JPH04805A - Antenna equipment - Google Patents

Antenna equipment

Info

Publication number
JPH04805A
JPH04805A JP9943390A JP9943390A JPH04805A JP H04805 A JPH04805 A JP H04805A JP 9943390 A JP9943390 A JP 9943390A JP 9943390 A JP9943390 A JP 9943390A JP H04805 A JPH04805 A JP H04805A
Authority
JP
Japan
Prior art keywords
line
strip line
strip
radiators
open end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9943390A
Other languages
Japanese (ja)
Other versions
JP3037959B2 (en
Inventor
Yoichi Kaneko
洋一 金子
Yoshiichi Wakao
伊市 若生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yagi Antenna Co Ltd
Original Assignee
Yagi Antenna Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yagi Antenna Co Ltd filed Critical Yagi Antenna Co Ltd
Priority to JP2099433A priority Critical patent/JP3037959B2/en
Publication of JPH04805A publication Critical patent/JPH04805A/en
Application granted granted Critical
Publication of JP3037959B2 publication Critical patent/JP3037959B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

PURPOSE:To simplify feeders near a radiator and to improve the symmetry of power feeding by counter arranging two radiators while being rotated at 180 deg. each other for each power feeding point and using a phase inversion bisectional branching circuit utilizing a magnetic field coupling operation mutually between strip lines as a bisectional branch circuit to distribute signals from the feeders to the individual feeders of the two radiators as mentioned above. CONSTITUTION:Since strip lines 53 and 56 are arranged at a place where a line voltage is minimum and a line current is maximum to strip lines 52 and 57, and coupling is executed by the magnetic field of a high frequency. Therefore, the unidirectional current is induced to the strip lines 53 and 56, and the signal inverting the phase is sent in the directions of the radiators of the respective individual feeders. The signal applied to a feeder 59 is equally divided into four parts and simultaneously, patch radiators 32 and 36, which are mutually rotated at 180 deg., and patch radiators 42 and 47 are excited because of phase inversion bisectional branch circuits 52 and 57. Finally, all the radiators are coaxially excited.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、給電線路としてス) IJッデ線路を用い、
複数の放射素子を励振するアンテナ装置に関する。
[Detailed Description of the Invention] [Industrial Application Fields] The present invention uses an IJ line as a power supply line,
The present invention relates to an antenna device that excites a plurality of radiating elements.

[従来の技術] 一般に、衛星放送受信用の平面アンテナは、高利得が要
求され、面積を大きくして多数の放射素子を平面上に配
置し、各放射素子を給電線路に結合させている。
[Prior Art] In general, a flat antenna for receiving satellite broadcasting is required to have a high gain, has a large area, has a large number of radiating elements arranged on a plane, and each radiating element is coupled to a feed line.

従来、平面アンテナの給を線路としては、軽量小型化に
適したストリップ線路が使用されている。
Conventionally, a strip line, which is suitable for being lightweight and compact, has been used as a feed line for a planar antenna.

また、ストリップ線路としては、接地導体と帯状導体か
らなるマイクロストリップ線路、または上下接地導体の
間に帯状導体を配した3層導体層からなるトリグレート
ストリッ7”41M−が使用されている。
Further, as the strip line, a microstrip line consisting of a ground conductor and a strip conductor, or a trigrate strip 7''41M- consisting of a three-layer conductor layer in which a strip conductor is arranged between upper and lower ground conductors is used.

一般に、給電線路としてマイクロストリップ線路を用い
た場合は、放射素子としては、両端開放の2分の1波長
マイクロストリップ線路ま念はそれを変形した、いわゆ
る・々ツチアンテナ形式のものが用いられ、・ぐツチア
ンテナと給am路とは直接結合される。ま念トリグレー
トストリップ線路給電の場合は、上部接地導体に2分の
1tIL長のスロットを設けたスロットアンテナ形式の
ものが用いられ、スロットアンテナと給tS路とは電磁
結合されることが多い。さらに、全体の給電方式として
は、ストリップ線路給電の場合、2分岐回路を組み合わ
せた並列給電方式により、一つの給電点から各放射素子
までに至る線路長が等しくなる並列給電方式が用いられ
る。なお各放射素子の配置の間隔は、不要サイドロープ
を抑圧し、アンテナの放射効率を劣化させないために、
05波長乃至0.9波長桿度に高密度に配置しなければ
ならない。
Generally, when a microstrip line is used as a feed line, the radiating element is a half-wavelength microstrip line with both ends open. - The Gutsuchi antenna and the AM feed path are directly coupled. In the case of true tri-rate strip line power feeding, a slot antenna type antenna in which a slot with a length of 1/2 tIL is provided in the upper ground conductor is used, and the slot antenna and the feeding tS path are often electromagnetically coupled. Furthermore, as for the overall power feeding method, in the case of strip line power feeding, a parallel feeding method is used in which a parallel feeding method is used in which two branch circuits are combined, so that the line length from one feeding point to each radiating element is equal. The spacing between each radiating element is determined to suppress unnecessary side ropes and prevent deterioration of antenna radiation efficiency.
They must be densely arranged in the 0.05 wavelength to 0.9 wavelength radius.

