JPH073928B2 - Antenna device - Google Patents

Antenna device

Info

Publication number
JPH073928B2
JPH073928B2 JP26788188A JP26788188A JPH073928B2 JP H073928 B2 JPH073928 B2 JP H073928B2 JP 26788188 A JP26788188 A JP 26788188A JP 26788188 A JP26788188 A JP 26788188A JP H073928 B2 JPH073928 B2 JP H073928B2
Authority
JP
Japan
Prior art keywords
antenna
frequency
beam width
directivity
reflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26788188A
Other languages
Japanese (ja)
Other versions
JPH02113706A (en
Inventor
佳雄 恵比根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP26788188A priority Critical patent/JPH073928B2/en
Publication of JPH02113706A publication Critical patent/JPH02113706A/en
Publication of JPH073928B2 publication Critical patent/JPH073928B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は陸上移動通信における2周波共振基地局アンテ
ナの水平面内指向性のビーム幅可変時の指向性制御を可
能とするアンテナ装置に関するものである。
TECHNICAL FIELD The present invention relates to an antenna device which enables directivity control when the beam width of the directivity in the horizontal plane of a dual-frequency resonant base station antenna in land mobile communication is variable. is there.

「従来の技術」 従来、陸上移動通信の基地局アンテナは、加入者容量の
増大時に対処できるように、水平面内指向性においてビ
ーム幅が60゜から180゜まで制御できる構成をとる場合
がある。1つのアンテナで無線ゾーン形状を比較的任意
に設定できるとサービスエリア構成が容易となる利点が
ある。
"Prior Art" Conventionally, a base station antenna for land mobile communication is sometimes configured to control the beam width from 60 ° to 180 ° in the horizontal plane directivity so as to cope with an increase in subscriber capacity. If the radio zone shape can be set relatively arbitrarily with one antenna, there is an advantage that the service area configuration becomes easy.

第3図は従来の単一の周波数が共振する場合のビーム幅
可変アンテナの構成例を示したもので、1はプリントダ
イポールアンテナの誘電体基板、2はプリントダイポー
ルアンテナ、4は反射板で、この反射板の角度は機械的
に任意に変化できる。また、5は給電端子、7はプリン
トダイポールアンテナのアース面である。ここで反射板
とプリントダイポールアンテナの中心との間隔をd、可
変部分の反射板の幅をWとする。
FIG. 3 shows a configuration example of a conventional variable beam width antenna when a single frequency resonates. 1 is a dielectric substrate of a printed dipole antenna, 2 is a printed dipole antenna, and 4 is a reflector. The angle of this reflector can be changed mechanically arbitrarily. Further, 5 is a feeding terminal, and 7 is a ground surface of the printed dipole antenna. Here, the distance between the reflector and the center of the printed dipole antenna is d, and the width of the reflector in the variable portion is W.

水平面内ビーム幅の制御は機械的に反射板の開き角度α
を変化させることにより比較的容易に実現できるが反射
板とプリントダイポールアンテナの中心との間隔d、可
変部分の反射板の幅Wが影響する。周知のように、この
アンテナはコーナーレフレクタアンテナと呼ばれてい
る。
The control of the beam width in the horizontal plane is performed mechanically by the opening angle α of the reflector.
It can be relatively easily realized by changing the value of, but the distance d between the reflector and the center of the printed dipole antenna and the width W of the reflector in the variable portion influence. As is well known, this antenna is called a corner reflector antenna.

第4図は従来の単一の周波数が共振する場合のビーム幅
可変アンテナの開き角に対するビーム幅の測定例と理論
値を示したもので、開き角が大きくなると水平面内のビ
ーム幅も大きくなる傾向にある。このときの反射板の幅
Wは0.56波長、反射板とプリントダイポールアンテナの
中心との間隔dは0.28波長で、実線は理論値である。こ
のように、単一周波数の場合、ビーム幅可変アンテナを
容易に実現できる。しかし、1つのアンテナで2つの周
波数を共振させたアンテナでは、ビーム幅可変時にそれ
ぞれの指向性を一致させることは容易ではない。
FIG. 4 shows a measurement example and a theoretical value of the beam width with respect to the divergence angle of a conventional variable beam width antenna when a single frequency resonates, and the beam width in the horizontal plane increases as the divergence angle increases. There is a tendency. At this time, the width W of the reflector is 0.56 wavelength, the distance d between the reflector and the center of the printed dipole antenna is 0.28 wavelength, and the solid line is the theoretical value. Thus, in the case of a single frequency, a variable beam width antenna can be easily realized. However, in an antenna in which two frequencies resonate with one antenna, it is not easy to match the directivities of the two when the beam width is changed.

第5図は2周波共振プリントダイポールアンテナに反射
板を配置した従来の例を示したもので、1はプリントダ
イポールアンテナの誘電体基板、2はプリントダイポー
ルアンテナ、3は金属導体からなる無給電素子、5は給
電素子、4は反射板で、反射板角が可変できる。2周波
共振時において水平面内指向性のビーム幅を可変する場
合、2のプリントダイポールアンテナが共振している周
波数と3の金属導体からなる無給電素子が共振している
周波数が異なるため、4の反射板と2のプリントダイポ
ールアンテナまたは3の金属導体からなる無給電素子の
間隔dが波長比で異なるため水平面内指向性に差が生じ
る。ここで、プリントダイポールアンテナにおける指向
性は従来とおなじであるため理論的に容易に求まるが、
プリントダイポールアンテナ挟んで2つの無給電素子が
ある場合は指向性を理論的に求めることは煩雑であるた
め実験的に特性を求めることにする。
FIG. 5 shows a conventional example in which a reflector is arranged on a two-frequency resonant printed dipole antenna. 1 is a dielectric substrate of the printed dipole antenna, 2 is a printed dipole antenna, and 3 is a parasitic element made of a metal conductor. Reference numeral 5 is a power feeding element, and 4 is a reflector, and the angle of the reflector can be changed. When the beam width of the directivity in the horizontal plane is changed at the time of two-frequency resonance, the frequency at which the printed dipole antenna at 2 resonates and the frequency at which the parasitic element made of the metal conductor at 3 resonates are different from each other. Since the distance d between the reflector and the parasitic element made of the printed dipole antenna 2 or the metal conductor 3 is different depending on the wavelength ratio, the directivity in the horizontal plane is different. Here, the directivity of the printed dipole antenna is theoretically easily obtained because it is the same as the conventional one.
When there are two parasitic elements sandwiching the print dipole antenna, it is complicated to theoretically determine the directivity, and thus the characteristics are experimentally determined.

第6図はアンテナの開き角に対する水平面内指向性のビ
ーム幅の測定例を示したもので、(a)は第二の高い周
波数による測定例、(b)は第一の低い周波数での測定
例である。なお、無給電素子の共振周波数はプリントダ
イポールアンテナの共振周波数より高く、およそ1.7倍
とし、反射板の幅Wは0.5波長、反射板とプリントダイ
ポールアンテナの中心との間隔dは0.2波長、無給電素
子の幅0.06波長である。このときの波長は第一の低い周
波数での波長を示している、この結果から、2つの周波
数ともにビーム幅はアンテナ開き角が大きいほど大きく
なる傾向にある。2つの周波数の間では、アンテナ開き
角が大きくなると、周波数が高いほうでビーム幅が広く
なる傾向にある。例えば、低い周波数で180゜ビームを
得ると高い周波数では220゜のビーム幅で、40゜以上ビ
ーム幅に差が生じる。また、アンテナ開き角が小さいと
きは周波数が低いほうがビーム幅が狭くなる傾向にあ
り、15゜〜20゜誤差が生じる。なお、第6図に示した各
設定値はビーム幅に対する開き角の測定例の最良値を示
している。
FIG. 6 shows an example of measurement of the beam width of the directivity in the horizontal plane with respect to the opening angle of the antenna. (A) is a measurement example at a second high frequency, and (b) is a measurement at a first low frequency. Here is an example. The resonance frequency of the parasitic element is higher than the resonance frequency of the printed dipole antenna and is about 1.7 times, the width W of the reflector is 0.5 wavelength, the distance d between the reflector and the center of the printed dipole antenna is 0.2 wavelength, and the parasitic power is not fed. The width of the device is 0.06 wavelength. The wavelength at this time indicates the wavelength at the first low frequency. From this result, the beam width tends to increase as the antenna divergence angle increases for both frequencies. Between the two frequencies, as the antenna opening angle increases, the beam width tends to increase at the higher frequencies. For example, when a 180 ° beam is obtained at a low frequency, a beam width of 220 ° is obtained at a high frequency, and a beam width difference of 40 ° or more occurs. Further, when the antenna opening angle is small, the beam width tends to become narrower as the frequency becomes lower, resulting in an error of 15 ° to 20 °. Each set value shown in FIG. 6 is the best value in the measurement example of the divergence angle with respect to the beam width.

「発明が解決しようとする課題」 陸上移動通信で2つの周波数のことなるシステムを1つ
のアンテナで共用しようとしたとき、ビーム幅可変時の
水平面内指向性が異なるとサービスエリアが異なりシス
テム設計が複雑になる問題点があった。
"Problems to be solved by the invention" When a system that uses two different frequencies in land mobile communication is shared by one antenna, the service area differs if the directivity in the horizontal plane when the beam width is changed is different, and the system design is different. There was a problem that became complicated.

本発明はこのような従来の問題点に鑑み、2つの周波数
において、ビーム幅可変時に同じ水平面内指向性となる
2周波共振陸上移動通信用基地局アンテナ装置を提供す
ることを目的としている。
The present invention has been made in view of such conventional problems, and an object of the present invention is to provide a two-frequency resonant land mobile communication base station antenna device that has the same directivity in the horizontal plane when the beam width is changed at two frequencies.

「課題を解決するための手段」 本発明によれば上述の目的は特許請求の範囲に記載した
手段により達成される。すなわち、本発明は、指向性を
制御するための反射板の一方の面に該反射板に対して略
垂直に設けられた誘電体基板に構成された第一の周波数
が共振するプリントダイポールアンテナを挟んで、第二
の周波数が共振する金属導体からなる無給電素子を電界
軸と平行に二つ対向配置した2周波数アンテナにおい
て、該第二の周波数が共振する金属導体からなる無給電
素子の受信方向前方側に、およそ4分の1波長以下の間
隔で、長さが該無給電素子の長さと同じもしくはそれ以
下である金属導体からなる導波素子を配置したことを特
徴とするものである。
"Means for Solving the Problems" According to the present invention, the above-mentioned objects are achieved by the means described in the claims. That is, the present invention provides a printed dipole antenna that resonates at a first frequency formed on a dielectric substrate provided on one surface of a reflector for controlling directivity substantially perpendicular to the reflector. In a two-frequency antenna in which two parasitic elements made of a metal conductor that resonates at the second frequency are arranged to face each other in parallel with the electric field axis, a parasitic element made of a metallic conductor that resonates at the second frequency is received. A waveguide element made of a metal conductor and having a length equal to or less than the length of the parasitic element is arranged at a front side in the direction at intervals of about a quarter wavelength or less. .

「実施例」 第1図は本発明の一実施例を示す図で、図において1は
誘電体基板、2は誘電体基板1に形成された第一の周波
数が共振するプリントダイポールアンテナ、3はプリン
トダイポールアンテナを挟んで電界軸と平行に対向配置
された第二の周波数が共振する金属導体からなる無給電
素子、4は反射板で、可変部分の角度が可変できる。ま
た、5は給電端子、6は無給電素子3の前面側に配置さ
れた金属導体からなる指向性制御用の第二の無給電素子
(導波素子)、7はプリントダイポールアンテナのアー
ス面である。
[Embodiment] FIG. 1 is a view showing an embodiment of the present invention, in which 1 is a dielectric substrate, 2 is a printed dipole antenna formed on the dielectric substrate 1 at which a first frequency resonates, and 3 is a printed circuit board. The parasitic element 4 made of a metal conductor having a second frequency resonating, which is arranged to face the electric field axis with the printed dipole antenna interposed therebetween, is a reflector, and the angle of the variable portion can be varied. Further, 5 is a feeding terminal, 6 is a second parasitic element (waveguide element) for directivity control made of a metal conductor arranged on the front side of the parasitic element 3, and 7 is a ground plane of the printed dipole antenna. is there.

従来の測定結果である第6図から分かることは高い周波
数におけるビーム幅が低い周波数に比べて、ビーム幅が
ブロードになっていることである。
As can be seen from FIG. 6 which is a conventional measurement result, the beam width at the high frequency is broader than that at the low frequency.

ビーム幅をシャープにするためには放射素子の前面側に
無給電素子を配置した八木アンテナの動作を応用するこ
とにより実現できる。ただし、無給電素子の前面側にさ
らに導波素子を設置し、第一の低い周波数に影響を与え
ず、その指向性が制御できるということは明らかでな
い。しかし、以下に示す測定結果から指向性が制御でき
ることが明らかとなった。
The beam width can be sharpened by applying the operation of the Yagi antenna in which a parasitic element is placed in front of the radiating element. However, it is not clear that a directivity element can be controlled by further installing a waveguide element on the front surface side of the parasitic element without affecting the first low frequency. However, it became clear from the measurement results shown below that the directivity can be controlled.

第2図は6の無給電素子の長さおよび3の無給電素子と
6の無給電素子の間隔を最適化した場合のアンテナ開き
角に対する水平面内指向性のビーム幅の測定例で、
(a)は第二の高い周波数、(b)は第一の低い周波数
を示している。この結果から、アンテナ開き角が大きく
なってもその差はほとんどなくなっている。さらに、ア
ンテナ開き角が狭い場合でも第6図にあるような低い周
波数と高い周波数におけるビーム幅の逆転する現象もな
く、極めて良好な特性となっている。このときの各設定
値は図中に示す通りである。
FIG. 2 is a measurement example of the beam width of the directivity in the horizontal plane with respect to the antenna opening angle when the length of the parasitic element 6 and the distance between the parasitic element 3 and the parasitic element 6 are optimized.
(A) shows the second high frequency, and (b) shows the first low frequency. From this result, there is almost no difference even if the antenna opening angle is increased. Further, even when the antenna opening angle is narrow, there is no phenomenon of beam width reversal at low frequency and high frequency as shown in FIG. 6, and the characteristics are extremely good. Each set value at this time is as shown in the figure.

この発明において、第二の周波数が共振するアンテナ構
造は等価的に3素子八木アンテナになる。したがって、
6の導波素子と3の無給電素子の間隔、6の導波素子長
により、指向性が変化する。指向性を最も鋭くするため
には6の導波素子と3の無給電素子の間隔がおよそ1/4
波長、6の導波素子長が1/2波長よりやや短めにする必
要がある。このように、6の導波素子と3の無給電素子
の間隔、6の導波素子長を変化させることにより、第二
の周波数における指向性が制御され、2つの周波数にお
ける指向性が一致する最適値が存在することになる。
In the present invention, the antenna structure in which the second frequency resonates is equivalently a three-element Yagi antenna. Therefore,
The directivity changes depending on the distance between the waveguide element 6 and the parasitic element 3 and the length of the waveguide element 6. In order to make the directivity the sharpest, the distance between the waveguide element 6 and the parasitic element 3 is approximately 1/4.
It is necessary to make the length of the waveguiding element of wavelength 6 a little shorter than 1/2 wavelength. In this way, the directivity at the second frequency is controlled by changing the distance between the waveguide element 6 and the parasitic element 3 and the waveguide element length 6 so that the directivities at the two frequencies match. There will be an optimum value.

なお、第1図に示した3つの無給電素子、6の導波素子
は同一誘電体基板に構成できることは周知である。
It is well known that the three parasitic elements and the waveguide elements 6 shown in FIG. 1 can be formed on the same dielectric substrate.

「発明の効果」 以上の説明から明らかなように、本発明によれば、第二
の周波数が共振する無給電素子の前面側に、指向性制御
用の導波素子を設置するのみで、第一の周波数と第二の
周波数での水平面内指向性のビーム幅を略一致させるこ
とができる利点がある。
"Effects of the Invention" As is apparent from the above description, according to the present invention, the waveguide element for directivity control is simply installed on the front surface side of the parasitic element where the second frequency resonates. There is an advantage that the beam widths in the horizontal plane directivity at the first frequency and the second frequency can be substantially matched.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明による2周波共振のビーム幅可変アンテ
ナの構成例を示す図、第2図は本発明の2周波共振のビ
ーム幅可変アンテナのビーム幅に対するアンテナ開き角
の関係を示す図、第3図は従来の単一共振のビーム幅可
変アンテナの構成例を示す図、第4図は従来の単一共振
のビーム幅可変アンテナのビーム幅に対するアンテナ開
き角の関係を示す図、第5図は従来の2周波共振のビー
ム幅可変アンテナの構成例を示す図、第6図は従来の2
周波共振のビーム幅可変アンテナのビーム幅に対するア
ンテナ開き角の関係を示す図である。 1……誘電体基板、2……プリントダイポールアンテ
ナ、3……第二の周波数が共振する無給電素子、4……
反射板、5……給電端子、6……第二の周波数での水平
面内指向性を制御する導波素子、7……プリントダイポ
ールアンテナのアース面。
FIG. 1 is a diagram showing a configuration example of a beam width variable antenna with dual frequency resonance according to the present invention, and FIG. 2 is a diagram showing a relationship between an antenna opening angle and a beam width of a beam width variable antenna with dual frequency resonance according to the present invention, FIG. 3 is a diagram showing a configuration example of a conventional single-resonance variable beam width antenna, and FIG. 4 is a diagram showing a relation of an antenna opening angle to a beam width of a conventional single-resonance variable beam width antenna. FIG. 6 is a diagram showing a configuration example of a conventional beam width variable antenna with dual frequency resonance, and FIG.
It is a figure which shows the relationship of the antenna opening angle with respect to the beam width of the beam width variable antenna of a frequency resonance. 1 ... Dielectric substrate, 2 ... Printed dipole antenna, 3 ... Parasitic element where second frequency resonates, 4 ...
Reflector, 5 ... Feed terminal, 6 ... Waveguide element for controlling directivity in horizontal plane at second frequency, 7 ... Ground plane of printed dipole antenna.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】指向性を制御するための反射板の一方の面
に該反射板に対して略垂直に設けられた誘電体基板に構
成された第一の周波数が共振するプリントダイポールア
ンテナを挟んで、第二の周波数が共振する金属導体から
なる無給電素子を電界軸と平行に二つ対向配置した2周
波数アンテナにおいて、該第二の周波数が共振する金属
導体からなる無給電素子の受信方向前方側に、および4
分の1波長以下の間隔で、長さが該無給電素子の長さと
同じもしくはそれ以下である金属導体からなる導波素子
を配置したことを特徴とするアンテナ装置。
1. A printed dipole antenna having a first frequency resonating, which is formed on a dielectric substrate provided substantially perpendicular to the reflecting plate on one surface of a reflecting plate for controlling directivity. In a two-frequency antenna in which two parasitic elements made of a metal conductor that resonates at a second frequency are arranged opposite to each other in parallel to the electric field axis, the receiving direction of the parasitic element made of a metal conductor that resonates at the second frequency Forward, and 4
An antenna device, wherein waveguide elements made of a metal conductor having a length equal to or less than the length of the parasitic element are arranged at intervals of one-half wavelength or less.
JP26788188A 1988-10-24 1988-10-24 Antenna device Expired - Fee Related JPH073928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26788188A JPH073928B2 (en) 1988-10-24 1988-10-24 Antenna device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26788188A JPH073928B2 (en) 1988-10-24 1988-10-24 Antenna device

Publications (2)

Publication Number Publication Date
JPH02113706A JPH02113706A (en) 1990-04-25
JPH073928B2 true JPH073928B2 (en) 1995-01-18

Family

ID=17450927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26788188A Expired - Fee Related JPH073928B2 (en) 1988-10-24 1988-10-24 Antenna device

Country Status (1)

Country Link
JP (1) JPH073928B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11183750B2 (en) 2018-04-24 2021-11-23 AGC Inc. Vehicular antenna, vehicular antenna-attached window glass, and antenna system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3290475B2 (en) * 1992-10-16 2002-06-10 電気興業株式会社 Antenna device
JPH1032422A (en) * 1996-07-16 1998-02-03 N T T Ido Tsushinmo Kk Plane circuit type notched antenna
JP2006014007A (en) * 2004-06-28 2006-01-12 Denki Kogyo Co Ltd Antenna unit for multi-plane synthetic antenna
JP2008177891A (en) * 2007-01-19 2008-07-31 Dx Antenna Co Ltd Antenna apparatus
US8736507B2 (en) 2010-10-22 2014-05-27 Panasonic Corporation Antenna apparatus provided with dipole antenna and parasitic element pairs as arranged at intervals
JP6608976B2 (en) 2018-01-24 2019-11-20 ヤマハ発動機株式会社 Directional antenna

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11183750B2 (en) 2018-04-24 2021-11-23 AGC Inc. Vehicular antenna, vehicular antenna-attached window glass, and antenna system
US11817621B2 (en) 2018-04-24 2023-11-14 AGC Inc. Vehicular antenna, vehicular antenna-attached window glass, and antenna system

Also Published As

Publication number Publication date
JPH02113706A (en) 1990-04-25

Similar Documents

Publication Publication Date Title
US6195048B1 (en) Multifrequency inverted F-type antenna
EP1158602B1 (en) Two-frequency antenna, multiple-frequency antenna, two- or multiple-frequency antenna array
JP4223564B2 (en) Microstrip antenna and array antenna
US6606067B2 (en) Apparatus for wideband directional antenna
US5872544A (en) Cellular antennas with improved front-to-back performance
US5675345A (en) Compact antenna with folded substrate
US20040090371A1 (en) Compact antenna with circular polarization
JPH10150319A (en) Dipole antenna with reflecting plate
JPH0685487B2 (en) Dual antenna for dual frequency
KR20000007676A (en) Low side lobe dual polarization directional antenna having a chock reflector
EP0891004A1 (en) Omnidirectional slot antenna
US7079078B2 (en) Patch antenna apparatus preferable for receiving ground wave and signal wave from low elevation angle satellite
US20030103015A1 (en) Skeleton slot radiation element and multi-band patch antenna using the same
JP3114836B2 (en) Printed dipole antenna
US6426730B1 (en) Multi-frequency array antenna
JP4516246B2 (en) antenna
JPH073928B2 (en) Antenna device
JPH11266118A (en) Patch array antenna
JP3782278B2 (en) Beam width control method of dual-polarized antenna
JPH07336133A (en) Antenna device
JPH0645820A (en) Plane antenna
US6930647B2 (en) Semicircular radial antenna
JP3483096B2 (en) Monopole antenna
JPH08288731A (en) Two-frequency sharing printed antenna
JP2645700B2 (en) Dual frequency corner antenna device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees