JPH03297207A - Plane antenna - Google Patents

Plane antenna

Info

Publication number
JPH03297207A
JPH03297207A JP9771190A JP9771190A JPH03297207A JP H03297207 A JPH03297207 A JP H03297207A JP 9771190 A JP9771190 A JP 9771190A JP 9771190 A JP9771190 A JP 9771190A JP H03297207 A JPH03297207 A JP H03297207A
Authority
JP
Japan
Prior art keywords
line
lines
radiating element
feed line
planar antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9771190A
Other languages
Japanese (ja)
Inventor
Yoichi Kaneko
洋一 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yagi Antenna Co Ltd
Original Assignee
Yagi Antenna Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yagi Antenna Co Ltd filed Critical Yagi Antenna Co Ltd
Priority to JP9771190A priority Critical patent/JPH03297207A/en
Publication of JPH03297207A publication Critical patent/JPH03297207A/en
Pending legal-status Critical Current

Links

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

PURPOSE:To improve antenna efficiency by exciting paired unit radiation elements through an individual feeder line inserting a phase inverter circuit, which is composed of one folded line, between a pair radiation elements. CONSTITUTION:Circular patch elements 3, 7, 11 and 15 are equipped with individual feeder lines 6, 10, 14 and 18 composed of microstrip lines, and respectively arranged while being rotated at 180 deg. and including power feeding points. Between the pair of the individual feeder lines 6 and 10 and the pair of the lines 14 and 18, folded lines 25 and 26 having the 1/2 wavelength are respectively inserted and the end of the return lines 25 and 26, feeder lines 27 and 28 are connected from the inside. These feeder lines 27 and 28 are excited through a T branch 23. Thus, the antenna efficiency can be improved by uniformly exciting the radiation elements and reducing the number of feeder lines.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、給電線路としてストリップ線路を用い、複数
の放射素子を励振する平面アンテナに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a planar antenna that uses a strip line as a feed line and excites a plurality of radiating elements.

〔従来の技術〕[Conventional technology]

一般に、衛星放送受信用の平面アンテナは、高利得が要
求され、面積を大きくして多数の放射素子を平面上に配
置し、各放射素子を給電線路に結合させている。
Generally, a flat antenna for receiving satellite broadcasting is required to have a high gain, has a large area, has a large number of radiating elements arranged on a flat surface, and each radiating element is coupled to a feed line.

従来、平面アンテナの給電線路としては、軽量小型化に
適したストリップ線路が使用されている。
Conventionally, a strip line, which is suitable for being lightweight and compact, has been used as a feed line for a planar antenna.

また、ストリップ線路としては、接地導体と帯状導体か
らなるマイクロストリップ線路、又は上下接地導体の間
に帯状導体を配し之3層導体層からなるトリプレートス
) IJツブ線路が使用されている。
Further, as the strip line, a microstrip line consisting of a ground conductor and a strip conductor, or a triplate IJ tube line consisting of three conductor layers in which a strip conductor is arranged between upper and lower ground conductors is used.

一般に、給電線路としてマイクロストリップ線路を用い
た場合は、放射素子としては、両端開放の2分の1波長
マイクロストリツプ線路又はそれを変形した、いわゆる
パッチアンテナ形式のものが用いられ、パッチアンテナ
と給電線路とは直接結合される。また、トリプレートス
トリップ線路給電の場合は、上部接地導体に2分の1波
長のスロy’pf設けたスロットアンテナ形式のものが
用いられ、スロットアンテナと給電線路とは電磁結合さ
れることが多い。さらに、全体の給電方式としては、ス
ト+7ツ7°線路給電の場合、2分岐回路を組み合わせ
た並列給電方式により、一つの給電点から各放射素子ま
でに至る線路長が等しくなる並列給電方式が用いられる
。なお、各放射素子の配置の間隔は、不要サイドロープ
を抑圧し、アンテナの放射効率を劣化させないために、
0.5波長乃至0.9波長程度に間隔をつめなければな
らない。
Generally, when a microstrip line is used as a feed line, the radiating element is a half-wavelength microstrip line with both ends open, or a so-called patch antenna type that is a modified version of the microstrip line. and the feed line are directly coupled. In addition, in the case of triplate strip line feeding, a slot antenna type antenna with a half-wavelength slot y'pf provided on the upper ground conductor is used, and the slot antenna and the feeding line are often electromagnetically coupled. . Furthermore, as for the overall power feeding system, in the case of Str + 7x 7° line feeding, there is a parallel feeding method that combines two branch circuits, so that the line length from one feeding point to each radiating element is equal. used. The spacing between each radiating element is determined to suppress unnecessary side ropes and prevent deterioration of antenna radiation efficiency.
The interval must be reduced to about 0.5 wavelength to 0.9 wavelength.

しかしながら、これらのストリップ線路を用いた平面ア
ンテナは、放射素子を所望の位相で均一な振幅で励振す
るには、放射素子周辺の個別給電線路の配置上配線の引
き回しが複雑かつ過密となって給電線路間の相互干渉が
生じ均一励振が損なわれ、その結果アンテナの放射効率
が低下するという問題があった。
However, in planar antennas using these strip lines, in order to excite the radiating element with a desired phase and uniform amplitude, the arrangement of the individual feed lines around the radiating element requires complicated and overcrowded wiring. There was a problem in that mutual interference between the lines occurred, impairing uniform excitation, and as a result, the radiation efficiency of the antenna decreased.

さらに従来の平面アンテナでは、放射素子周辺の個別給
電線路の配置に制約があるために放射素子とアンテナ素
子との間に整合回路最適とならず全体として狭帯域とな
るという問題があった。
Furthermore, in conventional planar antennas, there is a problem that the matching circuit between the radiating element and the antenna element is not optimal due to restrictions on the arrangement of individual feed lines around the radiating element, resulting in a narrow band as a whole.

第4図は、従来のス) IJツブ線路給亀方式を用いた
平面アンテナの平面図を示す。本アンテナは。
FIG. 4 shows a plan view of a planar antenna using the conventional IJ tube feed system. This antenna is.

各放射素子の放射電力を面に垂直の正面方向に合成する
ための配置となっている。
The arrangement is such that the radiated power of each radiating element is combined in the front direction perpendicular to the surface.

4個の円形パッチ放射素子3,7.11.15は接地導
体1と絶縁体2により間隔をあけて配置されてマイクロ
ストリップ線路からなる個別給電線路6.10,14.
18により同じ向きに同相給電される。個別給電線路6
,10.14、J8は、T分岐19.22を経て線路幅
を変えた4分の1波長インピーダンス変成器となる線路
部20゜21を含むT分岐23により一つの給電線路2
4に合成される。
Four circular patch radiating elements 3, 7, 11, 15 are spaced apart by a ground conductor 1 and an insulator 2, and are connected to individual feed lines 6, 10, 14, .
18, the in-phase power is fed in the same direction. Individual feed line 6
, 10.14, J8 is connected to one feeder line 2 by a T-branch 23 including a line section 20° 21 which becomes a quarter-wavelength impedance transformer with a different line width via a T-branch 19.22.
It is synthesized into 4.

各々の円形パッチは、給電点から45度の角度の部分に
切り欠きセグメント4.5.8.9.12.13、J6
.17を持たせることにより、円盤導体上に直交する二
つの共振モードに90度の位相差を付与し、かつ等振幅
で励振して円偏波を発生する。
Each circular patch has a cutout segment 4.5.8.9.12.13, J6 at a 45 degree angle from the feed point.
.. 17 gives a phase difference of 90 degrees to two resonance modes orthogonal to each other on the disc conductor, and excites them with equal amplitude to generate circularly polarized waves.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記給電線路配置の問題点は、T分岐23の給電線路2
40T分岐付近は、線路部20.2ノと直交しないため
非対称な磁界結合となり、完全な2分岐とならずに電力
分配は左右不均等となる。
The problem with the above feed line arrangement is that the feed line 2 of the T branch 23
Since the vicinity of the 40T branch is not perpendicular to the line portion 20.2, there is asymmetrical magnetic field coupling, and there is no perfect two-branching, resulting in unequal power distribution on the left and right sides.

実験的に左方の分岐枝となる線路部20に対する結合が
強くなることが知られている。
It has been experimentally known that the coupling to the line portion 20, which is the left branch, becomes stronger.

また、給電線路24が個別給電線路ノ4並ひに放射素子
J5に接近し、それぞれ不要電磁結合を生じ、結果とし
て各放射素子の励振を不均一にし。
Further, the feed line 24 approaches the individual feed line No. 4 as well as the radiating element J5, causing unnecessary electromagnetic coupling with each other, resulting in non-uniform excitation of each radiating element.

アンテナ効率を低下させる問題があった。There was a problem that the antenna efficiency was reduced.

本発明は、上記の問題点に鑑みてなされたもので、その
目的は簡単に構成でき、かつ高性能な平面アンテナを提
供することにある。
The present invention has been made in view of the above problems, and its purpose is to provide a planar antenna that can be easily constructed and has high performance.

〔課題を解決するための手段及び作用〕本発明は、2個
の放射素子を給電点ごとに互いに180度回転さぞ対向
配置させ、個別給電線路の間に折れ曲がり線路からなる
位相反転回路を挿入づせることにより、放射素子付近の
給電線路を簡素化し、且つ給電の対称性を良くすること
により給電線路の不要結合を低減し、放射素子励振の均
一化によるアンテナ効率の改善が出来るようにしたもの
である。
[Means and effects for solving the problem] The present invention consists of two radiating elements arranged facing each other at each feeding point, rotated 180 degrees, and a phase inversion circuit consisting of a bent line being inserted between the individual feeding lines. This simplifies the feed line near the radiating element, improves the symmetry of the feed, reduces unnecessary coupling in the feed line, and improves antenna efficiency by uniformizing the excitation of the radiating element. It is.

〔第1実施例〕 以下、本発明の実施例を図面を参照して説明する。[First example] Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の第1実施例による平面アンテナの平面
図を示す。本アンテナの各放射素子形式は、上記第4図
の場合と同様に主ビームを垂直の正面方向に合成するた
めの配置となっている。
FIG. 1 shows a plan view of a planar antenna according to a first embodiment of the present invention. Each of the radiating element types of this antenna is arranged to combine the main beams in the vertical front direction, as in the case of FIG. 4 above.

4個の円形・母ツチ放射素子3.7.11.15は、接
地導体lと絶縁体2により所定の間隔を保って配置され
、各々の給電点から45度の角度の部分に切り欠きセグ
メント4.5・8・ 9・12・13.16.17金持
たせることにより円盤導体上に直交する二つの共振モー
ドに90度の位相差を付与し、かつ等振幅で励振して円
偏波を発生する形式の本のである。
Four circular/mother-shaped radiating elements 3.7.11.15 are arranged at a predetermined interval by a ground conductor l and an insulator 2, and have cutout segments at 45 degree angles from each feed point. 4.5・8・9・12・13.16.17 By adding gold to the disk conductor, a 90 degree phase difference is given to two orthogonal resonance modes on the disk conductor, and circularly polarized waves are generated by exciting with equal amplitude. This is the format of the book that occurs.

円形パッチ放射素子3,7及び1ノ、15fiマイクロ
ス? IJツブ線路からなる個別給電線路6.10、及
び14.18を備え、それぞれ給電点を含み互いに18
0度回転して配置されている。個別給電線路6と10及
び14と18の間には、それぞれ線路長が2分の1波長
線の折り返し線路25.26が挿入され、折り返し線路
25.26の一端に給電線路27,28が内側より接続
されている。給電線路27.28は、T分岐23を経て
一つの給電線路24に接続されている。
Circular patch radiating elements 3, 7 and 1, 15fi micros? Equipped with individual feed lines 6.10 and 14.18 consisting of IJ tube lines, each including a feed point and 18
It is rotated 0 degrees. Between the individual feed lines 6 and 10 and between 14 and 18, return lines 25 and 26 each having a line length of 1/2 wavelength are inserted. More connected. The feed lines 27 and 28 are connected to one feed line 24 via a T-branch 23.

次に本発明の構成において、放射素子の励振について説
明する。給電線路24に加えられた信号は、4等分され
ると同時に、折り返し線路25.26による位相反転回
路としての作用の為、個別給電線路6と10および14
と16の放射素子との接続点でそれぞれ180度の位相
差を持って、互いに180度回転配置された円形パッチ
放射素子3と7及び11と15を励振し、結局全ての放
射素子を同相で励振することになる。
Next, excitation of the radiating element in the configuration of the present invention will be explained. The signal applied to the feed line 24 is divided into four equal parts, and at the same time, the signal applied to the feed line 24 is divided into four parts, and at the same time, the folded lines 25 and 26 act as a phase inversion circuit, so that the signal is divided into individual feed lines 6, 10 and 14.
The circular patch radiating elements 3 and 7 and 11 and 15, which are rotated 180 degrees from each other, are excited with a phase difference of 180 degrees at the connection point between the radiating elements and the 16 radiating elements, and in the end, all the radiating elements are in the same phase. It will excite.

本発明の効果として、折シ返し線路25.26は左右の
配着が丁度優像の関係の形状にしたため。
As an effect of the present invention, the folding lines 25 and 26 are shaped so that the left and right distributions are exactly in a superior image relationship.

中央部から対称性の良い給電ができ、左右の放射素子対
に均一な励振をすることが可能となった。
It has become possible to feed power with good symmetry from the center, and to uniformly excite the left and right radiating element pairs.

また折り返し線路25.26のス) IJツブ線路幅は
、他の給電線路より幅を広くして1位相反転の周波数特
性を広帯域化したり、場合によっては、幅を狭くして密
接に配置してスイース効率を向上したり1種々の形状の
選択が可能である。いずれの場合も動作周波数の中心で
逆位相となる線路長に設計すればよい。
In addition, the IJ tube line width of the folded line (25, 26) may be made wider than other feed lines to widen the frequency characteristic of one phase inversion, or in some cases, the width may be narrowed and placed closely together. It is possible to improve the swiping efficiency and to select various shapes. In either case, the line length may be designed to have opposite phases at the center of the operating frequency.

〔第2実施例〕 第2図は、本発明の第2の実施例を示す平面アンテナの
平面図であって、折シ返し線路25.26の配置を第1
図のものと90度回転しただけで、その構成は殆ど同じ
であるが、本実施例では。
[Second Embodiment] FIG. 2 is a plan view of a planar antenna showing a second embodiment of the present invention, in which the arrangement of the folded lines 25 and 26 is changed to the first embodiment.
In this embodiment, the configuration is almost the same, except that it has been rotated 90 degrees from the one shown in the figure.

折り返し線路25.26に対する個別給電線路や放射素
子に対する個別給電線路6.10の接続点を折り返し線
路25.26の接続点を折り返し線路25.26の両端
より少し内側に設定して、給電線路長を少し短縮しであ
る。この場合、折り返し線路25.26は、そのストリ
ップ線路幅を広くしておくと共振器としての負荷Qの値
が適度に大きくなって位相反転の機能を広帯域化できる
The connection point of the individual feed line 6.10 for the return line 25.26 and the individual feed line 6.10 for the radiating element is set slightly inside the both ends of the return line 25.26, and the feed line length is is a little shortened. In this case, if the strip line width of the folded lines 25 and 26 is widened, the value of the load Q as a resonator becomes appropriately large, and the phase inversion function can be performed over a wide band.

〔第3実施例〕 第3図は、本発明の第3実施例を示す平面アンテナの構
造図であって、トリプレート型ストリップ線路給電方式
に適用した場合を示す。給電線の配置は、第2図の実施
例に似ているが、接地導体ノと絶縁体2の上に、絶縁体
37を介して上部接地導体38が積層され、それら両層
の間にトリプレートストリップ線路による給電線路が形
成される。4個の放射素子は第1図又は第2図の場合と
同様であるが、各放射素子配置に対応して放射波を通過
させるための開口39,40.41.42が上部接地導
体38上に設けられている。
[Third Embodiment] FIG. 3 is a structural diagram of a planar antenna showing a third embodiment of the present invention, in which it is applied to a triplate strip line feeding system. The arrangement of the feeder line is similar to the embodiment shown in FIG. 2, but an upper ground conductor 38 is laminated on the ground conductor and insulator 2 with an insulator 37 in between, and a tri-layer is placed between these two layers. A feeder line is formed using a plate strip line. The four radiating elements are the same as those in FIG. 1 or 2, but openings 39, 40, 41, and 42 are provided on the upper ground conductor 38 for passing radiated waves corresponding to each radiating element arrangement. It is set in.

また本実施例では折り返し線路29.30は幅の広いU
字状の形状をもち、折り返し線路29゜30の両開放端
より少し離れた点に個別給電線路6.10.14.18
が接続され、放射素子対への給電線路31.32の接続
点はさらに内側に設定しである。そして、給電線路3ノ
、32は、4分の1波長インピーダンス変成器となる線
路部33.34を介してT分岐23に接続される。これ
によって、個別給電線路側からみた比較的高い放射素子
インピーダンスが低いインピーダンスに変換される。U
字型の折シ返し線路は高周波電圧の振幅分布が両開放端
でもっとも高く且つ高インピーダンス給電点となり、U
字の底部に向かって低インピーダンス給電点となる性質
を持つので。
In addition, in this embodiment, the turnback lines 29 and 30 have a wide U
The individual feed line 6.10.14.18 has a letter-shaped shape and is located at a point slightly away from both open ends of the folded line 29°30.
are connected, and the connection points of the feeder lines 31 and 32 to the pair of radiating elements are set further inside. The feeder lines 3 and 32 are connected to the T-branch 23 via line portions 33 and 34 that serve as quarter-wavelength impedance transformers. This converts the relatively high radiating element impedance seen from the individual feed line side to a low impedance. U
The shaped folded line has the highest amplitude distribution of high-frequency voltage at both open ends, and becomes a high-impedance feeding point, and the U
Because it has the property of becoming a low impedance feeding point towards the bottom of the letter.

当初の目的の位相反転回路とともに、トランスとしても
利用することができる。個別給電線路の給電方法によっ
てはその給電点インピーダンスが低インピーダンスにな
ることもあり、この場合は上記とは両給電点の位置を逆
に設定すればよく、インピーダンス整合が容易にできる
。また本発明を適用すれば、給電線路の配置スイースに
余裕ができるので、合成した給電線路の部分の線路幅を
従来の給電法より広くして、線路の導体抵抗を減じ線路
損失を低減させることが可能である。また、この第3冥
施例においても、上記第2実施例と同様に位相反転の機
能を広帯域化できる。
In addition to its original purpose as a phase inversion circuit, it can also be used as a transformer. Depending on the feeding method of the individual feed lines, the feed point impedance may become low impedance. In this case, the positions of both feed points may be set opposite to the above, and impedance matching can be easily achieved. Furthermore, if the present invention is applied, there is a margin in the arrangement sweep of the feeder line, so the line width of the combined feeder line part can be made wider than in the conventional feeder method, thereby reducing the conductor resistance of the line and reducing the line loss. is possible. Further, in this third embodiment as well, the phase inversion function can be performed over a wide band, as in the second embodiment.

上記各実施例では、主ビームが面に垂直な平面アンテナ
に適用した場合について説明したが、主ビームに所望の
角度を持たせる場合にも、本発明の給電方法を基礎とし
て設計すれば、給電線路に位相差負荷回路を挿入したり
、放射素子及び給電点の配列に回転角度差を付けるなど
従来良く知られた方法を併用すれば従来より配線が簡素
化出来る性質を活用して、所望のビームチルトが容易に
実現できる利点がある。
In each of the above embodiments, the case where the antenna is applied to a flat antenna in which the main beam is perpendicular to the surface has been explained. However, even when the main beam has a desired angle, if the power feeding method of the present invention is designed as a basis, the feeding method can be used. By using conventionally well-known methods such as inserting a phase difference load circuit into the line and adding rotation angle differences to the arrangement of radiating elements and feeding points, the wiring can be simplified compared to conventional methods, and the desired result can be achieved. This has the advantage that beam tilt can be easily achieved.

また、これまで述べた実施例では、放射素子として1円
形・々ツチ型放射素子を用い、給電方法として個別給電
線路による直接結合法を用いたが、良く知られているよ
うに、上部接地導体上に設けたスロット型放射素子と前
記放射素子のスロットを横切るトリプレートストリップ
線路によって、いわゆる電磁結合をさせた給電方式にも
同様に適用できる。
In addition, in the embodiments described so far, a single circular/square type radiating element was used as the radiating element, and a direct coupling method using individual feed lines was used as the feeding method, but as is well known, the upper ground conductor It is also possible to apply the present invention to a feeding system in which so-called electromagnetic coupling is performed using a slot-type radiating element provided above and a triplate strip line that crosses the slot of the radiating element.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、キを勢梗放射素子対
に折り返し線路形式の位相反転回路を導入した結果、4
個の放射素子に対する給電線路の対称性及び簡素化が一
段と改善され、放射素子励振の均一化と給電線路の損失
低減によるアンテナ効率を向上することができる。
As described above, according to the present invention, as a result of introducing a phase inversion circuit in the form of a folded line to the pair of radiating elements,
The symmetry and simplification of the feed line for each radiating element are further improved, and the antenna efficiency can be improved by making the excitation of the radiating element uniform and reducing the loss of the feed line.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る平面アンテナの構成図
、第2図及び第3図はそれぞれ本発明の他の実施例?示
す構成図、第4図は従来の平面アンテナの構成図である
。 1.38・・・接地導体、2,37・・・絶縁体、3゜
7.11.15・−・円形パッチ放射素子、4.5゜1
1.9,12.13.16.17・・・切り欠きセグメ
ント、6.10.14.18・・・個別給電線路、7.
8.23・・・T分岐、25.26・・・折シ返し線路
(位相反転回路)、29.3o・・・U字型折り返し線
路、20.21.33.34・・・4分の1波長インピ
ーダンス変成器% 39.40.41.42・・・開口
。 1 第1図
FIG. 1 is a configuration diagram of a planar antenna according to one embodiment of the present invention, and FIGS. 2 and 3 are respectively other embodiments of the present invention. The configuration diagram shown in FIG. 4 is a configuration diagram of a conventional planar antenna. 1.38...Grounding conductor, 2,37...Insulator, 3゜7.11.15...Circular patch radiating element, 4.5゜1
1.9, 12.13.16.17... Notch segment, 6.10.14.18... Individual feed line, 7.
8.23...T branch, 25.26...Folding line (phase inversion circuit), 29.3o...U-shaped folding line, 20.21.33.34...4 minute 1 wavelength impedance transformer% 39.40.41.42...Aperture. 1 Figure 1

Claims (3)

【特許請求の範囲】[Claims] (1)複数個の放射素子と、一つの信号端子から複数の
ストリップ線路に分岐され、上記複数個の放射素子を励
振する給電線路を備えた平面アンテナに於いて、 上記複数の放射素子は、単位放射素子対の組み合わせた
もので構成され、単位放射素子対は一対の放射素子の間
に一個の折り返し線路からなる位相反転回路が挿入され
た個別給電線路を有し、前記単位放射素子対の励振は位
相反転回路に接続された給電線路から直接結合又は電磁
結合により励振させることを特徴とする平面アンテナ。
(1) In a planar antenna equipped with a plurality of radiating elements and a feed line branching from one signal terminal into a plurality of strip lines and exciting the plurality of radiating elements, the plurality of radiating elements are: It is composed of a combination of unit radiating element pairs, each unit radiating element pair has an individual feed line in which a phase inversion circuit consisting of one folded line is inserted between the pair of unit radiating elements, and the unit radiating element pair has A planar antenna characterized in that excitation is performed by direct coupling or electromagnetic coupling from a feed line connected to a phase inversion circuit.
(2)請求項(1)記載の平面アンテナにおいて、位相
反転回路を構成する折り返し線路は、個別給電線路より
も幅の広い両端開放2分の1波長U字型ストリップ線路
からなり、給電線路の接続点を前記U字型ストリップ線
路の中央の溝側に設けたことを特徴とする平面アンテナ
(2) In the planar antenna according to claim (1), the folded line constituting the phase inversion circuit is made of a 1/2 wavelength U-shaped strip line with both ends open and wider than the individual feed line. A planar antenna characterized in that a connection point is provided on the central groove side of the U-shaped strip line.
(3)請求項(2)記載の平面アンテナにおいて、前記
位相反転用U字型の折り返し線路に対する各放射素子の
個別給電線路と給電線路との接続点を開放端からそれぞ
れ異ならしめることにより、位相反転回路にインピーダ
ンス変成作用を併用させたことを特徴とする平面アンテ
ナ。
(3) In the planar antenna according to claim (2), the connection points between the individual feed line and the feed line of each radiating element with respect to the U-shaped folded line for phase inversion are made different from the open end. A planar antenna characterized by combining an inverting circuit with an impedance transformation effect.
JP9771190A 1990-04-16 1990-04-16 Plane antenna Pending JPH03297207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9771190A JPH03297207A (en) 1990-04-16 1990-04-16 Plane antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9771190A JPH03297207A (en) 1990-04-16 1990-04-16 Plane antenna

Publications (1)

Publication Number Publication Date
JPH03297207A true JPH03297207A (en) 1991-12-27

Family

ID=14199488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9771190A Pending JPH03297207A (en) 1990-04-16 1990-04-16 Plane antenna

Country Status (1)

Country Link
JP (1) JPH03297207A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09307341A (en) * 1996-05-10 1997-11-28 Nec Corp Power feeding circuit of flat antenna
JP2011229107A (en) * 2009-08-31 2011-11-10 Hitachi Chem Co Ltd Triplate line interlayer connector and planar array antenna
JP2019507986A (en) * 2016-03-11 2019-03-22 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Antenna device for radar sensor, method of manufacturing antenna device for radar sensor, and use of antenna device in radar sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09307341A (en) * 1996-05-10 1997-11-28 Nec Corp Power feeding circuit of flat antenna
JP2011229107A (en) * 2009-08-31 2011-11-10 Hitachi Chem Co Ltd Triplate line interlayer connector and planar array antenna
JP2019507986A (en) * 2016-03-11 2019-03-22 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Antenna device for radar sensor, method of manufacturing antenna device for radar sensor, and use of antenna device in radar sensor
US10996330B2 (en) 2016-03-11 2021-05-04 Robert Bosch Gmbh Antenna device for a radar sensor

Similar Documents

Publication Publication Date Title
JP2951707B2 (en) Planar antenna
EP0683542B1 (en) Omnidirectional slot antenna
US5369414A (en) Dual end resonant array antenna feed having a septum
EP0018476A1 (en) Crossed slot cavity antenna
US5952982A (en) Broadband circularly polarized antenna
JPH01205603A (en) Exciter of circularly polarized waveguide with plane antenna
JP4073130B2 (en) Cross dipole antenna
JP2004007034A (en) Two-element and multi-element array slot antennas
JPH0270104A (en) Wide directional microstrip antenna
JP3415453B2 (en) Microstrip antenna
JPH03101507A (en) Planer antenna
JPS6230409A (en) Slot array antenna unit
Yang et al. A single-layer circularly polarized antenna with improved gain based on quarter-mode substrate integrated waveguide cavities array
US2759183A (en) Antenna arrays
JP3804878B2 (en) Dual-polarized antenna
JPH03297207A (en) Plane antenna
JPS617707A (en) Array antenna for circularly polarized wave
JP3037959B2 (en) Antenna device
EP0829109B1 (en) Antenna element for two orthogonal polarizations
JPH0628321B2 (en) Circularly polarized antenna
JP3058874B1 (en) Waveguide-fed array antenna
JP3239654B2 (en) Circularly polarized microstrip antenna
US6885351B1 (en) Antenna
JPH0324805A (en) Slot type stacked spiral antenna
JPS6313404A (en) Microstrip circularly polarized antenna