しかしながら、これらのストリップ線路を用いた平面ア
ンテナは、放射素子を所望の位相で均一な振幅で励振す
るには、放射素子周辺の個別給電線路の配置上配線の引
き回しが複雑かつ過密となって給電線路間の相互干渉が
生じ均一励振が損なわれ、その結果アンテナの放射効率
が低下するという問題があった。
However, in planar antennas using these strip lines, in order to excite the radiating element with a desired phase and uniform amplitude, the arrangement of the individual feed lines around the radiating element requires complicated and overcrowded wiring. There was a problem in that mutual interference between the lines occurred, impairing uniform excitation, and as a result, the radiation efficiency of the antenna decreased.

さらに従来の平面アンテナでは、放射素子周辺の個別給
電線路の配置に制約があるために放射素子とアンテナ素
子との間の整合回路が最適とならず全体として狭帯域と
なるという問題があった・第5図は、従来のストリップ
線路給電方式を用いた平面アンテナの平面図を示す。本
アンテナは、各放射素子の放射電力を面に垂直のE開方
向に合成する之めの配置となっている。
Furthermore, in conventional planar antennas, there was a problem that the matching circuit between the radiating element and the antenna element was not optimal due to restrictions on the arrangement of the individual feed lines around the radiating element, resulting in a narrow band as a whole. FIG. 5 shows a plan view of a planar antenna using a conventional strip line feeding system. This antenna is arranged so that the radiated power of each radiating element is combined in the E-opening direction perpendicular to the plane.

4 ’@の円形/4ッチ放射素子、? 、 7 、17
 、15は接地導体lと絶壁体2により間隔をあけて配
置されてマイクロストリップ線路からなる個別給電線路
6,10,14.IIIにより同じ向きに同相給電され
る。+1iil別給tS路6.10,14.18は、T
分岐19.22を経て線路幅を変えた4分の1波長イ/
−一ダンス変成器となる線路部20゜21を含むT分岐
xsv’cより一つの給電線路24に合成される。
4' @ circular/4-titch radiating element, ? , 7, 17
, 15 are individual feed lines 6, 10, 14 . In-phase power is supplied in the same direction by III. +1iil separate payment tS road 6.10, 14.18 is T
1/4 wavelength I/
- Combined into one feed line 24 from a T branch xsv'c including a line portion 20° 21 serving as a one-dance transformer.

各々の円形/譬ツチは、給電点から45度の角度の部分
に切り欠きセグメン)4*5eJe9*12.13.ノ
ロ、17を持几せることにより、円盤導体上に直交する
二つの共振モード[90度の位相差を付与し、かつ等振
幅で励畳して円偏波を発生する。
Each circular segment has a cutout segment at a 45 degree angle from the feed point)4*5eJe9*12.13. By holding the groove 17, two orthogonal resonant modes [90 degree phase difference are imparted to the disk conductor, and circularly polarized waves are generated by exciting with equal amplitude.

[発明が解決しようとする課題] 上記給1線路配置の問題点は、T分岐23の給電線路2
4のT分岐付近は、線路2o、、?Jと直交しないため
非対称な磁界結合のため完全な2分岐とならず、電力分
配は左右不均等となる。実験的に左方の分岐枝となる線
路部20に対する結合が強くなることが知られている。
[Problems to be Solved by the Invention] The problem with the above feed line arrangement is that the feed line 2 of the T branch 23 is
Near the T branch of 4 is the track 2o...? Since it is not orthogonal to J, it is not completely bifurcated due to asymmetric magnetic field coupling, and the power distribution becomes uneven between the left and right sides. It has been experimentally known that the coupling to the line portion 20, which is the left branch, becomes stronger.

また、給電線路24が個別給電線路14並びに放射素子
15に接近し、それぞれ不要電磁結合を生じ、結果とし
て各放射素子の励振を不均一にし、アンテナ効率を低下
させる問題があった。
Further, the feed line 24 approaches the individual feed line 14 and the radiating element 15, causing unnecessary electromagnetic coupling, resulting in non-uniform excitation of each radiating element, resulting in a decrease in antenna efficiency.

本発明は、上記の問題点に鑑みてなされたもので、その
目的は構成を簡素化でき、かつ給電線路の損失を低減し
てアンテナ効率を向上し得るアンテナ装置を提供するこ
とにある。
The present invention has been made in view of the above problems, and an object of the present invention is to provide an antenna device that can simplify the configuration, reduce loss in the feed line, and improve antenna efficiency.

[課題を解決するための手段及び作用]本発明は、2個
の放射素子を給電点ごとに互いに180度回転させ対向
配置させ、給電線路から前記2個の放射素子の個別給電
線路に信号を分配する2分岐回路として、ストリップ線
路相互の磁界結合作用を利用した位相反転2分岐回路を
用いることにより、放射素子付近の給電線路を簡素化し
、且つ給電の対称性を良くすることにより給電線路の不
要結合を低減し、放射素子励振の均一化によるアンテナ
効率の改善が出来るようにしたものである。
[Means and effects for solving the problem] The present invention includes two radiating elements that are rotated 180 degrees and placed facing each other at each feeding point, and a signal is transmitted from the feeding line to the individual feeding line of the two radiating elements. By using a phase-inverting two-branch circuit that utilizes the magnetic field coupling effect between strip lines as a two-branch circuit for distribution, the feed line near the radiating element can be simplified, and the symmetry of the feed can be improved to improve the feed line. This makes it possible to improve antenna efficiency by reducing unnecessary coupling and uniformizing the excitation of the radiating element.

口第1実施例コ 以下、本発明の実施例を図面を参照して説明する。Mouth 1st example Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の第1実施例による平面アンテナの平面
図であって、本発明をトリプレート型ストリップ線路給
電方式に適用した場合金示す。
FIG. 1 is a plan view of a planar antenna according to a first embodiment of the present invention, and shows the case where the present invention is applied to a triplate type strip line feeding system.

トリプレート型ストリップ線路(以下簡単のtめストリ
ップ線路と記す)は、第1図の接地導体30の上側に配
置されている絶縁体3ノと、この上に積層される上部接
地導体61の下側に配置されている絶縁体60との間に
配置される導体層のところに形成される。
The tri-plate strip line (hereinafter simply referred to as the t-th strip line) consists of an insulator 3 placed above the ground conductor 30 in FIG. It is formed at a conductor layer that is located between the insulator 60 and the insulator 60 that is located on the side.

各放射素子形式は先に説明した従来例と少し異なるが、
同様に/fラッチ放射素子であり、主ビームを垂直の正
面方向に合成するための配置となっている。
The format of each radiating element is slightly different from the conventional example described earlier, but
Similarly, it is a /f latch radiation element, and is arranged to combine the main beam in the vertical front direction.

4個の/#ラッチ放射素子32,37,42.41は接
地導体30と絶縁体31により間隔をあけて配置され、
円盤導体35,40,45.50の円周上の各々の給電
点から45度の角度で短冊型の細長い導体とやや幅が広
くて短い導体とを直交させたクロスノぐツチ3B、34
.3B、39,43゜44.48.49を延長させた構
造とし、直交する二つの共振モードに90度の位相差を
付与し、かつ等振幅で励振して円偏波を発生する形式の
ものである。
The four /# latch radiating elements 32, 37, 42, 41 are spaced apart by the ground conductor 30 and the insulator 31,
Cross grooves 3B, 34 in which a strip-shaped elongated conductor and a slightly wider and shorter conductor are orthogonally crossed at an angle of 45 degrees from each feeding point on the circumference of the disk conductors 35, 40, 45.50.
.. 3B, 39, 43° 44, 48, 49 has a structure that extends, gives a 90 degree phase difference to two orthogonal resonance modes, and generates circularly polarized waves by exciting with equal amplitude. It is.

パッチ型放射素子32.37及び72.47はストリッ
プ線路からなる個別給電線路36.41及び46.51
を備え、それぞれ給電点を含み互いに180度回転して
配置されている。個別給電線路36.41及び46.5
1に信号を分配するには、位相反転2分岐回路52.5
7を用いており、これらは一端が開放端で開放端から4
分の1波長離れた電流最大位置付近の前後を折り曲げた
ストリップ線路53.56をストリップ線路52゜57
に接近させて構成される。
Patch type radiating elements 32.37 and 72.47 are individual feed lines 36.41 and 46.51 made of strip lines.
, each including a feeding point and arranged 180 degrees rotated from each other. Individual feed lines 36.41 and 46.5
To distribute the signal to 1, phase inversion 2 branch circuit 52.5
7 is used, and these have one open end and 4 points from the open end.
The strip line 53.56 which is bent at the front and back near the current maximum position which is one-quarter wavelength away is the strip line 52゜57
It is constructed close to.

インピーダンス整合のため線路幅を変えた給電豐路54
.55は、T分岐48を経て一つの給電線路59に接続
されている。
Power supply route 54 with different line width for impedance matching
.. 55 is connected to one feed line 59 via a T-branch 48.

次に本発明の構咬において回路の動作および放射素子の
4h@について説明する。ストリップ線路53.561
d、ストリップ線路52,57に対し線路電圧最少、線
路電流最大部分で密接して配置されているので、高周波
の磁界によって結合が行われる。従って、ストリップ線
路53,56には一つの方向の電流が誘起され、それぞ
れ個別給電線路の放射素子の向きに対しては、位相が逆
転した信号が送られることになる。
Next, the operation of the circuit and the 4h@ of the radiating element in the construction of the present invention will be explained. Strip line 53.561
d. Since the strip lines 52 and 57 are placed in close contact with each other at the portions where the line voltage is minimum and the line current is maximum, coupling is achieved by a high frequency magnetic field. Therefore, a current in one direction is induced in the strip lines 53 and 56, and signals whose phases are reversed are sent to the direction of the radiating element of each individual feed line.

このようKして、給電線路591fC加えられた信号は
、4等分されると同時に1位相反転2分岐回路sx、s
vのため、個別給電線路6と10および14と16の放
射素子との接続点でそれぞれ180度の位相差の信号で
、互い[180度回転配置されたtツチ放射素子32.
16及び42゜47を@!L、結句全ての放射素子を同
相で励振することになる。
In this way, the signal added on the power supply line 591Fc is divided into 4 equal parts, and at the same time, 1st opposite 2 branch circuit SX, S.
Because of the radiating elements 32 .
16 and 42°47 @! L, all the radiating elements are excited in the same phase.

放射素子からの放射波は、上部接地導体61上に配置さ
れた、円周の4等分する位置に内部に向かう突起を有す
る開口62,63,64.65を経て外部へ放射される
。円周上の突起は開口の共振周波数を低下させ、比較的
小さな直径の開口で電波を通過させるので、上部接地導
体の開口以外の部分の面積を増加することができストリ
ップ給電線路部からの不要放射を抑えることができる。
Radiation waves from the radiating element are radiated to the outside through openings 62, 63, 64, and 65, which are arranged on the upper ground conductor 61 and have protrusions pointing inward at positions dividing the circumference into four equal parts. The protrusions on the circumference reduce the resonant frequency of the aperture and allow the radio waves to pass through the aperture with a relatively small diameter, thereby increasing the area of the upper ground conductor other than the aperture and eliminating unnecessary parts from the strip feed line section. Radiation can be suppressed.

本放射素子の配置においては電磁波の放射は、・ぐツチ
型放射素子からの直接放射と開口を励振による、開口か
らの放射とを合成したものとなる。
In the arrangement of this radiating element, the electromagnetic wave radiation is a combination of direct radiation from the Gutsuchi-type radiating element and radiation from the aperture by exciting the aperture.

開口の突起部は下部の放射素子のクロスス) IJッグ
部と平行した配置のため、電磁結合によって開口をスロ
ット放射素子として励振を強める作用をする。開口のス
ロット放射素子としての働きは開口の共振周波数が動作
周波数に一致させたとき最大となり、全体の放射を支配
する。これに対し開口を大きくして共振周波数を動作周
波数から十分下げておけば4ツチ型放射素子からの放射
が支配的となる。後者の方法が設計は簡単であるが給電
線路の遮蔽効果は若干減少するので、目的により、いず
れかの方法を選べばよい。
Since the protrusion of the opening is arranged parallel to the cross section of the lower radiating element, electromagnetic coupling acts to strengthen the excitation by using the opening as a slot radiating element. The function of the aperture as a slot radiating element is maximized when the resonant frequency of the aperture matches the operating frequency, and dominates the overall radiation. On the other hand, if the aperture is made large and the resonant frequency is sufficiently lowered from the operating frequency, radiation from the four-way type radiating element becomes dominant. Although the latter method is simpler in design, the shielding effect of the feed line is slightly reduced, so either method may be selected depending on the purpose.

本発明の効果として、位相反転型2分岐回路52.57
t−左右の配置が丁度碗倫の関係の形状にし念ため、中
央部から対称性の良い給電ができ、左右の放射素子対に
均一な励振をすることが可能となった。
As an effect of the present invention, phase inversion type two-branch circuit 52.57
Since the t-left and right sides are arranged in a shape with a bowl-like relationship, it is possible to feed power with good symmetry from the center, and uniformly excite the left and right radiating element pairs.

上記実施例では、主ビームが面に垂直な平面アンテナに
適用したが、主ビームに所10角度を待几せる場合にも
、不発明の給電方法を基礎として設計すれば、給電線路
に位相差負荷回路を挿入し友り、放射素子及び給電点の
配列に回転角度差を付けるなど従来良く知られた方法を
併用することにより、従来より配線が簡素化出来る性質
を活用して、所望のビームチルトが容易に実現できる利
点がある。
In the above embodiment, the antenna is applied to a flat antenna in which the main beam is perpendicular to the surface, but even when the main beam is arranged at 10 angles, if the design is based on the uninvented feeding method, the feeding line can have a phase difference. By using conventionally well-known methods such as inserting a load circuit and adding different rotation angles to the arrangement of radiating elements and feeding points, the desired beam can be achieved by taking advantage of the fact that wiring can be simpler than before. There is an advantage that tilting can be easily realized.

ま念、上記実施例では、放射素子として、円形ノ9ツチ
型放射素子を用い、給電方法として個別給電線路による
1頁接結合法を用いたが、良く仰られているように、上
部接地導体上に設は九スロット型枚射素子と前記放射素
子のスロットを横切るトリプレートストリップ線路によ
って、いわゆる電磁結合をさせた給電方式にも本発明を
適用して効果を上げることができる。
Please note that in the above embodiment, a circular 9-shaped radiating element was used as the radiating element, and the one-page connection method using individual feed lines was used as the feeding method, but as is often said, the upper ground conductor The present invention can also be applied to a feeding system in which so-called electromagnetic coupling is performed using a nine-slot type sheet radiating element and a tri-plate strip line that crosses the slots of the radiating element.

[第2実施例] 第2図は本発明の第2実施例の平面アンテナにおける位
相反転型2分岐回路の回路パターンであって、折り曲げ
られた開放端72.75をもつ2分の1波長ストリップ
線路52の両開放端から少し離れた位置に個別給電線路
74.75が接続されている。まル、一端開放のス) 
+7ツグ線路76が開放端から4分の1波長の前後で図
のように両側に直角に折り曲げられ、給電線路79に至
る4分の1波長の線路の線路幅を変えてインピーダンス
整合器として動作させることができる。2分岐回路とし
ての動作は、第1図の場合とほぼ同様であるが、個別給
電線路74.75を開放端72゜75から離すことによ
って、放射素子側のより小さいインピーダンスに対する
整合性を良くし、分岐点t−よりコンパクトにできる効
果を有する。
[Second Embodiment] FIG. 2 is a circuit pattern of a phase inversion type two-branch circuit in a planar antenna according to a second embodiment of the present invention, in which a half-wavelength strip with a bent open end 72.75 is shown. Individual feed lines 74 and 75 are connected to positions slightly apart from both open ends of the line 52. (round, one end open)
+7 Tsug line 76 is bent at right angles to both sides before and after 1/4 wavelength from the open end as shown in the figure, and the line width of the 1/4 wavelength line leading to feed line 79 is changed to operate as an impedance matching device. can be done. The operation as a two-branch circuit is almost the same as that shown in Fig. 1, but by separating the individual feed lines 74, 75 from the open end 72° 75, the matching with the smaller impedance on the radiating element side is improved. , has the effect of making the branch point t- more compact.

[第31!施例] 第3図は1本発明の第31!施例の平面アンテナにおけ
る位相反転型2分岐回路の回路7ダターンであって、ス
トリップ@ugs、gyがU字型に曲げられ九底部の線
路部86で接続され、全体として2分の1e、長の第1
のス) IJッデ線路を構成する。前記底部の線路部8
6に密接して配置嘔れた第2のス) IJッデ線路とし
て、幅の広い2分の1波長のストリップ線路80が用い
られ、両端に個別給電線路83.Ii4が接続される。
[31st! Example] Figure 3 shows the 31st example of the present invention! In the circuit 7 of the phase inversion type two-branch circuit in the planar antenna of the embodiment, the strips @ugs and gy are bent into a U shape and connected at the line part 86 at the bottom, and the length is 1/2 e as a whole. the first of
) Configure the IJ line. Said bottom track section 8
A wide 1/2 wavelength strip line 80 is used as the IJ line, and individual feed lines 83. Ii4 is connected.

給電線路90から延長され幅を変えて4分の1波長イン
ピーダンス変成器としての作用を持つストリップ線路8
9の先端88が上方に曲げられU字型の内部からストリ
ップ線路85に接続される。
A strip line 8 that is extended from the feed line 90 and has a varying width and functions as a quarter-wavelength impedance transformer.
The tip 88 of 9 is bent upward and connected to the strip line 85 from inside the U-shape.

前記接続点FiU字型の端部機高インピーダンスであり
、設計により接続点を適宜選択することが出来る。本構
成における動作FiK2図の場合と同様であるが、結合
部の上下対称性が改善され、さらに良好な特性が期待で
きる。
The connection point Fi is the high impedance at the end of the U-shape, and the connection point can be selected as appropriate depending on the design. The operation in this configuration is the same as in the FiK2 diagram, but the vertical symmetry of the coupling portion is improved, and even better characteristics can be expected.

[第4実施例] 第4図は本発明のさらに別の実施例の平面アンテナの構
成図である。
[Fourth Embodiment] FIG. 4 is a configuration diagram of a planar antenna according to still another embodiment of the present invention.

最初に給電回路について説明する。接地導体30の上の
絶縁体31と上部接地導体61の下の絶縁体6oの間に
ストリップ線路給電線1ooが設けられ、T分岐101
を経て、位相反転2分岐回路102.103を経て一端
開放のス) IJツブ線路104.105,106,1
07に4分配される。これらのウチ左上のブロックにつ
いて説明すると、一端開放のストリップ線路104の開
放端から4分の1波長のところには、左右から折り返し
型のストリップ線路108 109が接近して配置され
ており、磁界結合により結合され、信号はさらに4等分
され、一端開放の反対の向きに配置されたストリップ線
路110と111並びに112と113をそれぞれ給電
点から逆相に励振し、一つの方向からみたとき全体が縦
方向のおなし向きの電流で励振される。他のブロックに
ついても同様ですべて縦向きに同相で励振されて上方に
電磁波を放射する。
First, the power supply circuit will be explained. A stripline feeder line 1oo is provided between the insulator 31 above the ground conductor 30 and the insulator 6o below the upper ground conductor 61, and the T-branch 101
After passing through phase inversion two-branch circuit 102.103, IJ tube line 104.105, 106, 1 with one end open.
It will be divided into 4 parts in 2007. To explain the upper left block of these blocks, at a quarter wavelength from the open end of the strip line 104 with one end open, folded strip lines 108 and 109 are placed close to each other from the left and right, and magnetic field coupling is achieved. The signal is further divided into four equal parts, and the strip lines 110 and 111 and 112 and 113, which are open at one end and placed in opposite directions, are excited in opposite phases from the feeding point, and when viewed from one direction, the whole It is excited by a vertically directed current. The same goes for the other blocks, which are all excited vertically in the same phase and radiate electromagnetic waves upwards.

次に上部接地導体に設けられた、ス) IJッデ線路1
10.IIIK対応した左上角+7)180[回転して
配置された開口対について説明する。円形の開口114
,116の内葡には内側に向かうフィン導体115,1
17を設ける。
Next, the IJ line 1 was installed on the upper ground conductor.
10. Upper left corner corresponding to IIIK+7) 180 [A pair of rotationally arranged apertures will be explained. circular opening 114
, 116 has an inwardly directed fin conductor 115,1.
17 will be provided.

ストリップ線路110,111から放射された電磁波は
垂直偏波であり、これに対し45度の角度で噴切るフィ
ン導体1111,111によって元の放射波の偏波は、
フィン導体の方向とこれK[交する二つの偏波成分に分
解され、フィン導体の長さを適当にして誘導性のりアク
タンスを呈するよう和すると、フィン導体の方向の偏波
成分のみ90度位相を遅らせることが出来結局円偏波を
発生することができる。すなわち、開口の最低次モード
共嘔#1波数を動作周波数より低く設定して。
The electromagnetic waves radiated from the strip lines 110, 111 are vertically polarized waves, whereas the original polarization of the radiated waves by the fin conductors 1111, 111 cut at an angle of 45 degrees is
The direction of the fin conductor and this K [When decomposed into two intersecting polarization components and summed to give an inductive actance with an appropriate length of the fin conductor, only the polarization component in the direction of the fin conductor has a 90 degree phase. As a result, circularly polarized waves can be generated. That is, the lowest order mode co-optation #1 wave number of the aperture is set lower than the operating frequency.

誘導性リアクタンスを呈するようにさせ1日偏狭を発生
させることができる。他の開口対についても同様であり
、全ての開口からの円偏波が正面方向に合成できる。
It can be made to exhibit inductive reactance and cause narrowing in one day. The same goes for the other aperture pairs, and the circularly polarized waves from all the apertures can be combined in the front direction.

本実施例では、単一のフィン導体を用いたが、両側の内
周から2個のフィン導体を設けても差し支えなく同様の
原理で円偏波を発生することが出来る。
Although a single fin conductor is used in this embodiment, two fin conductors may be provided from the inner periphery on both sides, and circularly polarized waves can be generated using the same principle.

さらに上記から変形し、直交した方向にもフィン導体を
設けた4個にした場合は、一方の対向対が容量性の場合
、直交する他方を誘導性を呈するように、フィン導体の
長さを加減してリアクタンス量を直交同士で丁度±45
度の位相遅れが生じるようにして4目的の円偏波を得る
ことが出来る。
Furthermore, if the above is modified and there are four fin conductors provided in orthogonal directions, the length of the fin conductors is changed so that when one opposing pair is capacitive, the other orthogonal pair is inductive. Adjust the reactance to exactly ±45 between orthogonal
It is possible to obtain circularly polarized waves for four purposes by causing a phase delay of degrees.

[発明の効果] 以上述べたように、本発明によれば、ストリップ線路方
式の平面アンテナの給電線路に新規な磁界結合を用いた
位相反転2分岐回路を用かた結果、放射素子に対する給
電線路の対称性及び簡素化が一段と改善され、給電線路
に幅の広い低損失なストリップ線路を用いることができ
、放射素子励振の均一化と給電線路の損失低減圧よるア
ンテナ効率を向上することができる。
[Effects of the Invention] As described above, according to the present invention, as a result of using a phase-inverting two-branch circuit using novel magnetic field coupling in the feed line of a stripline planar antenna, the feed line for the radiating element is The symmetry and simplicity of the antenna have been further improved, and a wide, low-loss strip line can be used for the feed line, making it possible to uniformize the excitation of the radiating element and improve the antenna efficiency by reducing the loss of the feed line. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のIEI実施例を示す平面アンテナの構
成図、第2図及び第3図はそれぞれ本発明の$2、第3
実施例の平面アンテナの位相反転2分岐回路の回路i−
々ター/を示す図、第4図は不発明の第4実施例を示す
平面アンテナの構成図、第5図は従来の平面アンテナの
構成図である。 1・・・接地導体、2・・・絶縁体5.t 、 7 、
 J J 。 15−・・円形/ヤッチ放射素子、4,5,8,9゜J
 2 、 J 3. J 6 、1 F−・・切り欠き
セグメント、6.10.14.18−・・個別給電線、
7,8゜z3・・・T分岐、30・・・接地導体、31
.60・・・絶縁体、61・・・上部接地導体、32,
31.42゜47・・・/#ラッチ放射素子、35.4
0,45゜50・・・円盤導体、33.:N4..1g
、39.43゜44.411.49・・・クロス/#ツ
チ、J 6 e 41 t46.51・・・1mm別型
電線路sz、s’:r−・・位相反転2分岐回路、ss
、st;、ss、sv・・・ストリップ線路、59・・
・給電線路、62,63,64゜65−・開口、74.
75・・・1別給tS路、19・・・給電線路、85,
117・・・ストリップ線路、83゜84・・・個別給
電線路、90・・・給電線路、100・・・ストリップ
線路給電線、101・−T分岐、102゜z o s−
・・位相反転2分岐回路、104,105゜106.1
0’l・・・一端開放のストリップ線路、110、Jl
l、112,113・・・ストリップ線路、114,1
16・・・円形の開口、115.117・・・フィン導
体。
FIG. 1 is a block diagram of a planar antenna showing an IEI embodiment of the present invention, and FIGS.
Circuit i- of the phase inversion two-branch circuit of the planar antenna of the embodiment
FIG. 4 is a block diagram of a planar antenna showing a fourth embodiment of the invention, and FIG. 5 is a block diagram of a conventional planar antenna. 1... Ground conductor, 2... Insulator 5. t, 7,
JJ. 15-...Circular/Yatch radiating element, 4, 5, 8, 9°J
2, J3. J 6 , 1 F-... Notch segment, 6.10.14.18-... Individual feeder line,
7,8°z3...T branch, 30...Grounding conductor, 31
.. 60... Insulator, 61... Upper ground conductor, 32,
31.42°47.../# Latch radiation element, 35.4
0.45°50...Disc conductor, 33. :N4. .. 1g
, 39.43゜44.411.49...Cross/#tsuchi, J 6 e 41 t46.51...1mm separate type electrical line sz, s':r-...Phase inversion 2 branch circuit, ss
, st;, ss, sv... strip line, 59...
・Feed line, 62, 63, 64° 65-・Opening, 74.
75...1 separate feed tS path, 19...power feed line, 85,
117...Strip line, 83゜84...Individual feed line, 90...Feed line, 100...Strip line feed line, 101・-T branch, 102゜z o s-
...Phase inversion 2-branch circuit, 104,105°106.1
0'l...Strip line with one end open, 110, Jl
l, 112, 113... strip line, 114, 1
16...Circular opening, 115.117...Fin conductor.

Claims (3)

【特許請求の範囲】[Claims] (1)複数個の放射素子と、一つの信号端子から複数の
ストリップ線路に分岐され、上記複数個の放射素子を並
列給電方式で励振する給電線路を備えたアンテナ装置に
於いて、 上記給電線路の構成要素として、一端が開放された第1
のストリップ線路の開放端から4分の1波長離れた電流
最大位置が第2のストリップ線路に接近して配置されて
おり、第2のストリップ線路に磁界結合で電流を誘起さ
せることにより、第2ストリップ線路の両方向に振幅が
等しく位相が180度異なる信号が伝達される位相反転
2分岐回路を用いたことを特徴とするアンテナ装置。
(1) In an antenna device comprising a plurality of radiating elements and a feed line that branches from one signal terminal into a plurality of strip lines and excites the plurality of radiating elements in a parallel feed system, the feed line As a component of the first
The current maximum position, which is a quarter wavelength away from the open end of the strip line, is placed close to the second strip line, and by inducing a current in the second strip line by magnetic field coupling, the second strip line is An antenna device characterized by using a phase-inverting two-branch circuit in which signals having equal amplitude and a phase difference of 180 degrees are transmitted in both directions of a strip line.
(2)請求項(1)記載のアンテナ装置において、位相
反転2分岐回路は、一端が開放の第1ストリップ線路と
、線路長が2分の1波長の両端を開放端にした第2スト
リップ線路の中央部の電流最大位置に前記第1ストリッ
プ線路の開放端から4分の1波長離れた電流最大位置を
接近して位置させ、2分岐信号が取り出される線路の接
続点を上記第2ストリップ線路の開放端または開放端よ
り中央寄りに設けたことを特徴とするアンテナ装置。
(2) In the antenna device according to claim (1), the phase inversion two-branch circuit includes a first strip line with one end open and a second strip line with a line length of 1/2 wavelength and both ends open. A current maximum position, which is a quarter wavelength away from the open end of the first strip line, is located close to the current maximum position in the center of the first strip line, and the connection point of the line from which the two-branch signal is taken out is connected to the second strip line. An antenna device characterized in that it is provided at an open end or closer to the center than the open end.
(3)開放端を有するストリップ線路の上部接地導体に
設けた開口によって、前記ストリップ線路からの放射波
を通過させ、前記開口の内周にフィン導体を45度の角
度で延長し開口の最低次モード共振周波数を動作周波数
より低く設定し、誘導性リアクタンスを呈するようにし
て円偏波を発生させることを特徴とするアンテナ装置。
(3) An opening provided in the upper ground conductor of the strip line having an open end allows the radiation waves from the strip line to pass through, and a fin conductor is extended at an angle of 45 degrees around the inner circumference of the opening, and the lowest ground conductor of the opening is An antenna device characterized in that a mode resonance frequency is set lower than an operating frequency and circularly polarized waves are generated by exhibiting inductive reactance.
JP2099433A 1990-04-17 1990-04-17 Antenna device Expired - Fee Related JP3037959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2099433A JP3037959B2 (en) 1990-04-17 1990-04-17 Antenna device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2099433A JP3037959B2 (en) 1990-04-17 1990-04-17 Antenna device

Publications (2)

Publication Number Publication Date
JPH04805A true JPH04805A (en) 1992-01-06
JP3037959B2 JP3037959B2 (en) 2000-05-08

Family

ID=14247305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2099433A Expired - Fee Related JP3037959B2 (en) 1990-04-17 1990-04-17 Antenna device

Country Status (1)

Country Link
JP (1) JP3037959B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5458121A (en) * 1992-09-17 1995-10-17 Terumo Kabushiki Kaisha Clinical thermometer
JP2008245252A (en) * 2007-02-28 2008-10-09 Mitsubishi Electric Corp Microstrip array antenna
US10511102B2 (en) 2015-07-30 2019-12-17 Mitsubishi Electric Corporation Feeder circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5458121A (en) * 1992-09-17 1995-10-17 Terumo Kabushiki Kaisha Clinical thermometer
JP2008245252A (en) * 2007-02-28 2008-10-09 Mitsubishi Electric Corp Microstrip array antenna
US10511102B2 (en) 2015-07-30 2019-12-17 Mitsubishi Electric Corporation Feeder circuit

Also Published As

Publication number Publication date
JP3037959B2 (en) 2000-05-08

Similar Documents

Publication Publication Date Title
EP0688040B1 (en) Bidirectional printed antenna
US4191959A (en) Microstrip antenna with circular polarization
US2914766A (en) Three conductor planar antenna
US4839663A (en) Dual polarized slot-dipole radiating element
JPH03107203A (en) Plane antenna
EP0683542B1 (en) Omnidirectional slot antenna
JPH0332202A (en) Two way communication radiation element
JPS61264804A (en) Plane antenna shared for two frequencies
US3340534A (en) Elliptically or circularly polarized antenna
JPH0270104A (en) Wide directional microstrip antenna
JP3415453B2 (en) Microstrip antenna
JPH0440003A (en) Multilayered array antenna
JPH03101507A (en) Planer antenna
JPH04122107A (en) Microstrip antenna
JPH05129825A (en) Microstrip antenna
JPS60217702A (en) Circularly polarized wave conical beam antenna
JPH04805A (en) Antenna equipment
JPH0722833A (en) Crossing-slot microwave antenna
JPH03297207A (en) Plane antenna
JP3239654B2 (en) Circularly polarized microstrip antenna
JPS6313404A (en) Microstrip circularly polarized antenna
JPH10209743A (en) Slot-coupling type microstrip antenna
US3382501A (en) Elliptically or circularly polarized antenna
JP3068149B2 (en) Microstrip array antenna
JP2003158420A (en) Dielectric leak wave antenna

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees