JPS60217702A - Circularly polarized wave conical beam antenna - Google Patents

Circularly polarized wave conical beam antenna

Info

Publication number
JPS60217702A
JPS60217702A JP7294784A JP7294784A JPS60217702A JP S60217702 A JPS60217702 A JP S60217702A JP 7294784 A JP7294784 A JP 7294784A JP 7294784 A JP7294784 A JP 7294784A JP S60217702 A JPS60217702 A JP S60217702A
Authority
JP
Japan
Prior art keywords
conical beam
conductor plate
antenna
radiation
circularly polarized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7294784A
Other languages
Japanese (ja)
Other versions
JPH02883B2 (en
Inventor
Toshikazu Hori
俊和 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP7294784A priority Critical patent/JPS60217702A/en
Publication of JPS60217702A publication Critical patent/JPS60217702A/en
Publication of JPH02883B2 publication Critical patent/JPH02883B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0428Substantially flat resonant element parallel to ground plane, e.g. patch antenna radiating a circular polarised wave

Abstract

PURPOSE:To obtain a circularly polarized wave conical beam with simple constitution by feeding power to a microstrip antenna from two points with a phase difference of 90 deg. at the higher harmonic mode of TM210. CONSTITUTION:The antenna of microstrip constitution is formed with a radiation element 9, a feeding circuit 10 with 90 deg. phase difference, a feeding point 16 and termination circuits 14, 15. In exciting the radiation element 9 in the TM210 mode, the radiation electromagnetic field in the direction of the vertical axis is zero and the radiation directivity forms a conical beam. In feeding power to the radiation element 9 from the two points with the electric phase difference of 90 deg., a circularly polarized wave is obtained and the directivity keeps the said conical beam. Moreover, in adopting the higher order mode of the THmno for the exciting mode with the spatial angle of the feeding point selected to (90/m) degrees, the circularly polarized conical beam is obtained even when the power is fed with the electric phase difference of 90 deg.C.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は簡潔な構成で薄形の*aを有し、円錐ビームを
放射する円偏波アンテナに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a circularly polarized antenna having a simple configuration and a thin shape *a, and radiating a conical beam.

(従来技術と問題点) 第1図は、円錐ビームアンテナの用途の例を示す図であ
って、1は船舶、2はアンテナ、3はアンテナの円錐ビ
ームの電界強度の等しい点を結んだ線、4は静止衛星、
5は鉛直軸を表わしており、6は主ビーム方向を示す線
である。
(Prior art and problems) Fig. 1 is a diagram showing an example of the use of a conical beam antenna, in which 1 is a ship, 2 is an antenna, and 3 is a line connecting points of equal electric field strength of the conical beam of the antenna. , 4 is a geostationary satellite,
5 represents a vertical axis, and 6 is a line indicating the main beam direction.

例えば、船舶と衛星の間で通信を行なう場合、船舶の移
動や向きにかかわらず、無追尾の状態で通信を可能にす
るには、アンテナのビームパターンは、その主ビームが
第1図に示すように鉛直軸5に対し、アンテナから衛星
を臨む方向の線を母線とする円錐形に近い形をしていれ
ばよい、これを円錐ビームと呼んでいる。
For example, when communicating between a ship and a satellite, in order to enable communication without being tracked regardless of the movement or direction of the ship, the antenna beam pattern should be such that its main beam is as shown in Figure 1. It is sufficient that the beam has a shape close to a cone, with the generating line being the line in the direction from the antenna toward the satellite with respect to the vertical axis 5, and this is called a conical beam.

従来、この円錐ビームを有する円偏波アンテナとしては
、第2図に示すようなりロスグイボールアレーアンテナ
があった。第2図において、3はアンテナの円錐ビーム
の電界強度の等しい点を結んだ線、5は鉛直軸、6は主
ビーム方向を示す線、7はりaスダイボール、8は給電
線を示している。
Conventionally, as a circularly polarized antenna having such a conical beam, there has been a Los Gui ball array antenna as shown in FIG. In FIG. 2, 3 is a line connecting points of equal electric field strength of the conical beam of the antenna, 5 is a vertical axis, 6 is a line indicating the main beam direction, 7 is a die ball, and 8 is a feed line.

しかし、このアンテナは構造が立体的になり、アンテナ
高が大きくなるとともに、給電のための同軸線路長が異
なることから、給電が複雑となる欠点があった。
However, this antenna has a three-dimensional structure, increases the height of the antenna, and has the drawback that the coaxial line length for power feeding is different, making power feeding complicated.

第3図は、従来の円錐ビームを有する円偏波アンテナの
他の構成例を示す図であって、8は給電線、9は放射導
体板、11は誘電体、12は導体基板、16は給電点、
17はマイクロストリップ給電線路を示している。
FIG. 3 is a diagram showing another configuration example of a conventional circularly polarized antenna having a conical beam, in which 8 is a feed line, 9 is a radiation conductor plate, 11 is a dielectric, 12 is a conductor substrate, and 16 is a feeding point,
17 indicates a microstrip feed line.

このアンテナは、第2図のアンテナに比べて構造が平面
的になってはいるが、円錐ビームを得るために相向かい
合う素子を逆相で励振する必要があり、複数の素子と給
電分配線路を必要とするから形状が薄いかわりに平面的
に大きい構造となるという欠点があった。
This antenna has a planar structure compared to the antenna shown in Figure 2, but in order to obtain a conical beam, it is necessary to excite opposing elements in opposite phases, and multiple elements and feed distribution lines are connected. Although the shape is thin, the structure is large in plan.

(発明の目的) 本発明は、これらの欠点を除去するために、mが2以上
であるような1素子のTMmnoモード励振マイクロス
トリップアンテナを用い、放射方向で90度の位相差を
持つような位相関係で、放射導体板の中心を通り互いに
90/m度(閣はTMmnoモードのm) をなす2直
線上の2点から放射導体板を励振する給電回路を配置す
ることにより、放射素子1素子と給電回路という簡潔な
構造で円錐ビームを得たものである。
(Objective of the Invention) In order to eliminate these drawbacks, the present invention uses a one-element TMmno mode excitation microstrip antenna in which m is 2 or more, and has a phase difference of 90 degrees in the radiation direction. By arranging a feeding circuit that excites the radiating conductor plate from two points on two straight lines passing through the center of the radiating conductor plate and forming an angle of 90/m degrees (m in TMmno mode) from each other in a phase relationship, the radiating element 1 A conical beam is obtained with a simple structure consisting of an element and a feeder circuit.

以下本発明の構成等について実施例の図面に基づいて詳
細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure and the like of the present invention will be described in detail below based on drawings of embodiments.

(発明の実施例) TMmnoモード励振マイクロストリップアンテナの共
振周波数f0は、公知のとおり次式で与えられる。
(Embodiments of the Invention) The resonant frequency f0 of the TMmno mode excitation microstrip antenna is given by the following equation, as is well known.

ここで、KIIInは第1種B esse l関数J’
m (X)=0 のn番目の解を示しており、Cは真空
中の光速、εrは基板の誘電体の比誘電率である。また
1、(1)式におけるae は放射導体板の実効等価半
径を示しており、端効果(fringing effe
et )を考慮することにより、放射導体板の半径a 
とは次式で関係づけられる。
Here, KIIIn is a Bessel function of the first kind J'
The n-th solution of m (X)=0 is shown, where C is the speed of light in vacuum and εr is the relative permittivity of the dielectric of the substrate. In addition, 1. ae in equation (1) indicates the effective equivalent radius of the radiation conductor plate, and the edge effect (fringing effect)
et ), the radius a of the radiation conductor plate is
is related to by the following equation.

ニーで、dは誘電体の厚さである。where d is the dielectric thickness.

TMmn、モード励振マイクロストリップアンテナに1
つの給電点から給電したときの放射指向性g(θ、φ)
は次式で与えられる。
TMmn, mode excitation microstrip antenna 1
Radiation directivity g (θ, φ) when feeding from two feeding points
is given by the following equation.

g(θ、φ)= 6十 E; ・・・・・・・・・・・
・(3)ここで、 Eθ= −CJ m−+ (u)−J 114−l (
u) )cosmφ ・旧・・(4)Eφ= (J m
−+ (u)+ J m++ (u) )c086’ 
sir+IIlφ・・・・・・(5)。
g (θ, φ) = 60 E; ・・・・・・・・・・・・
・(3) Here, Eθ= −CJ m−+ (u)−J 114−l (
u) ) cosmφ ・Old... (4) Eφ= (J m
-+ (u)+ J m++ (u) )c086'
sir+IIlφ...(5).

メ なだし、Jは第1種B esse l関数、Koは自由
空間中の伝搬定数、aeは(2)式で与えられる実効等
価半径である。
where J is a Bessel function of the first kind, Ko is a propagation constant in free space, and ae is an effective equivalent radius given by equation (2).

また、2点給電により円偏波を励振する場合の放射指向
性gc (θ、φ)は、(3)式で与えられたg(θ、
φ)を用いて次式で与えられる。
In addition, the radiation directivity gc (θ, φ) when exciting circularly polarized waves by two-point feeding is given by g (θ, φ) given by equation (3).
φ) is given by the following equation.

第4図は本発明の一実施例を示す図であり、T M !
 10モードで励振する1素子のマイクロストリップア
ンテナの場合を示している。第4図において、9は放射
導体板、10は90度位相差給電回路としての3dBハ
イブリツド、11は誘電体、12は導体基板、14は1
74波長線路、15はチップ抵抗、16は給電点を示し
ている。
FIG. 4 is a diagram showing an embodiment of the present invention, in which T M !
The case of a one-element microstrip antenna excited in 10 modes is shown. In FIG. 4, 9 is a radiation conductor plate, 10 is a 3 dB hybrid as a 90 degree phase difference feeding circuit, 11 is a dielectric, 12 is a conductor substrate, and 14 is a 1
74 wavelength line, 15 is a chip resistor, and 16 is a feeding point.

T M 21゜モードで励振する場合、(1)式中のK
mn はに2.=3,054である。
When exciting in T M 21° mode, K in equation (1)
mn hani 2. =3,054.

第5図はT M z +。モード励振マイクロストリッ
プアンテナの表面電流の分布を示す図で、(a)は1点
から給電した場合、(b)は中心を通り45度Cなす2
直線上の2点から給電した場合を示しでいる。
Figure 5 shows T M z +. Figures showing the surface current distribution of a mode-excited microstrip antenna.
This shows the case where power is supplied from two points on a straight line.

第4図に示す実施例では中心を通り45度をなす2直線
上の2点から給電しているので、表面電流の分布は第5
図(b)に示すようになり、各点からの給電に対する内
部電磁界は互いに直交する。すなわち、T M 21゜
モード励振マイクロストリップアンテナの放射電磁界も
直交し、2つの給電魚への給電位相差が90度になるよ
うに給電することにより円偏波が放射される。
In the embodiment shown in Fig. 4, power is supplied from two points on two straight lines passing through the center and forming an angle of 45 degrees, so the surface current distribution is
As shown in Figure (b), the internal electromagnetic fields for power feeding from each point are orthogonal to each other. That is, the radiated electromagnetic fields of the T M 21° mode excitation microstrip antenna are also orthogonal, and circularly polarized waves are radiated by feeding the two feeding fish so that the feeding phase difference between them is 90 degrees.

このとき、TM2.。モードで励振されていることから
鉛直軸方向の放射電磁界が0であり、放射指向性が円錐
ビームとなることに変わりはない。従って、この実施例
のような、T M 210モード励振マイクロストリツ
プアンテナの場合、45度をなす2直線上の2点から9
0度の位相差で給電することにより、1素子で円偏波円
錐ビームが得られることになる。
At this time, TM2. . Since it is excited by the mode, the radiation electromagnetic field in the vertical axis direction is zero, and the radiation directivity remains a conical beam. Therefore, in the case of a T M 210 mode excitation microstrip antenna like this example, it is possible to
By feeding with a phase difference of 0 degrees, a circularly polarized conical beam can be obtained with one element.

(7)式を用いて計算した放射指向性の計算例を第6図
に示す。図中のパラメータは基板の誘電体の比誘電率で
ある。
FIG. 6 shows an example of radiation directivity calculated using equation (7). The parameter in the figure is the dielectric constant of the dielectric material of the substrate.

なお、90度の位相差を発生するための回路として、#
4図では3dBハイブリツドを用いた場合を示している
。このように、放射素子と同一面に給電回路を設けるこ
とにより基板の裏から1個のコネクタを用いて給電が可
能である。
In addition, as a circuit for generating a 90 degree phase difference, #
Figure 4 shows the case where a 3 dB hybrid is used. In this way, by providing the power supply circuit on the same surface as the radiating element, power can be supplied from the back of the board using one connector.

なお、この場合、ハイブリッドのグミ一端は1/4波長
線路とチップ抵抗を用いて終端するとより簡潔なアンテ
ナの構成が可能である。
In this case, a simpler antenna configuration can be achieved by terminating one end of the hybrid gummy using a 1/4 wavelength line and a chip resistor.

以上、ここでは、TM21Gモードについて示したが、
他の高次モードにおいても同様であり、例えば、T M
 310モードの場合は、Kmn=4.201であり、
30度をなす直線上の点から90度の位相差で給電する
ことにより、同様の結果を得ることができる。
Above, we have shown the TM21G mode here, but
The same applies to other higher-order modes, for example, T M
In the case of 310 mode, Kmn=4.201,
A similar result can be obtained by feeding power with a phase difference of 90 degrees from a point on a straight line forming 30 degrees.

また、放射素子は円形に限る必要はなく、方形の素子で
も同様の結果を得ることができる。
Further, the radiating element need not be limited to a circular shape, and similar results can be obtained with a rectangular element.

第7図は本発明の他の実施例を示す図であって、131
よ無給電導体板を示している。本例のように、放射導体
板の上方に平行に無給電導体板を装荷することにより、
無給電導体板無装荷時のマイクロストリップアンテナの
共振周波数特性に無給電導体板装荷による共振周波数特
性が重畳され、共振周波数特性は変化する。そこで、2
導体板の間隔および大きさの比を適当に選ぶことにより
広帯域化が可能である。
FIG. 7 is a diagram showing another embodiment of the present invention, 131
It shows a parasitic conductor plate. As in this example, by loading the parasitic conductor plate in parallel above the radiation conductor plate,
The resonant frequency characteristics due to the loading of the parasitic conductor plate are superimposed on the resonant frequency characteristics of the microstrip antenna when the parasitic conductor plate is not loaded, and the resonant frequency characteristics change. Therefore, 2
A wide band can be achieved by appropriately selecting the spacing and size ratio of the conductor plates.

第8図に無給電導体板装荷時および無装荷時のVSWR
特性の一例を示す。無給電導体板の装荷により広帯域化
されているのがわかる。
Figure 8 shows the VSWR when the parasitic conductor plate is loaded and when it is not loaded.
An example of the characteristics is shown below. It can be seen that the band is widened by loading the parasitic conductor plate.

また、第7図に示すような無給電導体板をプリント基板
にプリントすることにより構成して、無給電導体板と放
射導体板の間に発泡プラスティック等の誘電体を挾んで
接着する構造とすれば、放射導体板および給電回路等が
隠蔽されて耐候性が増すので経年による影響の少ない安
定したアンテナを得ることができる。
Furthermore, if a parasitic conductor plate as shown in Fig. 7 is constructed by printing on a printed circuit board, and a dielectric material such as foamed plastic is sandwiched and bonded between the parasitic conductor plate and the radiation conductor plate, Since the radiation conductor plate, feeder circuit, etc. are hidden and weather resistance is increased, a stable antenna that is less affected by aging can be obtained.

(発明の効果) 以上説明したように、本発明の円偏波円錐ビームアンテ
ナは1素子の高次モード励振マイクロストリップアンテ
ナに、アンテナと同一面に配置した90度位相差回路を
用いて適当な2点から給電することにより、簡潔な構成
で円錐ビームを得ることができる利点が有り、例えば衛
星を用いた通信における移動体搭載用アンテナとして適
用することが可能である。
(Effects of the Invention) As explained above, the circularly polarized conical beam antenna of the present invention uses a single-element high-order mode excitation microstrip antenna and a 90-degree phase difference circuit placed on the same plane as the antenna. By feeding power from two points, there is an advantage that a conical beam can be obtained with a simple configuration, and it can be applied, for example, as an antenna mounted on a mobile body in communication using a satellite.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は円錐ビームアンテナの用途の例を示す図、第2
図は従来のクロスグイボールアレーアンテナを示す図、
第3図は従来の円錐ビームを有する円偏波アンテナの他
の構成例を示す図、第4図は本発明の一実施例を示す図
、第5図はTM、、。モード励振マイクロストリップア
ンテナの表面電流の分布を示す図、第6図は放射指向性
の計算例を示す図、第7図は本発明の他の実施例を示す
図、第8図はVSWR特性の実測例を示す図である。 1・・・・・・船舶、2・・・・・・アンテナ、3・・
・・・・アンテナの円錐ビームの電界強度の等しい点を
結んだ線、4・・・・・・静止衛星、5・・・・・・鉛
直軸、6・・・・・・主ビーム方向を示す線、7・・・
・・・クロスダイポール、8・・・・・・給電線、9・
・・・・・放射導体板、 10・・・・・・90度位相
差給電回路、11・・・・・・誘電体、12・・・・・
・導体基板、13・・・・・・無給電導体板、14・・
・・・・1/4波長線路、15・・・・・・チップ抵抗
、16・・・・・・給電点、17・・・・・・マイクロ
ストリップ給電線路 代理人 弁理士 本 間 泉 源 2回 第3図 第5図 (a) (b) 第6図 1暗度θ(dt4ン
Figure 1 shows an example of the application of a conical beam antenna, Figure 2
The figure shows a conventional cross guiball array antenna.
FIG. 3 is a diagram showing another configuration example of a conventional circularly polarized antenna having a conical beam, FIG. 4 is a diagram showing an embodiment of the present invention, and FIG. 5 is a TM. FIG. 6 is a diagram showing a calculation example of radiation directivity, FIG. 7 is a diagram showing another embodiment of the present invention, and FIG. 8 is a diagram showing the distribution of surface current of a mode-excited microstrip antenna. It is a figure showing an example of actual measurement. 1... Ship, 2... Antenna, 3...
... Line connecting the points of equal electric field strength of the conical beam of the antenna, 4 ... Geostationary satellite, 5 ... Vertical axis, 6 ... Main beam direction. The line shown is 7...
...Cross dipole, 8...Feed line, 9.
... Radiation conductor plate, 10 ... 90 degree phase difference feeder circuit, 11 ... Dielectric, 12 ...
・Conductor board, 13...Passive conductor plate, 14...
...1/4 wavelength line, 15...Chip resistor, 16...Feed point, 17...Microstrip feed line agent Patent attorney Izumi Honma 2 times Figure 3 Figure 5 (a) (b) Figure 6 1 Darkness θ (dt4

Claims (1)

【特許請求の範囲】 誘電体板の一方の面に導体基板を展着し、該誘電体板の
他方の面に放射導体板または放射導体板と無給電導体板
とを配置した精造を有し、放射導体板の中心を通る垂直
軸上における放射電磁界が極小となる輸が2以上のTM
mn0モード励振マイクロストリップアンテナにおいて
、放射方向で90度の位相差を持つよう、な位相関係で
、放射導体板の中心を通り互いに90 / m度(mは
TM霞n。モードの鰺)をなす2直線上の2i。 から放射導体板を励振する給電回路を有することを特徴
とする円偏波円錐ビームアンテナ。
[Claims] The invention has a structure in which a conductor substrate is spread on one side of a dielectric plate, and a radiation conductor plate or a radiation conductor plate and a parasitic conductor plate are arranged on the other side of the dielectric plate. A TM with a coefficient of 2 or more where the radiated electromagnetic field on the vertical axis passing through the center of the radiating conductor plate is minimal.
In the mn0 mode excitation microstrip antenna, the antennas pass through the center of the radiation conductor plate and form 90/m degrees from each other (m is TM haze n. mode) with a phase relationship such that there is a 90 degree phase difference in the radiation direction. 2i on two straight lines. A circularly polarized conical beam antenna characterized by having a feeding circuit that excites a radiation conductor plate from a radiating conductor plate.
JP7294784A 1984-04-13 1984-04-13 Circularly polarized wave conical beam antenna Granted JPS60217702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7294784A JPS60217702A (en) 1984-04-13 1984-04-13 Circularly polarized wave conical beam antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7294784A JPS60217702A (en) 1984-04-13 1984-04-13 Circularly polarized wave conical beam antenna

Publications (2)

Publication Number Publication Date
JPS60217702A true JPS60217702A (en) 1985-10-31
JPH02883B2 JPH02883B2 (en) 1990-01-09

Family

ID=13504081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7294784A Granted JPS60217702A (en) 1984-04-13 1984-04-13 Circularly polarized wave conical beam antenna

Country Status (1)

Country Link
JP (1) JPS60217702A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62176307A (en) * 1986-01-30 1987-08-03 Nec Corp Microstrip antenna for circularly polarized wave
JPS6331302A (en) * 1986-07-25 1988-02-10 Sony Corp Power supply device for phase difference of antenna
US4742354A (en) * 1986-08-08 1988-05-03 Hughes Aircraft Company Radar transceiver employing circularly polarized waveforms
JPS63120502A (en) * 1986-11-10 1988-05-24 Nippon Telegr & Teleph Corp <Ntt> Broad band microstrip antenna
JPS63120658A (en) * 1986-11-10 1988-05-25 Toshiba Corp Ink recording system
JPH01284104A (en) * 1988-05-11 1989-11-15 Toyo Commun Equip Co Ltd Stacked microstrip antenna
EP0350324A2 (en) * 1988-07-08 1990-01-10 Gec-Marconi Limited Waveguide coupling arrangement
US4987421A (en) * 1988-06-09 1991-01-22 Mitsubishi Denki Kabushiki Kaisha Microstrip antenna
US5010348A (en) * 1987-11-05 1991-04-23 Alcatel Espace Device for exciting a waveguide with circular polarization from a plane antenna
JP2008141766A (en) * 2006-12-04 2008-06-19 Agc Automotive Americas R & D Inc Method for operating patch antenna in high order resonance mode

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62176307A (en) * 1986-01-30 1987-08-03 Nec Corp Microstrip antenna for circularly polarized wave
JPS6331302A (en) * 1986-07-25 1988-02-10 Sony Corp Power supply device for phase difference of antenna
US4742354A (en) * 1986-08-08 1988-05-03 Hughes Aircraft Company Radar transceiver employing circularly polarized waveforms
JPS63120502A (en) * 1986-11-10 1988-05-24 Nippon Telegr & Teleph Corp <Ntt> Broad band microstrip antenna
JPS63120658A (en) * 1986-11-10 1988-05-25 Toshiba Corp Ink recording system
JP2602817B2 (en) * 1986-11-10 1997-04-23 株式会社東芝 Ink recording method
US5010348A (en) * 1987-11-05 1991-04-23 Alcatel Espace Device for exciting a waveguide with circular polarization from a plane antenna
JPH01284104A (en) * 1988-05-11 1989-11-15 Toyo Commun Equip Co Ltd Stacked microstrip antenna
US4987421A (en) * 1988-06-09 1991-01-22 Mitsubishi Denki Kabushiki Kaisha Microstrip antenna
EP0350324A2 (en) * 1988-07-08 1990-01-10 Gec-Marconi Limited Waveguide coupling arrangement
JP2008141766A (en) * 2006-12-04 2008-06-19 Agc Automotive Americas R & D Inc Method for operating patch antenna in high order resonance mode

Also Published As

Publication number Publication date
JPH02883B2 (en) 1990-01-09

Similar Documents

Publication Publication Date Title
Pal et al. A twelve-beam steering low-profile patch antenna with shorting vias for vehicular applications
US5940036A (en) Broadband circularly polarized dielectric resonator antenna
US4843400A (en) Aperture coupled circular polarization antenna
US5594455A (en) Bidirectional printed antenna
US4710775A (en) Parasitically coupled, complementary slot-dipole antenna element
CA2035975C (en) Plural frequency patch antenna assembly
CA2429184C (en) Radio frequency isolation card
US4812855A (en) Dipole antenna with parasitic elements
US5952971A (en) Polarimetric dual band radiating element for synthetic aperture radar
US5926137A (en) Foursquare antenna radiating element
US4839663A (en) Dual polarized slot-dipole radiating element
US10978812B2 (en) Single layer shared aperture dual band antenna
JPH0685487B2 (en) Dual antenna for dual frequency
JP2005521315A (en) Resonant modes of a new dielectric resonator antenna.
EP0891004A1 (en) Omnidirectional slot antenna
JPS60217702A (en) Circularly polarized wave conical beam antenna
JPH10242745A (en) Antenna device
JPH04122107A (en) Microstrip antenna
JP4516246B2 (en) antenna
Brar et al. Dual-slot cavity antenna for mm-Wave beamforming array
JP3782278B2 (en) Beam width control method of dual-polarized antenna
JP2001244727A (en) Microstrip antenna
JPH03254208A (en) Microstrip antenna
JP2565108B2 (en) Planar antenna
JPH0720014B2 (en) Planar array antenna