JP3191418B2 - Optical fiber manufacturing method - Google Patents

Optical fiber manufacturing method

Info

Publication number
JP3191418B2
JP3191418B2 JP18225492A JP18225492A JP3191418B2 JP 3191418 B2 JP3191418 B2 JP 3191418B2 JP 18225492 A JP18225492 A JP 18225492A JP 18225492 A JP18225492 A JP 18225492A JP 3191418 B2 JP3191418 B2 JP 3191418B2
Authority
JP
Japan
Prior art keywords
glass
rod
dummy
optical fiber
preform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18225492A
Other languages
Japanese (ja)
Other versions
JPH0624784A (en
Inventor
俊雄 彈塚
裕一 大賀
真澄 伊藤
寿美夫 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP18225492A priority Critical patent/JP3191418B2/en
Priority to CA002099942A priority patent/CA2099942C/en
Priority to AU41751/93A priority patent/AU659020B2/en
Priority to EP97100122A priority patent/EP0770583B1/en
Priority to EP98119047A priority patent/EP0885853B1/en
Priority to DE69331917T priority patent/DE69331917T2/en
Priority to DE69328572T priority patent/DE69328572T2/en
Priority to DE69324963T priority patent/DE69324963T2/en
Priority to EP93110950A priority patent/EP0578244B1/en
Priority to KR1019930012908A priority patent/KR970006995B1/en
Publication of JPH0624784A publication Critical patent/JPH0624784A/en
Priority to US08/370,233 priority patent/US5674306A/en
Priority to AU13547/95A priority patent/AU668331B2/en
Priority to AU13546/95A priority patent/AU668330B2/en
Priority to US08/795,016 priority patent/US5788734A/en
Application granted granted Critical
Publication of JP3191418B2 publication Critical patent/JP3191418B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01486Means for supporting, rotating or translating the preforms being formed, e.g. lathes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • C03B37/02736Means for supporting, rotating or feeding the tubes, rods, fibres or filaments to be drawn, e.g. fibre draw towers, preform alignment, butt-joining preforms or dummy parts during feeding
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • C03B37/02754Solid fibres drawn from hollow preforms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は光ファイバの製造方法に
関するもので、特に大型のプリフォームから高品質で高
強度の光ファイバを効率よく製造することができる方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an optical fiber, and more particularly to a method for efficiently manufacturing a high-quality, high-strength optical fiber from a large preform.

【0002】[0002]

【従来の技術】光ファイバの従来の製造方法を、例えば
気相軸付け法(Vapour-phase axial deposition metho
d, VAD法と略す)で説明する。VAD法は同心円状
多重管バーナにより酸水素火炎を形成し、この火炎中に
ガラス原料ガス、例えばSiCl 4 ,SiHCl3 等お
よび場合によってドーパント原料ガス例えばGeC
4 ,POCl3 ,BCl3 などを投入し、火炎加水分
解反応あいは酸化反応によりガラス微粒子を生成し、こ
のガラス微粒子を出発ロッドの先端あるいは外周にスス
付けし、、ガラス微粒子堆積体を合成し、その後これを
加熱炉にて透明化することにより、透明ガラスプリフォ
ームを得る方法である。次にこの方法を用いて光ファイ
バを具体的に作る方法を述べると、まず、上記方法を用
い、出発ロッド先端にドーパントを含むコアまたはコア
とその外周にクラッドの一部を有するコア母材を合成
し、ハロゲン系ガスで脱水した後、透明ガラス化する。
その後、図2に示すように、この透明ガラスロッド(コ
ア母材)を出発材1として、この外周に更にクラッド用
のガラス微粒子堆積体9を合成する。7はガラス微粒子
合成用バーナ、8は火炎である。こうして得られたガラ
スロッドとガラス微粒子堆積体からなる複合体を再び、
焼結炉で透明ガラス化し、光ファイバ用プリフォームを
得る。この後、光ファイバ用プリフォームの両端にダミ
ー棒を溶着し、ガラス表面を火炎研磨した後、電気炉あ
るいは酸水素バーナを用いて、延伸し、所定の太さのプ
リフォームロッドを作製する。このプリフォームロッド
を線引炉で紡糸することにより光ファイバが得られる。
2. Description of the Related Art Conventional methods for manufacturing optical fibers are described, for example, by
Vapor-phase axial deposition metho
d, abbreviated as VAD method). VAD method is concentric
An oxyhydrogen flame is formed by a multi-tube burner, and
Glass source gas, for example, SiCl Four, SiHClThreeEtc
And optionally a dopant source gas such as GeC
lFour, POClThree, BClThreeEtc., and flame water content
During the dissolution reaction, glass particles are generated by the oxidation reaction.
Soot fine glass particles on the tip or outer circumference of the starting rod.
To form a glass particle deposit, which is then
By making it transparent in a heating furnace, the transparent glass preform
Is a way to get the game. Next, using this method, optical fiber
First, the method described above is used.
Core or core with dopant at the tip of the starting rod
And a core base material with a part of the cladding on its periphery
Then, after dehydration with a halogen-based gas, the glass is transparently vitrified.
Then, as shown in FIG.
Base material) as the starting material 1 and further clad around this periphery
Is synthesized. 7 is glass particles
The synthesis burner 8 is a flame. Gala thus obtained
Again, a composite consisting of a slod and a glass particle deposit,
Transform into a transparent glass in a sintering furnace to produce optical fiber preforms
obtain. After this, the ends of the optical fiber preform are
After welding the rod and flame polishing the glass surface,
Or using an oxyhydrogen burner to stretch
Make a reform rod. This preform rod
Is spun in a drawing furnace to obtain an optical fiber.

【0003】[0003]

【発明が解決しようとする課題】従来、コアまたはコア
およびクラッドの一部を有するコア母材の外周にクラッ
ド用ガラス微粒子堆積体を合成する際には、図2に示す
如く、コア母材1の両端にダミー棒2,20を溶着し、上
部ダミー棒2を直接、あるいはメインシード棒6の嵌合
部5を介して把持することにより、合成している。ダミ
ー棒2,20、特に下端のダミー棒20は、VAD法の合成
では避けることのできない成長面のテーパ部がコア母材
1にかからないように設けられており、通常ダミー棒
2,20の先端あるいは、先端部近くまでガラス微粒子堆
積体9を合成する。例えば図3のような複合体が合成さ
れる。これを焼結炉にて透明化した後、延伸加工するた
め、図4に示すように当該プリフォーム10の先端にダミ
ー棒19を溶着し、図4の如き形状とする。この際、上部
ダミー棒も一度切断し、再度溶着することもある。こう
して、ダミー棒19を両端に溶着したプリフォーム10を、
電気炉等の加熱炉にて溶融延伸している。
Conventionally, when synthesizing a glass particle deposit for cladding on the outer periphery of a core or a core preform having a core and a part of the clad, as shown in FIG. The dummy rods 2 and 20 are welded to both ends of the main seed rod 2, and the upper dummy rod 2 is synthesized directly or via the fitting portion 5 of the main seed rod 6. The dummy rods 2, 20, particularly the lower dummy rod 20, are provided so that the tapered portion of the growth surface, which cannot be avoided in the synthesis by the VAD method, does not cover the core base material 1. Alternatively, the glass particle deposit body 9 is synthesized to the vicinity of the tip. For example, a complex as shown in FIG. 3 is synthesized. After making this transparent in a sintering furnace and stretching it, a dummy bar 19 is welded to the tip of the preform 10 as shown in FIG. 4 to form a shape as shown in FIG. At this time, the upper dummy bar may be cut once and welded again. Thus, the preform 10 with the dummy rods 19 welded to both ends is
It is melt-drawn in a heating furnace such as an electric furnace.

【0004】ところで、上記した従来法において、透明
化後の延伸工程前にダミー棒を溶着するためには、横型
のガラス旋盤が用いられるが、プリフォームが大型化し
重量が増加すると、片端のダミー棒を片持ちで支えるこ
とが難しくなり、どうしてもプリフォームの有効部(径
が一定でファイバとなる部分)を把持せざるを得なくな
る。有効部を把持したり他のもので触れることは、ガラ
ス表面に傷をつくり強度の高い光ファイバを得ることが
できなくなり、かつ不純物の混入により伝送損失を多く
する要因となることから、母材の大型化には、この点が
品質上大きな問題であった。本発明は、このような問題
を解決した大型のプリフォームを高品質で高強度に合成
できる製造方法を提供するものである。
In the above-mentioned conventional method, a horizontal glass lathe is used to weld the dummy rod before the stretching step after the transparency, but when the preform is enlarged and the weight increases, the dummy glass at one end is used. It becomes difficult to support the rod with the cantilever, and it is absolutely necessary to hold the effective part (the part that becomes a fiber with a constant diameter) of the preform. Grasping the effective part or touching it with other objects will damage the glass surface, making it impossible to obtain a high-strength optical fiber, and will also increase the transmission loss due to contamination with impurities. This has been a major problem in terms of quality when the size is increased. The present invention provides a manufacturing method capable of synthesizing a large-sized preform with high quality and high strength in which such a problem is solved.

【0005】[0005]

【課題を解決するための手段】上記問題を解決するため
の本発明の構成は、バーナにより形成される火炎中にガ
ラス原料を投入し、火炎中での加水分解反応あるいは酸
化反応によりガラス微粒子を生成し、これをコアまたは
コアおよびクラッドの一部を有する石英系ガラスロッド
の外周に堆積させ、該ガラスロッドと上記バーナを相対
的に移動し、ガラスロッドとガラス微粒子堆積体の複合
体を合成し、次にこれを加熱炉にて焼結、透明化し、光
ファイバ用プリフォームを形成し、該プリフォームを細
径に延伸した後更に線引炉にて紡糸することにより光フ
ァイバを製造する方法において、円柱状あるいは円筒状
でその端部には円柱状のピンを挿入し得る貫通穴が中心
軸を横切って設けられたダミー棒を上記石英系ガラスロ
ッドの両端部に予め溶着接続し、該ダミー棒の両側端部
にはガラス微粒子を堆積せずに残し、且つ該ダミー棒の
中程からは外径をテーパ状に且つ該石英ロッド外周には
外径一定にガラス微粒子堆積体を形成してガラスロッド
・ガラス微粒子堆積体複合体を合成し、該複合体を焼結
した後、該ダミー棒を挿入し得る凹部を一端に有し且つ
ダミー棒貫通穴に対応する位置に中心軸に直交する貫通
穴を有する嵌合部材に該ダミー棒を嵌挿し、嵌合部分に
おいて両者の貫通穴に耐熱性のピンを挿入することによ
上記両端のダミー棒を嵌合部材で把持して電気炉で加
熱溶融することにより延伸し、上記堆積、焼結、延伸及
び線引きを該石英系ガラスロッドの中心軸が鉛直方向と
なる状態で行うことを特徴とする。上記光ファイバ用プ
リフォームの両端のダミー棒の長さは、合成するガラス
微粒子堆積体の外径Dに対して1〜3倍の範囲の長さと
することが好ましく、ダミー棒の外径はコアおよびクラ
ッドの一部を有する石英系ガラスロッド径dに対して
0.9〜1.3倍の範囲とすることが特に好ましい。
In order to solve the above-mentioned problems, the construction of the present invention is such that glass raw materials are charged into a flame formed by a burner and glass particles are formed by a hydrolysis reaction or an oxidation reaction in the flame. Generated and deposited on the outer periphery of a quartz-based glass rod having a core or a part of the core and the clad, relatively moving the glass rod and the burner, and synthesizing a composite of a glass rod and a glass particle deposit. Then, this is sintered in a heating furnace and made transparent, an optical fiber preform is formed, and the preform is drawn to a small diameter and then spun in a drawing furnace to produce an optical fiber. in the method, a circular columnar or cylindrical
At its end is a through hole in which a cylindrical pin can be inserted
The silica-based dummy rods provided across the axial Garasuro
The dummy rod is previously welded and connected to both ends thereof, glass fine particles are left undeposited on both ends of the dummy rod, and the outer diameter is tapered from the middle of the dummy rod to the outer periphery of the quartz rod. Forming a glass fine particle deposit with a constant outer diameter to synthesize a glass rod / glass fine particle deposit composite, sintering the composite, and having at one end a concave portion into which the dummy rod can be inserted;
Penetration perpendicular to the central axis at the position corresponding to the dummy rod through hole
The dummy bar is inserted into the fitting member having a hole, and
By inserting heat-resistant pins into both through holes.
Ri dummy rods of the both ends gripped by the mating member was oriented by heating and melting in an electric furnace, the deposition, sintering, stretching及
The center axis of the quartz glass rod is aligned with the vertical direction.
It is characterized in that it is performed in the following condition . The length of the dummy rods at both ends of the optical fiber preform is preferably in the range of 1 to 3 times the outer diameter D of the glass fine particle deposit to be synthesized. It is particularly preferable that the diameter be 0.9 to 1.3 times the diameter d of the quartz-based glass rod having a part of the clad.

【0006】図1に本発明の一実施態様を示す。まず少
なくともコアとなる部分を有する石英系ガラスロッド
(以下、コア母材と略する)1の上下に上部ダミー棒
2、下部ダミー棒3をそれぞれ溶着接続しておく。上下
ダミー棒2,3の端部にはメインロッド(回転軸)6や
延伸用旋盤チャックの嵌合部に嵌合支持できるように嵌
合部が設けてあり、この部分には固定用ピンを貫通させ
るための嵌合用貫通穴(ピン孔)4が開けてある。ガラ
ス微粒子堆積体合成用反応容器のメインロッド(回転
軸)6の下部の嵌合部5(この場合はダミー棒挿入用の
凹部)に上部ダミー棒2を挿嵌し、ダミー棒のピン孔位
置に対応し且つ中心軸に直行する方向に設けてある嵌合
部5の嵌合用貫通穴とダミー棒の嵌合用貫通穴4に1本
のピンを貫通させて両者を固定する
FIG. 1 shows an embodiment of the present invention. First, an upper dummy rod 2 and a lower dummy rod 3 are welded and connected to the upper and lower sides of a quartz glass rod (hereinafter abbreviated as a core base material) 1 having at least a portion to be a core. At the ends of the upper and lower dummy rods 2 and 3, a fitting portion is provided so as to be fitted and supported by a fitting portion of the main rod (rotating shaft) 6 and a lathe chuck for stretching. A through hole (pin hole) 4 for fitting is provided for penetration. The upper dummy bar 2 is inserted into the fitting portion 5 (in this case, the concave portion for inserting the dummy bar) of the lower portion of the main rod (rotating shaft) 6 of the reaction container for synthesizing the glass fine particle deposit, and the pin hole position of the dummy bar is set. One pin is inserted through the fitting through hole of the fitting portion 5 and the fitting through hole 4 of the dummy bar provided in the direction perpendicular to the center axis .

【0007】この状態でバーナ7からガラス原料ガス、
燃焼ガス、支燃性ガスを噴出させて、火炎8中に生成す
るガラス微粒子を上部ダミー棒2の中程から堆積し始め
る〔図1の(a)〕。得られたダミー棒2,3、コア母
材1及びガラス微粒子堆積体9からなる複合体〔図1の
(b)〕を、上下ダミー棒2,3をそのままにして焼結
し、透明プリフオーム10〔図1の(c)〕とし、該透明
プリフオーム10の上下ダミー棒2,3の両端を例えば電
気炉等の加熱炉の延伸用上部嵌合部材12と延伸用下部嵌
合部材13の各嵌合部14,15においてピンにより嵌合支持
して、旋盤の延伸用上部チャック17,同下部チャック18
に取り付け、電気炉ヒータ11で加熱延伸し、延伸された
プリフオーム16を得る〔図1の(d)〕。
[0007] In this state, the glass raw material gas from the burner 7,
The combustion gas and the supporting gas are ejected, and the glass fine particles generated in the flame 8 start to be deposited from the middle of the upper dummy rod 2 (FIG. 1A). The obtained composite comprising the dummy rods 2 and 3, the core base material 1 and the glass particle deposit body 9 (FIG. 1B) is sintered with the upper and lower dummy rods 2 and 3 as they are, and the transparent preform 10 is formed. [FIG. 1 (c)], the upper and lower dummy rods 2 and 3 of the transparent preform 10 are fitted at both ends with an upper fitting member 12 for extension and a lower fitting member 13 for extension in a heating furnace such as an electric furnace. The upper and lower chucks 17 and 18 for extending the lathe are fitted and supported by pins at the joints 14 and 15.
And stretched by heating with an electric furnace heater 11 to obtain a stretched preform 16 (FIG. 1 (d)).

【0008】[0008]

【作用】本発明の方法を用いれば、コア母材の両端に予
めダミー棒を溶着しておいてからガラス微粒子堆積体を
合成してゆき、ダミー棒両端に嵌合部分を残しておくの
で、コア母材−ガラス微粒子堆積体複合体を焼結、透明
化後には最早ダミー棒を溶融する必要がないことから、
プリフォームのガラス表面を把持する必要がなくなり、
かつ表面に触れることもなく直ちに延伸可能になるの
で、表面の傷発生、または不純物の混入する機会をなく
すことが可能であり、高品質かつ高強度の光ファイバを
得ることができる。また、本発明者らは横型のガラス旋
盤での従来のダミー棒溶着を種々検討した結果、従来の
ダミー棒の片持ちによりダミー棒の割れなく作業できる
のは、母材重量が7〜8kg以下で、慎重に作業したと
しても10kg以下であった。ダミー棒には一般的に石
英ガラス材が用いられるため、太いダミー棒を用いたと
しても、傷があると荷重により簡単にクラックが進展し
割れてしまう。このため、この手段では大型のプリフォ
ームの作製には自ずと制限があった。これに対し、本発
明によれば7〜8kg以上、更には10kgを越えるプ
リフオームについても無理なく加工することができ、生
産効率の大幅な向上が見込まれる。
According to the method of the present invention, dummy rods are welded to both ends of a core base material in advance, and then a glass particle deposit is synthesized, leaving fitting portions at both ends of the dummy rods. After sintering and clarifying the core base material-glass fine particle deposit composite, it is no longer necessary to melt the dummy rod,
There is no need to grip the glass surface of the preform,
In addition, since the drawing can be performed immediately without touching the surface, it is possible to eliminate the occurrence of scratches on the surface or the possibility of mixing impurities, and to obtain a high-quality and high-strength optical fiber. In addition, as a result of various studies on conventional dummy rod welding on a horizontal glass lathe, the present inventors have found that the cantilever operation of the conventional dummy rod without breakage of the dummy rod requires that the base material weight be 7 to 8 kg or less. Therefore, even if it worked carefully, it was 10 kg or less. Since a quartz glass material is generally used for the dummy rod, even if a thick dummy rod is used, if there is a flaw, the crack easily spreads and breaks due to the load. For this reason, the production of a large-sized preform by this means was naturally limited. On the other hand, according to the present invention, preforms of 7 to 8 kg or more, and even more than 10 kg can be processed without difficulty, and a significant improvement in production efficiency is expected.

【0009】本発明においてコア母材の両端につけるダ
ミー棒としては、通常溶融法あるいは合成法で作られた
石英ガラスが用いられる。多少のドーパント、不純物な
どが含有されていても良いが、粘度が極端に低いもので
は、焼結、または延伸時にダミー棒が熱変形してしまい
好ましくない。また、本発明に用いるダミー棒の長さに
ついては、両端を把持するために必要な長さは勿論であ
るが、ガラス微粒子堆積体のテーパ部の堆積にも用いる
ため、把持用長さとテーパ部の長さにより限定される。
テーパ部の長さは、通常ガラス微粒子堆積体の外径Dに
対して0.5D〜1.0Dになっており、これに把持部
の長さを加えると、1.0D〜1.5D以上は必要とな
る。一方、ダミー棒が長すぎると、母材合成設備、焼結
炉などの大型化を招くことから、3.0D以下が好まし
い。
In the present invention, as the dummy rods to be attached to both ends of the core base material, quartz glass usually produced by a melting method or a synthesis method is used. It may contain some dopants, impurities, etc., but if the viscosity is extremely low, the dummy rod is undesirably thermally deformed during sintering or stretching. The length of the dummy rod used in the present invention is, of course, the length necessary for gripping both ends, but is also used for depositing the tapered portion of the glass fine particle deposit. Is limited by the length of
The length of the tapered portion is usually 0.5D to 1.0D with respect to the outer diameter D of the glass fine particle deposit, and when the length of the grip portion is added thereto, 1.0D to 1.5D or more Is required. On the other hand, if the length of the dummy rod is too long, the size of the base material synthesizing facility, the sintering furnace, and the like will be increased.

【0010】本発明に用いるダミー棒の太さは、コア母
材の外径に等しいことが最も好ましく、これが大きく異
なっていると、この溶着部でガラス微粒子堆積体が変形
し、ひどい場合はガラス微粒子堆積体にクラックが発生
することになる。このクラックを防止し、安定した製造
を行える範囲としては、コア母材の外径dに対して、
0.9d〜1.3dの範囲にあることが望ましい。さら
に望ましくは1.0d〜1.1dの範囲が良い。
[0010] The thickness of the dummy rod used in the present invention is most preferably equal to the outer diameter of the core base material. If the diameter is largely different, the glass fine particle deposit is deformed at the welded portion. Cracks occur in the fine particle deposit. The range in which this crack is prevented and stable production can be performed is as follows with respect to the outer diameter d of the core base material.
It is desirable to be in the range of 0.9d to 1.3d. More preferably, the range is 1.0d to 1.1d.

【0011】[0011]

【実施例】以下、本発明を実施例を挙げて具体的に説明
するが、本発明はこれに限定されるものではない。 (1)実施例1 コアおよびクラッドの一部を有する、長さ800mmの
コア母材を準備した。コア母材の外径は18mmであっ
た。この両端に外径18mm、長さ400mmのダミー
棒を溶着接続した。なお、該ダミー棒の先端には、それ
ぞれ5mmφの貫通穴が開けられており、ガラス微粒子
堆積体合成時には、上部ダミー棒を該ダミー棒を挿入で
きる円筒形状を先端に持ち且つ該円筒形状部分において
ダミー棒の貫通穴に対応する位置に中心軸に直交する5
mmφの貫通穴を有する嵌合部材ロッドに嵌合し、セラ
ミックス製の4.5mmφのピンを両者の貫通穴に挿入
することにより把持した。次に該嵌合部材を回転軸に取
り付け、ガラス微粒子堆積体をコア母材の外周に外径が
一定になるように合成した。コア母材の外周のガラス微
粒子堆積体の外径は220mmであり、両端のダミー部
には、ガラス微粒子堆積体のテーパ部が上部に160m
m長さ、下部に180mm長さで堆積した。得られたコ
ア母材−ガラス微粒子堆積体の複合体の重量は全部で1
3.4kgになった。該複合体を焼結炉にて透明ガラス
化した後、電気ヒータを有する電気炉に挿入し、上下の
ダミー棒の端部をセラミックスピンでチャックに嵌合把
持し、加熱しながら上下チャックをトラバースすること
により延伸した。電気炉は2000℃に設定し、上部チ
ャックは10mm/minでトラバースし、下部チャッ
クはプリフォーム外径が35mmφとなるようにトラバ
ース速度を制御した。こうして得られたプリフォームを
線引炉にて紡糸したところ、100kmの線引のあい
だ、一度も断線することはなく、かつ伝送損失も波長
1.3μmで0.35dB/kmと良好なものが得られ
た。
EXAMPLES Hereinafter, the present invention will be described specifically with reference to examples, but the present invention is not limited thereto. (1) Example 1 An 800 mm long core base material having a core and a part of a clad was prepared. The outer diameter of the core preform was 18 mm. A dummy rod having an outer diameter of 18 mm and a length of 400 mm was welded and connected to both ends. In addition, a through-hole of 5 mmφ is formed at the tip of the dummy rod, and at the time of synthesizing the glass fine particle deposit, the upper dummy rod has a cylindrical shape at the distal end into which the dummy rod can be inserted, and at the cylindrical portion. 5 perpendicular to the central axis at the position corresponding to the through hole of the dummy rod
It was fitted to a fitting member rod having a through hole of mmφ, and was held by inserting a 4.5 mmφ pin made of ceramic into both through holes. Next, the fitting member was attached to a rotating shaft, and a glass particle deposit was synthesized on the outer periphery of the core base material so that the outer diameter was constant. The outer diameter of the glass fine particle deposit on the outer periphery of the core base material is 220 mm, and the tapered portion of the glass fine particle deposit is 160 m at the upper part of the dummy portion at both ends.
It was deposited at a length of m and a lower portion of 180 mm. The weight of the obtained composite of the core base material and the glass fine particle deposit is 1 in total.
It became 3.4 kg. After the composite was vitrified in a sintering furnace, it was inserted into an electric furnace having an electric heater, and the ends of the upper and lower dummy rods were fitted to the chuck with ceramic pins, and the upper and lower chucks were traversed while heating. The film was stretched. The electric furnace was set at 2000 ° C., the upper chuck traversed at 10 mm / min, and the lower chuck controlled the traverse speed so that the outer diameter of the preform became 35 mmφ. When the preform thus obtained was spun in a drawing furnace, it was found that there was no breakage during the drawing of 100 km and the transmission loss was as good as 0.35 dB / km at a wavelength of 1.3 μm. Obtained.

【0012】(2)実施例2 ダミー棒外径とコア母材外径の関係の割れ発生への影響
を明らかにするため、実施例1と同じ構成でダミー棒の
外径を16mm、18mm、19mm、22mm、24
mmと5種類用意し、それぞれ5本ずつのガラス微粒子
堆積体の合成を行った。それぞれコア母材の外径18m
mに対して0.88、1.0、1.05、1.22、
1.33倍の外径である。この結果、18mm、19m
mの場合は、それぞれ5本とも良好な母材が得られた。
また、22mmではガラス微粒子堆積体が下部の溶着部
にかかったときにクラックが入って先端が割れてしまっ
たものが1本あったが、残り4本は良好であった。16
mmおよび24mmについては、5本中良好に製造でき
たものは16mmで2本、24mmで1本のみと、安定
性が著しく低下してしまった。
(2) Embodiment 2 In order to clarify the influence of the relationship between the outer diameter of the dummy rod and the outer diameter of the core base material on the occurrence of cracks, the outer diameter of the dummy rod was set to 16 mm, 18 mm, and the same configuration as in the first embodiment. 19mm, 22mm, 24
mm and five types were prepared, and five glass particle deposits each were synthesized. Outer diameter of each core base material 18m
0.88, 1.0, 1.05, 1.22,
The outer diameter is 1.33 times. As a result, 18 mm and 19 m
In the case of m, a good base material was obtained for each of the five base materials.
At 22 mm, when one of the glass fine particles deposited on the lower welded portion was cracked and the tip was broken, the other four were good. 16
With respect to mm and 24 mm, the stability was remarkably reduced, with 2 of 16 mm and only 1 of 24 mm being able to be produced favorably.

【0013】(3)比較例1 コアおよびクラッドの一部を有する外径18mmφのコ
ア母材に、外径18mmで長さ400mmのダミー棒を
上部に、下部には外径18mmで長さが200mmのダ
ミー棒をつけて、実施例1と同様のガラス微粒子堆積体
の合成を行った。下部のダミー棒は短く、先端にガラス
微粒子堆積体の付着していない領域が約20mm残っ
た。重量は全体で13.3kmあった。この母材を透明
化した後、横型ガラス旋盤で上部ダミー棒を把持し下端
にダミー棒を溶着しようとしたが、ダミー棒が折れて、
溶着出来なかった。このため、プリフォームの有効部を
チャッキングし、ダミー棒を両端に溶着した。こうして
作製したダミー棒付プリフォームを35mmφに延伸
し、線引炉で紡糸したところ、100kmの紡糸中に1
1回断線した。特にチャックで把持した部分の近傍で破
断が多かった。伝送損失も一部波長1.3μmで0.4
5dB/kmのものが見られた。
(3) Comparative Example 1 A dummy rod having an outer diameter of 18 mm and a length of 400 mm was placed on the upper part of a core base material having an outer diameter of 18 mm and having a part of a core and a clad, and a lower part having an outer diameter of 18 mm was formed. A glass fine particle deposit similar to that of Example 1 was synthesized with a 200 mm dummy rod attached. The lower dummy rod was short, and a region where the glass fine particle deposit was not adhered remained at the tip at about 20 mm. The total weight was 13.3 km. After clarifying this base material, the upper dummy rod was gripped by a horizontal glass lathe and the lower end was tried to weld the dummy rod, but the dummy rod was broken,
Welding failed. For this reason, the effective portion of the preform was chucked, and dummy rods were welded to both ends. The preform with a dummy rod thus produced was stretched to 35 mmφ and spun in a drawing furnace.
One break occurred. In particular, there were many breaks near the portion gripped by the chuck. The transmission loss is 0.4 at 1.3 μm.
5 dB / km was observed.

【0014】上記実施例では嵌合用ピンとしてセラミッ
クピン、アルミナピンを用いた例を挙げたが、カーボン
製、あるいはカーボンにSiコートしたものなど、耐熱
性、強度に優れたものであれば他のいずれを用いてもよ
い。
In the above embodiment, an example was described in which a ceramic pin or an alumina pin was used as the fitting pin. However, any other material having excellent heat resistance and strength, such as carbon or carbon coated with Si, may be used. Either may be used.

【0015】[0015]

【発明の効果】以上説明したように、本発明を用いれば
プリフォームの表面に触れることなく、線引き用のプリ
フォームまで加工することができ、かつ安定したガラス
微粒子堆積体の合成を行うことができる。このため、特
に重量が8〜10kgを越える大型のプリフォームの製
造を伴う光ファイバの製造においては、高品質、高強度
の光ファイバを得ることが可能である。
As described above, according to the present invention, it is possible to process a preform for drawing without touching the surface of the preform, and it is possible to stably synthesize a deposit of fine glass particles. it can. For this reason, especially in the production of an optical fiber accompanying the production of a large preform weighing more than 8 to 10 kg, it is possible to obtain a high-quality and high-strength optical fiber.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の製法を工程の順に説明する概略図であ
る。
FIG. 1 is a schematic diagram for explaining a production method of the present invention in the order of steps.

【図2】従来法のガラス微粒子堆積体の形成工程を説明
する概略図である。
FIG. 2 is a schematic diagram illustrating a process for forming a glass fine particle deposit according to a conventional method.

【図3】図2の形成工程で得られたコア母材とガラス微
粒子堆積体との複合体を説明する概略図である。
FIG. 3 is a schematic diagram illustrating a composite of a core base material and a glass fine particle deposit obtained in the forming step of FIG. 2;

【図4】図3で得た複合体を焼結して得た透明ガラス体
の概略説明図である。
FIG. 4 is a schematic explanatory view of a transparent glass body obtained by sintering the composite obtained in FIG.

【符号の説明】[Explanation of symbols]

1 コア母材(出発材) 2 上部ダミー棒 3 下部ダミー棒 4 ピン孔 5 嵌合部 6 メインロッド( 回転軸) 7 ガラス微粒子合成用バーナ 8 火炎 9 ガラス微粒子堆積体 10 透明プリフオーム 11 電気炉ヒータ 12 延伸用上部嵌合部材 13 延伸用下部嵌合部材 14 延伸用上部嵌合部 15 延伸用下部嵌合部 16 延伸されたプリフオーム 17 延伸用上部チャック 18 延伸用下部チャック 19 従来法におけるプリフオームに溶着したダミー棒 20 下部ダミー棒 Reference Signs List 1 core base material (starting material) 2 upper dummy rod 3 lower dummy rod 4 pin hole 5 fitting part 6 main rod (rotating shaft) 7 burner for synthesizing glass particles 8 flame 9 glass particle stack 10 transparent preform 11 electric furnace heater 12 Upper fitting member for stretching 13 Lower fitting member for stretching 14 Upper fitting portion for stretching 15 Lower fitting portion for stretching 16 Extended preform 17 Upper chuck for stretching 18 Lower chuck for stretching 19 Welding to preform in conventional method Dummy stick 20 Lower dummy stick

───────────────────────────────────────────────────── フロントページの続き (72)発明者 星野 寿美夫 神奈川県横浜市栄区田谷町1番地 住友 電気工業株式会社横浜製作所内 (56)参考文献 特開 平4−119940(JP,A) 特開 平4−83728(JP,A) 特開 平3−126633(JP,A) 特開 昭63−195139(JP,A) 特開 昭57−92534(JP,A) 特開 平3−37128(JP,A) 特開 昭64−9832(JP,A) 特開 平5−43255(JP,A) 特開 昭62−256735(JP,A) 実開 平3−89127(JP,U) (58)調査した分野(Int.Cl.7,DB名) C03B 37/00 - 37/16 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Sumio Hoshino 1 Taya-cho, Sakae-ku, Yokohama-shi, Kanagawa Prefecture Sumitomo Electric Industries, Ltd. Yokohama Works (56) References JP-A-4-119940 (JP, A) JP-A-4-83728 (JP, A) JP-A-3-126633 (JP, A) JP-A-63-195139 (JP, A) JP-A-57-92534 (JP, A) JP-A-3-37128 (JP, A) JP-A-64-9832 (JP, A) JP-A-5-43255 (JP, A) JP-A-62-256735 (JP, A) JP-A-3-89127 (JP, U) (58) Field surveyed (Int. Cl. 7 , DB name) C03B 37/00-37/16

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 バーナにより形成される火炎中にガラス
原料を投入し、火炎中での加水分解反応あるいは酸化反
応によりガラス微粒子を生成し、これをコアまたはコア
およびクラッドの一部を有する石英系ガラスロッドの外
周に堆積させ、該ガラスロッドと上記バーナを相対的に
移動し、ガラスロッドとガラス微粒子堆積体の複合体を
合成し、次にこれを加熱炉にて焼結、透明化し、光ファ
イバ用プリフォームを形成し、該プリフォームを細径に
延伸した後更に線引炉にて紡糸することにより光ファイ
バを製造する方法において、円柱状あるいは円筒状でそ
の端部には円柱状のピンを挿入し得る貫通穴が中心軸を
横切って設けられたダミー棒を上記石英系ガラスロッド
の両端部に予め溶着接続し、該ダミー棒の両側端部には
ガラス微粒子を堆積せずに残し、且つ該ダミー棒の中程
からは外径をテーパ状に且つ該石英ロッド外周には外径
一定にガラス微粒子堆積体を形成してガラスロッド・ガ
ラス微粒子堆積体複合体を合成し、該複合体を焼結した
後、該ダミー棒を挿入し得る凹部を一端に有し且つダミ
ー棒貫通穴に対応する位置に中心軸に直交する貫通穴を
有する嵌合部材に該ダミー棒を嵌挿し、嵌合部分におい
て両者の貫通穴に耐熱性のピンを挿入することにより
記両端のダミー棒を嵌合部材で把持して電気炉で加熱溶
融することにより延伸し、上記堆積、焼結、延伸及び線
引きを該石英系ガラスロッドの中心軸が鉛直方向となる
状態で行うことを特徴とする光ファイバの製造方法。
1. A glass raw material is charged into a flame formed by a burner, and glass particles are generated by a hydrolysis reaction or an oxidation reaction in the flame, and the fine glass particles are formed into a quartz-based material having a core or a part of a core and a clad. It is deposited on the outer periphery of a glass rod, and the glass rod and the burner are relatively moved to synthesize a composite of the glass rod and the glass particle deposit body. to form a preform for fiber, a method of manufacturing an optical fiber by spinning at further drawing furnace after stretching the preform in diameter, circular columnar or cylindrical Desolation
At the end of the hole, there is a through hole through which a cylindrical pin can be inserted.
The dummy rods provided across the quartz glass rod
Are welded in advance to both ends of the dummy rod, glass fine particles are left undeposited on both ends of the dummy rod, and the outer diameter is tapered from the middle of the dummy rod and the outer periphery is formed on the outer periphery of the quartz rod. A glass rod / glass fine particle composite is formed by forming a glass fine particle deposit with a constant diameter, and after sintering the composite, a concave portion into which the dummy rod can be inserted is provided at one end.
-At the position corresponding to the rod through hole, insert a through hole orthogonal to the center axis.
The dummy bar is inserted into the fitting member having
By inserting heat-resistant pins into both through holes, the dummy rods at both ends are gripped by fitting members and stretched by heating and melting in an electric furnace . Stretch and wire
Pull the quartz glass rod so that the central axis is vertical
A method for producing an optical fiber, which is performed in a state .
【請求項2】 上記光ファイバ用プリフォームの両端の
ダミー棒の長さを、合成するガラス微粒子堆積体の外径
Dに対して1D〜3Dの範囲の長さとすることを特徴と
する請求項1記載の光ファイバの製造方法。
2. The optical fiber preform according to claim 1, wherein said optical fiber preform has two ends.
The length of the dummy rod is determined by the outside diameter of the glass
D has a length in the range of 1D to 3D.
The method for manufacturing an optical fiber according to claim 1.
【請求項3】 上記光フアイバ用プリフォームの両端の
ダミー棒の太さを、コアおよびクラッドの一部を有する
石英系ガラスロッド径dに対して0.9d〜1.3dの
範囲とすることを特徴とする請求項1または請求項2に
記載の光ファイバの製造方法。
3. The thickness of the dummy rods at both ends of the optical fiber preform has a core and a part of a clad.
0.9 d to 1.3 d with respect to the quartz glass rod diameter d.
3. The method for manufacturing an optical fiber according to claim 1, wherein the optical fiber is within a range .
JP18225492A 1992-07-09 1992-07-09 Optical fiber manufacturing method Expired - Lifetime JP3191418B2 (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
JP18225492A JP3191418B2 (en) 1992-07-09 1992-07-09 Optical fiber manufacturing method
AU41751/93A AU659020B2 (en) 1992-07-09 1993-07-06 Method and apparatus for drawing glass preform for optical fiber
CA002099942A CA2099942C (en) 1992-07-09 1993-07-06 Method and apparatus for drawing glass preform for optical fiber
EP98119047A EP0885853B1 (en) 1992-07-09 1993-07-08 Apparatus for drawing a glass preform for optical fibers
DE69331917T DE69331917T2 (en) 1992-07-09 1993-07-08 Device for drawing a glass preform for optical fibers
DE69328572T DE69328572T2 (en) 1992-07-09 1993-07-08 Method and device for drawing glass preforms for optical fibers
DE69324963T DE69324963T2 (en) 1992-07-09 1993-07-08 Process for drawing glass preforms for optical fiber
EP93110950A EP0578244B1 (en) 1992-07-09 1993-07-08 Method for drawing glass preform for optical fiber
EP97100122A EP0770583B1 (en) 1992-07-09 1993-07-08 Method for drawing glass proform for optical fiber
KR1019930012908A KR970006995B1 (en) 1992-07-09 1993-07-09 Method and apparatus for production of glass preform for optical fiber
US08/370,233 US5674306A (en) 1992-07-09 1995-01-09 Method and apparatus for drawing glass preform for optical fiber
AU13547/95A AU668331B2 (en) 1992-07-09 1995-02-28 Method and apparatus for drawing a glass preform for optical fiber
AU13546/95A AU668330B2 (en) 1992-07-09 1995-02-28 Method for drawing a glass preform for optical fiber
US08/795,016 US5788734A (en) 1992-07-09 1997-02-05 Method for drawing glass preform for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18225492A JP3191418B2 (en) 1992-07-09 1992-07-09 Optical fiber manufacturing method

Publications (2)

Publication Number Publication Date
JPH0624784A JPH0624784A (en) 1994-02-01
JP3191418B2 true JP3191418B2 (en) 2001-07-23

Family

ID=16115046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18225492A Expired - Lifetime JP3191418B2 (en) 1992-07-09 1992-07-09 Optical fiber manufacturing method

Country Status (1)

Country Link
JP (1) JP3191418B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR880014813A (en) * 1987-05-20 1988-12-24 이우에 사또시 PLL Image Detection Circuit
US6260389B1 (en) * 1998-07-20 2001-07-17 Corning Incorporated Method of prethreading a fiber draw process
DE19956570B4 (en) * 1999-11-24 2005-03-24 Heraeus Tenevo Ag Process for the production of a quartz glass body
JP4615085B2 (en) * 2000-03-21 2011-01-19 古河電気工業株式会社 Optical fiber preform suspension support device
JP5830968B2 (en) * 2011-06-29 2015-12-09 住友電気工業株式会社 Manufacturing method of glass base material
US10486332B2 (en) 2015-06-29 2019-11-26 Corning Incorporated Manufacturing system, process, article, and furnace
CN113370366B (en) 2015-06-29 2023-12-29 康宁股份有限公司 Production line, method and sintered product
CN109896737A (en) * 2019-04-17 2019-06-18 江苏通鼎光棒有限公司 A kind of efficient prick-drawing device and method for large-scale optical fiber prefabricating stick
CN111320357B (en) * 2020-04-15 2022-03-11 江苏亨通智能科技有限公司 Low-hydroxyl high-purity quartz rod/pipe and preparation method thereof
JP7250850B2 (en) * 2021-07-01 2023-04-03 信越化学工業株式会社 Glass preform for optical fiber and method for producing glass preform for optical fiber
CN113998880B (en) * 2021-10-08 2023-02-24 富通集团(嘉善)通信技术有限公司 Manufacturing method of core rod, preform rod and optical fiber
KR102452282B1 (en) * 2021-12-23 2022-10-06 비씨엔씨 주식회사 Manufacturing method of cylindrical synthetic quartz for semiconductors by changing the shape of the mandrel

Also Published As

Publication number Publication date
JPH0624784A (en) 1994-02-01

Similar Documents

Publication Publication Date Title
US5788734A (en) Method for drawing glass preform for optical fiber
JP3191418B2 (en) Optical fiber manufacturing method
JPS60155535A (en) Manufacture of optical fiber
JP3387137B2 (en) Flame polishing method for glass base material
JPH08208242A (en) Production of quartz glass
JP2003171137A (en) Method for manufacturing optical fiber preform
JP3489345B2 (en) Optical fiber manufacturing method
JP3141546B2 (en) Drawing method and drawing apparatus for preform for optical fiber
JP3491642B2 (en) Optical fiber preform, optical fiber, and manufacturing method thereof
JP3141545B2 (en) Drawing method of preform for optical fiber
JP3903689B2 (en) Optical fiber manufacturing method
EP0994078A2 (en) Method for producing quartz glass preform for optical fibers
JPH06144841A (en) Glass rod for porous glass preform
JPH06298540A (en) Production of optical fiber preform
JP3169503B2 (en) Method for producing porous glass preform for optical fiber
JP3625632B2 (en) Drawing method of glass base material for optical fiber
JPH11349344A (en) Production of preform for optical fiber and production unit therefor
JP2003335537A (en) Method for manufacturing optical fiber preform and method for manufacturing optical fiber using the same
JP2517095B2 (en) Optical fiber preform manufacturing method
JP2001039729A (en) Production of optical fiber preform
JPH0583499B2 (en)
JPH06305763A (en) Production of optical fiber preform
JPH09328328A (en) Production of preform for optical fiber
JP2001089177A (en) Processing of glass rod
JP2000264666A (en) Optical fiber preform

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090525

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090525

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 12