piezoelectric film in which said liquid composition is used
KR20210020902A (en) Liquid composition for KNN film formation and method of forming KNN film using this liquid composition
JP7124445B2 (en) BNT-BT film and method for forming the same
TWI619689B (en) Composition for forming a strong dielectric film and manufacturing method thereof
JP2008004576A (en) Method of pretreating substrate for forming dielectric thin film
JP2020057692A (en) Method for forming pzt type ferroelectric film
JP2012144470A (en) Method for producing ceramic film-forming composition, piezoelectric ceramic film, and method for producing alkaline earth metal complex
JP2012136488A (en) Method for producing composition for forming ceramic film, piezoelectric ceramic film, and method for producing iron 2-ethylhexanoate
JP2000281441A (en) Dielectric thin film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220711

R150 Certificate of patent or registration of utility model

Ref document number: 7119265

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150