JP3188980B2 - Multi-frequency microstrip antenna - Google Patents

Multi-frequency microstrip antenna

Info

Publication number
JP3188980B2
JP3188980B2 JP34101891A JP34101891A JP3188980B2 JP 3188980 B2 JP3188980 B2 JP 3188980B2 JP 34101891 A JP34101891 A JP 34101891A JP 34101891 A JP34101891 A JP 34101891A JP 3188980 B2 JP3188980 B2 JP 3188980B2
Authority
JP
Japan
Prior art keywords
frequency
msa
mode
plate member
feeding point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34101891A
Other languages
Japanese (ja)
Other versions
JPH05175721A (en
Inventor
上 裕 一 村
田 清 一 家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP34101891A priority Critical patent/JP3188980B2/en
Publication of JPH05175721A publication Critical patent/JPH05175721A/en
Application granted granted Critical
Publication of JP3188980B2 publication Critical patent/JP3188980B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Waveguide Aerials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、マイクロストリップア
ンテナに関し、特に多周波数共用マイクロストリップア
ンテナに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microstrip antenna, and more particularly to a multi-frequency microstrip antenna.

【0002】[0002]

【従来技術】近年、移動体通信システム、特に車と通信
するシステム(衛星通信システムあるいは路側通信シス
テム)が実用化へ向けて種々構築されつつある。これら
のシステムにおける通信では、異なる複数の周波数帯を
用いることが計画されており、車にはそれら個々の周波
数帯別にアンテナが必要となる。従って、通信用のアン
テナとしては、アンテナの乱立を防ぐためにも多周波数
共用アンテナが望ましい。また、車載アンテナとして望
まれることは、車の美観をそこなわない等、低姿勢のア
ンテナである。このため、移動体通信システムに用いる
車載アンテナとして多周波数共用のマイクロストリップ
アンテナ(以下、MSAと記す)が最適である。
2. Description of the Related Art In recent years, various types of mobile communication systems, particularly systems for communicating with vehicles (satellite communication systems or roadside communication systems) have been constructed for practical use. In communication in these systems, it is planned to use a plurality of different frequency bands, and a vehicle requires an antenna for each of these frequency bands. Therefore, as a communication antenna, a multi-frequency antenna is preferable in order to prevent the antenna from being disturbed. What is desired as an in-vehicle antenna is a low-profile antenna that does not impair the beauty of a car. For this reason, a microstrip antenna (hereinafter, referred to as MSA) that shares multiple frequencies is most suitable as an in-vehicle antenna used in a mobile communication system.

【0003】ところで、MSAは、誘電体板の両面に導
体板を装着した構成の、開放型平面共振回路の放射損を
利用したアンテナであり、ロープロファィル,軽量コン
パクト,および製作が容易など、の特徴があるが、本
来、狭帯域特性であり特定の周波数帯において機能を発
揮するアンテナである。このため、広帯域の周波数で使
用できるように複数の共振点を設ける等の工夫を施し、
多周波数共用化を図っている。従来の多周波数共用MS
Aとしては、例えば、特開平1−82803号公報に開
示のMSAがある。このMSAは独立な直交する2つの
モードを励振できることに着目し、第1のモードを2周
波数化した、3共振のMSAである。
Meanwhile, the MSA is an antenna using a radiation loss of an open planar resonance circuit having a structure in which conductor plates are mounted on both sides of a dielectric plate, and has a low profile, a light weight, a compact size, and easy manufacture. Although it has features, it is an antenna that originally has a narrow band characteristic and exhibits a function in a specific frequency band. For this reason, various measures such as providing a plurality of resonance points so that they can be used in a wide band of frequencies are provided.
We are trying to share multiple frequencies. Conventional multi-frequency shared MS
As A, there is, for example, the MSA disclosed in JP-A-1-82803. Focusing on the fact that two independent orthogonal modes can be excited, this MSA is a three-resonance MSA in which the first mode has two frequencies.

【0004】[0004]

【発明が解決しようとする課題】特開平1−82803
号公報に開示のMSAの場合、第1のモードにおける2
周波数の分離幅は、放射素子とスタブ幅の比で決められ
る。すなわち、2周波数化においてその周波数の分離幅
に制約条件が伴なうため実現できない分離幅が存在し、
使用周波帯を自由に設定することができない。
Problems to be Solved by the Invention
In the case of the MSA disclosed in
The frequency separation width is determined by the ratio between the radiating element and the stub width. In other words, there are separation widths that cannot be realized due to constraints on the separation widths of the frequencies in the two-frequency conversion,
The operating frequency band cannot be set freely.

【0005】本発明は、多周波数化における周波数の分
離幅に、特に制約条件を伴わない多周波数共用MSAを
提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a multi-frequency MSA that does not have any particular restrictions on the frequency separation width in multi-frequency operation.

【0006】[0006]

【課題を解決するための手段】図5は、従来の矩形MS
Aの斜視図である。11は銅箔からなるa1×b1の方
形放射素子、12は厚さhの誘電体基板、13は銅箔か
らなる接地導体である。また、誘電体基板12の厚さh
は使用波長λoに対して非常に薄い(h≪λo)。この
場合、このアンテナにより発生する電磁界はEz,H
x,Hy成分のみとなり、内部の電磁界モードはTMm
nとなる。
FIG. 5 shows a conventional rectangular MS.
It is a perspective view of A. 11 is an a1 × b1 rectangular radiating element made of copper foil, 12 is a dielectric substrate having a thickness h, and 13 is a ground conductor made of copper foil. Also, the thickness h of the dielectric substrate 12
Is very thin with respect to the used wavelength λo (h≪λo). In this case, the electromagnetic field generated by this antenna is Ez, H
x and Hy components only, and the internal electromagnetic field mode is TMm
n.

【0007】図6は、図5に示すMSAの基本モードで
あるTMmnモード(m=0,n=1)とTMmnモー
ド(m=1,n=0)での電磁界分布であり、破線14
はEzを、実線15はHx,Hy、即ち磁流を示してい
る。TM01モードの電磁界分布を示す同図(a)におい
て、y=b/2では電界が零であることがわかる。同様
にTM10モードの電磁界分布を示す同図(b)からx=
a/2で電界が零となることがわかる。また、(x=a
/2,y=b/2)の点は、MSAの基本モード(TM
10モード,TM01モード)での電界が零となる点であ
る。電界が零ということは、電位差が零となり、等価的
に短絡点として扱うことができる。これはこの点にいか
なる負荷を装荷してもMSAの基本モードに対する電磁
界分布に影響を与えないことを表わしている。そこで本
発明では、電界が零となる点に新たに給電点を設け、基
本モードにおける励振周波数と異なる周波数で励振させ
る。
FIG. 6 shows the electromagnetic field distribution in the TMmn mode (m = 0, n = 1) and the TMmn mode (m = 1, n = 0), which are the basic modes of the MSA shown in FIG.
Represents Ez, and the solid line 15 represents Hx, Hy, that is, the magnetic current. In FIG. 7A showing the electromagnetic field distribution in the TM01 mode, it can be seen that the electric field is zero when y = b / 2. Similarly, from the same figure (b) showing the electromagnetic field distribution of the TM10 mode, x =
It can be seen that the electric field becomes zero at a / 2. Also, (x = a
/ 2, y = b / 2) is the basic mode of the MSA (TM
This is the point where the electric field in the 10 mode and the TM01 mode) becomes zero. When the electric field is zero, the potential difference becomes zero, and it can be equivalently treated as a short-circuit point. This indicates that loading any load on this point does not affect the electromagnetic field distribution for the fundamental mode of the MSA. Therefore, in the present invention, a feeding point is newly provided at a point where the electric field becomes zero, and excitation is performed at a frequency different from the excitation frequency in the basic mode.

【0008】すなわち、本発明の多周波数共用マイクロ
ストリップアンテナは、使用波長に対して十分に薄い誘
電体板部材(2);誘電体板部材(2)の一方の面に装着され
た矩形状の放射導体板部材(1);誘電体板部材(2)の他方
の面に装着された接地導体(3);放射導体板部材(1)の中
心線上または対角線上に位置する、所定周波数(foc)励
振の第1の給電点(5);を備えるマイクロストリップア
ンテナにおいて、放射導体板部材(1)上の、第1の給電
点(5)を所定周波数(foc)励振させた場合に電界が0と
なるに位置に、第2の給電点(4)を設けたことを特徴と
する。なお、カッコ内の記号は後述する実施例の対応要
素を示す。
That is, the multistrip microstrip antenna of the present invention has a dielectric plate member (2) sufficiently thin with respect to the wavelength used; a rectangular plate mounted on one surface of the dielectric plate member (2). A radiation conductor plate member (1); a ground conductor (3) mounted on the other surface of the dielectric plate member (2); a predetermined frequency (foc) located on the center line or diagonal line of the radiation conductor plate member (1). ) first feed point of excitation (5); in microstrip antenna comprising, on the radiating conductor plate member (1), the first feed
To position the electric field becomes 0 when the point (5) was excited at a predetermined frequency (foc), characterized by providing a second feed point (4). The symbols in parentheses indicate the corresponding elements in the embodiments described later.

【0009】[0009]

【作用】これによれば、放射導体板部材(1)上の、第1
の給電点(5)を所定周波数(foc)励振させた場合に電界
が0となるに位置に、第2の給電点(4)を設けているの
で、この第2の給電点を装着することにより発生する負
荷は、MSAの基本モード(TM10モード,TM01モー
ド)に対する電磁界分布に影響を与えない。第2の給電
点(4)を設けることにより、第1の給電点(5)を給電点と
したMSAの所定周波数(foc)励振に加えて、新たに、
第2の給電点(4)を給電点とした所定周波数(foc)と異な
る周波数(fa)での励振が可能となり、MSAの多周波数
共用化が図れる。また、第2の給電点(4)を給電点とし
た励振では、自由に設定した周波数(fa)で励振させるの
で、この励振によるMSAの利得は、第1の給電点(5)
を給電点とした励振周波数(foc:一般には共振周波数)で
のMSAの利得に比べると当然低いが、路側通信等の近
距離通信に用いるには十分な利得であり、実質上、MS
Aの多周波数化の分離幅に特に制約条件を伴わない。
According to this , the first conductor on the radiation conductor plate member (1)
Feed point (5) to position the electric field is zero when is excited at a predetermined frequency (foc), since the second feed point (4) is provided, attaching the second feeding point The resulting load does not affect the electromagnetic field distribution with respect to the basic mode (TM10 mode, TM01 mode) of the MSA. By providing the second feeding point (4), in addition to the predetermined frequency (foc) excitation of the MSA having the first feeding point (5) as the feeding point, a new
Excitation at a frequency (fa) different from a predetermined frequency (foc) using the second power supply point (4) as a power supply point becomes possible, so that multiple frequency sharing of the MSA can be achieved. In addition, in the excitation using the second feeding point (4) as the feeding point, the excitation is performed at the frequency (fa) that is freely set. Therefore, the gain of the MSA due to this excitation is equal to the first feeding point (5).
Is naturally lower than the gain of the MSA at an excitation frequency (foc: generally a resonance frequency) at which the power supply point is used, but the gain is sufficient for use in short-distance communication such as roadside communication.
There is no particular restriction on the separation width for multi-frequency A.

【0010】本発明の他の目的および特徴は図面を参照
した以下の実施例の説明より明らかになろう。
Other objects and features of the present invention will become apparent from the following description of embodiments with reference to the drawings.

【0011】[0011]

【実施例】図1に、本発明の多周波数共用マイクロスト
リップアンテナ(MSA)の一例を示す。図1に示すM
SA10は、円偏波多周波数共用の矩形(方形)MSA
であり、厚さh,誘電率Erの誘電体基板2の片面に、
銅箔からなる方形放射素子1(寸法a×b)を有し、誘
電体基板2のもう一方の面に、銅箔からなる接地導体3
を備える。MSA10の誘電体基板2の厚さhは、使用
波長λoに対して非常に薄い(h≪λo)。従って、M
SA10の励振により発生する電磁界はEz,Hx,H
y成分のみとなり、内部の電磁界モードはTMmnとな
る。
FIG. 1 shows an example of a multi-frequency shared microstrip antenna (MSA) according to the present invention. M shown in FIG.
SA10 is a rectangular (square) MSA shared by circularly polarized multi-frequency
And on one surface of a dielectric substrate 2 having a thickness h and a dielectric constant Er,
It has a square radiating element 1 (dimension a × b) made of copper foil, and has a ground conductor 3 made of copper foil on the other surface of the dielectric substrate 2.
Is provided. The thickness h of the dielectric substrate 2 of the MSA 10 is very thin with respect to the used wavelength λo (h≪λo). Therefore, M
The electromagnetic field generated by the excitation of SA10 is Ez, Hx, H
Only the y component is present, and the internal electromagnetic field mode is TMmn.

【0012】MSA10の動作について説明すると、ま
ず、a×bの方形放射素子1の対角線上に給電点5を設
け、所定の周波数focで励振させる。これにより従来
のMSAと同様に円偏波が発生する。ただし、 a≒b≒λg/2=c/(2・foc・√(Er))=λo/
(2・√(Er)) λg:管内波長 c:光速 とする。このとき、x方向,y方向モードとも、基本モ
ード(TM10モード,TM01モード)であるので、(x
=a/2,y=b/2)点の電界は零となる。実施例の
MSA10では、この(x=a/2,y=b/2)点に
新たに給電点4および整合回路6を設け、周波数foc
と異なる周波数faで励振させる。電界が零となる点に
給電点4を設けることで、給電点4の装着により発生す
る負荷はMSA10のTM10モード,TM01モードに対
する電磁界分布には全く影響を与えない。従って、給電
点5を給電点とした周波数focでの励振は行なわれつ
つ、給電点4を給電点とした周波数focと異なる周波
数faでの励振も可能となる。
The operation of the MSA 10 will be described. First, a feeding point 5 is provided on a diagonal line of the a × b rectangular radiating element 1 and is excited at a predetermined frequency foc. As a result, circular polarization occurs as in the case of the conventional MSA. Where a ≒ b ≒ λg / 2 = c / (2 · foc · √ (Er)) = λo /
(2√ (Er)) λg: guide wavelength c: speed of light At this time, since both the x direction and the y direction mode are the basic modes (TM10 mode and TM01 mode), (x
= A / 2, y = b / 2) The electric field becomes zero. In the MSA 10 of the embodiment, a feeding point 4 and a matching circuit 6 are newly provided at this (x = a / 2, y = b / 2) point, and the frequency foc
Is excited at a different frequency fa. By providing the feed point 4 at the point where the electric field becomes zero, the load generated by mounting the feed point 4 has no effect on the electromagnetic field distribution of the MSA 10 in the TM10 mode and the TM01 mode. Accordingly, while the excitation is performed at the frequency foc with the feeding point 5 as the feeding point, the excitation with the frequency fa different from the frequency foc with the feeding point 4 as the feeding point is also possible.

【0013】なお、周波数faを自由に設定した場合、
整合回路6を最適の状態に設定しても周波数faでの励
振によるMSAの利得は、周波数focでの励振(共
振)での利得より下がるが、近距離での通信(路側通
信)には十分な利得である。このため多周波数化の分離
幅に特に制約条件を伴わない。
When the frequency fa is set freely,
Even if the matching circuit 6 is set to an optimum state, the gain of the MSA by excitation at the frequency fa is lower than the gain by excitation (resonance) at the frequency foc, but is sufficient for short-range communication (roadside communication). Gain. For this reason, there is no particular restriction on the separation width for multi-frequency operation.

【0014】以下に、本実施例の多周波数共用MSAを
励振した時の実測データを示す。なお、本実施例では円
偏波となる周波数focと、周波数focと異なる周波
数faは、 fa=1.84foc の関係で設計してある。
Hereinafter, measured data when the multi-frequency shared MSA of this embodiment is excited is shown. In this embodiment, the frequency foc that becomes a circularly polarized wave and the frequency fa different from the frequency foc are designed to have a relationship of fa = 1.84 foc.

【0015】図2に、focにおける軸比を示す。図2
の縦軸が軸比(AR)である。これにより、(x=a/
2,y=b/2)点に新たに給電点4を設けた影響は受
けずに給電点5を給電点として周波数focで励振さ
れ、十分な円偏波が発生できていることがわかる。
FIG. 2 shows the axial ratio at foc. FIG.
The vertical axis indicates the axial ratio (AR). Thereby, (x = a /
It can be seen that excitation was performed at the frequency foc with the feeding point 5 as the feeding point without being affected by the provision of the feeding point 4 at the (2, y = b / 2) point, and sufficient circular polarization was generated.

【0016】図3に、fa=1.84focにおける電
圧定在波比を示す。図3縦軸が電圧定在波比(VSW
R)である。これにより給電点4を給電点として周波数
faで励振された場合でも、路側通信のような近距離
(10m程度)通信を行なうのに、十分な性能を有する
ことがわかる。
FIG. 3 shows the voltage standing wave ratio at fa = 1.84foc. The vertical axis in FIG. 3 is the voltage standing wave ratio (VSW).
R). As a result, it can be seen that even when the power supply point 4 is used as the power supply point and excited at the frequency fa, it has sufficient performance to perform short-range (about 10 m) communication such as roadside communication.

【0017】なお、本実施例では基本モード(TM10モ
ードまたはTM01モード)を用いた円偏波MSAについ
て示したが、当然、TM10モードまたはTM01モードを
それぞれ単独で用い、直線偏波MSAとしても利用でき
る。この場合の、多周波数共用MSAの一例(MSA1
0a)を図4に示す。図1に示す円偏波多周波数共用の
矩形(方形)MSA10と比較して、所定周波数(直線
偏波となる周波数fx)での給電点5の位置が異なるだ
けで、他の構成は同一である(図1に示す給電点5は、
図4に示す給電点5aに対応)。また、この例では給電
点4がa×bの方形放射素子1の中心にあるが、各モー
ドそれぞれで電界が0となる位置(TM01モードではy
=b/2となる方形放射素子1の中心線上,TM10モー
ドではx=a/2となる方形放射素子1の中心線上)で
あれば、どこでもよい。
In this embodiment, the circularly polarized MSA using the fundamental mode (TM10 mode or TM01 mode) is shown. However, the TM10 mode or TM01 mode is used independently, and is also used as the linearly polarized MSA. it can. In this case, an example of the multi-frequency shared MSA (MSA1)
0a) is shown in FIG. The configuration is the same as that of the rectangular (square) MSA 10 shown in FIG. 1 except for the position of the feeding point 5 at a predetermined frequency (frequency fx that becomes a linearly polarized wave). (The feed point 5 shown in FIG.
(Corresponding to the feeding point 5a shown in FIG. 4). Further, in this example, the feed point 4 is located at the center of the a × b square radiating element 1, but the position where the electric field becomes 0 in each mode (y in the TM01 mode).
= B / 2, or on the center line of the square radiating element 1 where x = a / 2 in the TM10 mode.

【0018】なお、第1の給電点を給電点とした所定周
波数励振により発生する電界が0となる位置に第2の給
電点を設けることで、高次モードでの使用にも応用でき
る。
By providing the second power supply point at a position where the electric field generated by the predetermined frequency excitation with the first power supply point as the power supply point becomes zero, the present invention can be applied to use in a higher mode.

【0019】[0019]

【発明の効果】以上のように本発明では、放射導体板部
材(1)上の、第1の給電点(5)を所定周波数(foc)励振
させた場合に電界が0となるに位置に、第2の給電点
(4)を設けているので、この第2の給電点を装着するこ
とにより発生する負荷は、MSAの基本モード(TM10
モード,TM01モード)に対する電磁界分布に影響を与
えない。第2の給電点(4)を設けることにより、第1の
給電点(5)を給電点としたMSAの所定周波数(foc)励振
に加えて、新たに、第2の給電点(4)を給電点とした所
定周波数(foc)と異なる周波数(fa)での励振が可能とな
り、MSAの多周波数共用化が図れる。また、第2の給
電点(4)を給電点とした励振では、自由に設定した周波
数(fa)で励振させるので、この励振によるMSAの利得
は、第1の給電点(5)を給電点とした励振周波数(foc:一
般には共振周波数)でのMSAの利得に比べると当然低
いが、路側通信等の近距離通信に用いるには十分な利得
であり、実質上、MSAの多周波数化の分離幅に特に制
約条件を伴わない。
As described above, according to the present invention , the first feeding point (5) on the radiation conductor plate member (1) is excited at a predetermined frequency (foc) .
To position the electric field is zero when allowed to, the second feeding point
Since (4) is provided, the load generated by attaching the second power supply point is the basic mode (TM10
Mode, TM01 mode). By providing the second feeding point (4), in addition to the predetermined frequency (foc) excitation of the MSA using the first feeding point (5) as the feeding point, a second feeding point (4) is newly added. Excitation at a frequency (fa) different from the predetermined frequency (foc) as the feeding point becomes possible, and the multi-frequency use of the MSA can be achieved. In addition, in the excitation using the second feeding point (4) as the feeding point, the excitation is performed at the frequency (fa) that is freely set. Therefore, the gain of the MSA due to this excitation is determined by setting the first feeding point (5) to the feeding point. The gain is naturally lower than the gain of the MSA at the excitation frequency (foc: generally the resonance frequency), but is sufficient for use in short-distance communication such as roadside communication, and is substantially equivalent to the multifrequency of the MSA. There is no particular restriction on the separation width.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の多周波数共用マイクロストリップア
ンテナ(MSA)の一例の、概略斜視図である。
FIG. 1 is a schematic perspective view of an example of a multi-frequency microstrip antenna (MSA) of the present invention.

【図2】 図1に示すMSA10が周波数focで励振
されたときの、軸比の実測データを示すグラフである。
FIG. 2 is a graph showing actually measured axial ratio data when the MSA 10 shown in FIG. 1 is excited at a frequency foc.

【図3】 図1に示すMSA10が周波数fa=1.8
4focで励振されときの、電圧定在波比(VSW
R)の実測データを示すグラフである。
FIG. 3 shows that the MSA 10 shown in FIG. 1 has a frequency fa = 1.8.
Voltage standing wave ratio (VSW ) when excited at 4 foc
It is a graph which shows the measured data of R).

【図4】 図1に示すMSAと別の例を示す、概略斜視
図である。
FIG. 4 is a schematic perspective view showing another example of the MSA shown in FIG. 1;

【図5】 従来の一般的なMSAの概略を示す斜視図で
ある。
FIG. 5 is a perspective view schematically showing a conventional general MSA.

【図6】 図5に示すMSAの基本モードであるTMm
nモード(m=0,n=1)とTMmnモード(m=
1,n=0)での電磁界分布を示す、上面図である。
6 is TMm, which is a basic mode of the MSA shown in FIG.
n mode (m = 0, n = 1) and TMmn mode (m =
FIG. 3 is a top view showing an electromagnetic field distribution at (1, n = 0).

【符号の説明】[Explanation of symbols]

1:方形放射素子(放射導体板部材) 2:誘電体基板(誘電体板部材) 3:接地導体(接地導体) 4:給電点(第2の給電点) 5,5a:給電点(第1の給電点) 6:整合回路 10:円偏波多周波数共用の方形MSA 11:方形放射素子 12:誘電体基板 13:接地導体 10a:直線偏波多周波数共用の方形MSA 1: square radiating element (radiating conductor plate member) 2: dielectric substrate (dielectric plate member) 3: ground conductor (ground conductor) 4: feeding point (second feeding point) 5, 5a: feeding point (first) 6: Matching circuit 10: Rectangular MSA for circularly polarized multi-frequency sharing 11: Square radiating element 12: Dielectric substrate 13: Ground conductor 10a: Rectangular MSA for linear polarization multi-frequency sharing

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】使用波長に対して十分に薄い誘電体板部
材;誘電体板部材の一方の面に装着された矩形状の放射
導体板部材;誘電体板部材の他方の面に装着された接地
導体;放射導体板部材の中心線上または対角線上に位置
する、所定周波数励振の第1の給電点;を備えるマイク
ロストリップアンテナにおいて、 放射導体板部材上の、第1の給電点を所定周波数励振
させた場合に電界が0となるに位置に、第2の給電点を
設けたことを特徴とする、多周波数共用マイクロストリ
ップアンテナ。
1. A dielectric plate member that is sufficiently thin for a wavelength to be used; a rectangular radiation conductor plate member mounted on one surface of the dielectric plate member; and a rectangular radiation conductor plate member mounted on the other surface of the dielectric plate member located in the center line or diagonal of the radiating conductor plate member, a first feeding point of the predetermined frequency excitation; ground conductor in the microstrip antenna comprising, on radiating conductor plate member, a first feed point at a predetermined frequency Excitation
The second feeding point is located at a position where the electric field becomes 0
Characterized by providing a multi-frequency sharing microstrip antenna.
JP34101891A 1991-12-24 1991-12-24 Multi-frequency microstrip antenna Expired - Fee Related JP3188980B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34101891A JP3188980B2 (en) 1991-12-24 1991-12-24 Multi-frequency microstrip antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34101891A JP3188980B2 (en) 1991-12-24 1991-12-24 Multi-frequency microstrip antenna

Publications (2)

Publication Number Publication Date
JPH05175721A JPH05175721A (en) 1993-07-13
JP3188980B2 true JP3188980B2 (en) 2001-07-16

Family

ID=18342457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34101891A Expired - Fee Related JP3188980B2 (en) 1991-12-24 1991-12-24 Multi-frequency microstrip antenna

Country Status (1)

Country Link
JP (1) JP3188980B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102303031B (en) * 2011-07-08 2013-10-02 西南大学 Automatic cleaner for liquid pipeline detection

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09246827A (en) * 1996-03-01 1997-09-19 Toyota Motor Corp Vehicle antenna system
US6078294A (en) * 1996-03-01 2000-06-20 Toyota Jidosha Kabushiki Kaisha Antenna device for vehicles
JP2004274223A (en) * 2003-03-06 2004-09-30 Matsushita Electric Ind Co Ltd Antenna and electronic apparatus using the same
CN112134014B (en) * 2019-12-20 2021-10-19 中兴通讯股份有限公司 Antenna structure, signal transceiving module and antenna structure impedance debugging method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102303031B (en) * 2011-07-08 2013-10-02 西南大学 Automatic cleaner for liquid pipeline detection

Also Published As

Publication number Publication date
JPH05175721A (en) 1993-07-13

Similar Documents

Publication Publication Date Title
Yang et al. A wide beamwidth and wideband magnetoelectric dipole antenna
Wu et al. Ultralow-profile, electrically small, pattern-reconfigurable metamaterial-inspired Huygens dipole antenna
US6515633B2 (en) Radio frequency isolation card
US7289076B2 (en) Small planar antenna with enhanced bandwidth and small strip radiator
US7271777B2 (en) Antenna device with improved isolation characteristic
EP1711980A2 (en) Multi frequency magnetic dipole antenna structures and methods of reusing the volume of an antenna
US5512910A (en) Microstrip antenna device having three resonance frequencies
Khandelwal et al. Design, modeling and analysis of dual-feed defected ground microstrip patch antenna with wide axial ratio bandwidth
Wen et al. A wideband series-fed circularly polarized differential antenna by using crossed open slot-pairs
JP3188980B2 (en) Multi-frequency microstrip antenna
JP4516246B2 (en) antenna
El Yousfi et al. Design of a broadband circularly-polarized single-layer metasurface antenna using CMA
Buris et al. Dipole arrays printed on ferrite substrates
JPH073928B2 (en) Antenna device
JP3240568B2 (en) Multi-frequency microstrip antenna
JP3517021B2 (en) Dual-polarized planar antenna
JPS6388904A (en) Microstrip antenna
JP3068149B2 (en) Microstrip array antenna
JP3454151B2 (en) Antenna device
JPH0682972B2 (en) Circularly polarized microstrip antenna
Fakhte et al. Magneto-electric Dipole Antenna for 5G
JP2705814B2 (en) Three-resonance microstrip antenna device
JPH04805A (en) Antenna equipment
JPH0325961B2 (en)
JPS63120502A (en) Broad band microstrip antenna

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090518

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees