JPH0324805A - Slot type stacked spiral antenna - Google Patents

Slot type stacked spiral antenna

Info

Publication number
JPH0324805A
JPH0324805A JP15913489A JP15913489A JPH0324805A JP H0324805 A JPH0324805 A JP H0324805A JP 15913489 A JP15913489 A JP 15913489A JP 15913489 A JP15913489 A JP 15913489A JP H0324805 A JPH0324805 A JP H0324805A
Authority
JP
Japan
Prior art keywords
antenna
spiral slot
spiral
feed line
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15913489A
Other languages
Japanese (ja)
Inventor
Hisamatsu Nakano
久松 中野
Kazuhide Hirose
広瀬 数秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON DENGIYOU KOSAKU KK
Nihon Dengyo Kosaku Co Ltd
Original Assignee
NIPPON DENGIYOU KOSAKU KK
Nihon Dengyo Kosaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON DENGIYOU KOSAKU KK, Nihon Dengyo Kosaku Co Ltd filed Critical NIPPON DENGIYOU KOSAKU KK
Priority to JP15913489A priority Critical patent/JPH0324805A/en
Publication of JPH0324805A publication Critical patent/JPH0324805A/en
Pending legal-status Critical Current

Links

Landscapes

  • Waveguide Aerials (AREA)

Abstract

PURPOSE:To realize an antenna in a low attitude and to reduce the loss of a feed line by exciting a pair of spiral slot parts by a triplate line. CONSTITUTION:When spiral slot parts 5a and 5b are excited with a coupling slot part 5c between them by a feed line 3 of a triplate line 3, circularly polarized waves are radiated from spiral slot parts 5a and 5b by magnetic currents flowing to respective slots. Since spiral slot parts 5a and 5b are wound in the same direction, electric field vectors in circularly polarized waves are rotated in the same direction, and the synthesized radiation field polarized wave is a circularly polarized wave. Thus, a directivity symmetrical with respect to the center axis of radiation is obtained, and the antenna in a low attitude is realized, and the loss of the feed line is reduced.

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は衛星通信等に用いられる広帯域スロット形スパ
イラルアンテナに関する。 [従来の技術] 従来、この種のアンテナとして線状アルキメデス形スパ
イラルアンテナ、板状等角スパイラルアンテナ、平面状
対数周期形アンテナ、多線式スパイラルスロットアンテ
ナ又は単線式スパイラルスロットアンテナ等が用いられ
ている。 [発明が解決しようとする課題〕 衛星通信等に従来のアンテナを放射素子として用いよう
とする場合、放射目的方向が単一方向に設定されるため
、その素子の指向性は単一方向であることが望まれる。 しかし、従来用いられている線状アルキメデス形スバイ
ラルアンテナ,板状等角スパイラルアンテナ,平面状対
数周期形アンテナ,多線式スパイラルスロットアンテナ
又は単線式スパイラルスロットアンテナ等はいずれもそ
のアンテナ面に対してほぼ直角な双方向に放射するため
、単一指向性にはならない。 これらの特性を単一指向性となるようにするためにはア
ンテナ面に平行な反射板を設けることが有効であるが、
その間隔は約λ/4(λ:自由空間波長)となり、物理
的にも大きく、低姿勢の薄形アンテナを製作する上で問
題となる。 また、従来の線状アルキメデス形スパイラルアンテナ及
び板状等角スパイラルアンテナは給電系部分が平衡一不
平衡変換素子を含む同軸線路よりなるため、製作が困難
である。 平面状対数周期形アンテナにおいては、円偏波の放射を
行わせるためには適当な広帯域ハイブリッド素子等を必
要とするため、製作が困難となる。 多線式スバイラルスロットアンテナは、2個所以上の給
電点を必要とするため、給電が複雑となり、円偏波の励
振が困難である。 単線式スパイラルスロットアンテナは、アンテナ形状が
スバイラル中心に関して対称でないため、放射方向の中
心軸に対称な指向性を得ることができない。 本発明の目的は前記課題を解決したスロット形双スパイ
ラルアンテナを提供することにある。 〔課題を解決するための手段】 前記目的を達成するため、本発明に係るスロット形双ス
パイラルアンテナは、低誘電率の誘電体の表裏両面に平
行な一対の導体板を敷設するとともに、前記誘電体内に
給電線路を形成することによりトリプレートラインを構
成し、前記一対の導体板の一方に、前記給電線路に電磁
結合する相互に連通したスパイラル状スロット部の対を
有するものである。
[Industrial Application Field] The present invention relates to a wideband slot-type spiral antenna used for satellite communications and the like. [Prior Art] Conventionally, as this type of antenna, a linear Archimedean spiral antenna, a plate conformal spiral antenna, a planar logarithmically periodic antenna, a multi-wire spiral slot antenna, a single-wire spiral slot antenna, etc. have been used. There is. [Problem to be solved by the invention] When a conventional antenna is used as a radiating element for satellite communication, etc., the radiation target direction is set to a single direction, so the directivity of the element is unidirectional. It is hoped that However, conventionally used linear Archimedean spiral antennas, plate-like equiangular spiral antennas, planar log-periodic antennas, multi-wire spiral slot antennas, and single-wire spiral slot antennas all have Because it radiates in both directions at almost right angles, it is not unidirectional. In order to make these characteristics unidirectional, it is effective to provide a reflector parallel to the antenna surface.
The spacing is approximately λ/4 (λ: free space wavelength), which is physically large and poses a problem in manufacturing a thin antenna with a low profile. In addition, the conventional linear Archimedean spiral antenna and plate-shaped conformal spiral antenna are difficult to manufacture because the feeding system portion consists of a coaxial line including a balanced-unbalanced conversion element. Planar log-periodic antennas are difficult to manufacture because they require a suitable broadband hybrid element or the like in order to radiate circularly polarized waves. Multi-wire spiral slot antennas require two or more feeding points, which makes feeding complicated and makes it difficult to excite circularly polarized waves. Since the antenna shape of the single-wire spiral slot antenna is not symmetrical about the spiral center, it is not possible to obtain directivity that is symmetrical about the central axis in the radiation direction. An object of the present invention is to provide a slot-type twin spiral antenna that solves the above problems. [Means for Solving the Problems] In order to achieve the above object, the slot type twin spiral antenna according to the present invention has a pair of parallel conductor plates laid on both the front and back surfaces of a dielectric material with a low dielectric constant, and A triplate line is constructed by forming a power supply line within the body, and one of the pair of conductor plates has a pair of mutually communicating spiral slot portions that are electromagnetically coupled to the power supply line.

【実施例】【Example】

以下、本発明の一実施例を図により説明する。 第l図は本発明の一実施例を示す斜視図、第2図は同断
面図、第3図はスバイラル状スロット部を示す平面図で
ある。 図において、低誘電率の誘電体lの表裏両面に金属薄膜
等の平行な一対の導体板2a, 2bを敷設し、誘電体
l内で導体板2a, 2b対の中間位置に給電線路3を
形成してトリプレートライン4を構成する。 さらに、一対の導体板2a, 2bのうち表面側の導体
板2aに、給電線路3に電磁結合させる一対のスパイラ
ル状スロット部5a, 5bを開孔してある。スパイラ
ル状スロット部5a, 5bはその巻方向が同方向とな
るように形成してある。また、給電線路3の端部はスバ
イラル状スロット部5a, ’5bの結合用スロット部
5cと誘電体lを介して結合用スロット部5cの中央で
直交し電磁結合によって結合用スロット部5cを励振し
得るように形成してある。また、給電線路3の端部を結
合用スロット部5cとの交差位置から若干延長し、この
延長分3aの長さを調整することにより、給電線路3と
結合用スロット部5cとのインピーダンス整合を図って
いる。 実施例において、トリプレートライン4の給電線路3で
結合用スロット部5cを介してスバイラル状スロット部
5a, 5bを励振すると、各スロットに流入する磁流
によって各スパイラル状スロット部5a, 5bから円
偏波が放射される。各スバイラル状スロット部5a, 
5bの巻き方向を同方向に設定してあるので、各円偏波
における電界ベクトルの回転方向が同方向となり、合成
された放射界偏波は円偏波となる。実施例ではトリプレ
ートライン4の厚み2tを1.8mm(約λ,,/14
,λ.=25陥)とし、低姿勢のアンテナを実現してい
る。 円偏波を放射している場合の典型的な放射パターンを第
4図,第5図に示す。図により、広角度に渡って円偏波
が放射されていることが確認できる。軸比の周波数特性
を第6図に示す。軸比3dB以下の円偏波放射が周波数
1 1 . 3GHzから12.4GHz(帯域幅9%
)に渡って得られている。 ここで、本発明によれば、給電線路3は導体板2a, 
2bにより遮蔽されているために、給電線路3の放射損
失は無視できる。さらに、低誘電率の誘電体lを用いて
いるので、誘電体損失がほとんど無視でき、放射効率を
向上できる。 尚、上記実施例においては、一対のスパイラル状スロッ
ト部5a, 5bの巻方向を互いに同方向に形成した場
合を例示したが、第7図に示すように、その巻方向を逆
方向に設定した場合、一対のスパイラル状スロット部5
a, 5bに流入する磁流によって生ずる各円偏波の電
界ベクトルの回転方向が互いに逆方向となるため、給電
線路3に直角な方向の電界ベクトル成分は互いに打ち消
し合い、給電線路3に平行な方向の電界ベクトルは互い
に強め合い、矢印E方向の電界ベクトルを有する直線偏
波が放射されることとなる。 また、スバイラル状スロット部5a, 5bをアルキメ
デス形として形成したが、第8図に示すように、角形に
形成してもよい。また、第9図に示すように、2個の一
対のスバイラル状スロット部5a, 5bの組を一定間
隔を隔てて配列し、トリプレートライン4(第2図参照
)でスバイラル状スロット部5a,5bを励振すること
により、放射ビームを尖鋭化することができる。 〔発明の効果〕 以上説明したように、本発明は対をなすスバイラル状ス
ロット部をトリプレートラインで励振するため、低姿勢
のアンテナの実現化と給電線路損失の低減を図ることが
できる。また、対をなすスロット形スパイラルに対する
給電点が1箇所で足りるため、スロット形スバイラルを
配列した場合の給電系を簡易に構成することができる。 また構造製作が容易となり、アンテナ設計の自由度を増
すことができる。さらに、トリプレートラインとスロッ
ト形スパイラルとのインピーダンス整合はトリプレート
ラインの給電線路の端部の長さを調整することにより、
容易に行えるので、整合回路をトリプレートラインに付
加する必要がない。したがって、整合回路の設計、製作
に伴う煩雑さを解消できる効果を有する。
Hereinafter, one embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view showing one embodiment of the present invention, FIG. 2 is a sectional view thereof, and FIG. 3 is a plan view showing a spiral slot portion. In the figure, a pair of parallel conductor plates 2a and 2b made of metal thin films are laid on both the front and back surfaces of a dielectric material l with a low dielectric constant, and a feed line 3 is placed at an intermediate position between the pair of conductor plates 2a and 2b within the dielectric material l. The triplate line 4 is formed by forming the triple plate line 4. Further, a pair of spiral slot portions 5a, 5b for electromagnetic coupling to the feed line 3 are formed in the front surface side conductor plate 2a of the pair of conductor plates 2a, 2b. The spiral slot portions 5a and 5b are formed so that their winding directions are the same. In addition, the ends of the feed line 3 intersect at right angles at the center of the coupling slot part 5c of the spiral slot parts 5a and 5b via the dielectric 1, and excite the coupling slot part 5c by electromagnetic coupling. It is designed so that it can be used. In addition, impedance matching between the feed line 3 and the coupling slot part 5c is achieved by slightly extending the end of the feed line 3 from the intersection point with the coupling slot part 5c and adjusting the length of this extension 3a. I'm trying. In the embodiment, when the spiral slot portions 5a, 5b are excited via the coupling slot portion 5c with the feed line 3 of the triplate line 4, the magnetic current flowing into each slot causes a circular flow from each spiral slot portion 5a, 5b. Polarized waves are emitted. Each spiral slot portion 5a,
Since the winding direction of the radiation field 5b is set in the same direction, the rotation direction of the electric field vector in each circularly polarized wave is the same direction, and the combined radiation field polarized wave becomes a circularly polarized wave. In the example, the thickness 2t of the triplate line 4 is 1.8 mm (approximately λ,,/14
,λ. = 25 defects), realizing a low-profile antenna. Typical radiation patterns when radiating circularly polarized waves are shown in FIGS. 4 and 5. The figure confirms that circularly polarized waves are radiated over a wide angle. Figure 6 shows the frequency characteristics of the axial ratio. Circularly polarized radiation with an axial ratio of 3 dB or less has a frequency of 1 1 . 3GHz to 12.4GHz (bandwidth 9%
) have been obtained over the years. Here, according to the present invention, the feed line 3 includes the conductor plates 2a,
2b, the radiation loss of the feed line 3 can be ignored. Furthermore, since a dielectric material l having a low dielectric constant is used, dielectric loss can be almost ignored, and radiation efficiency can be improved. In the above embodiment, the pair of spiral slot portions 5a and 5b are wound in the same direction, but as shown in FIG. 7, the winding directions are set in opposite directions. In this case, a pair of spiral slot portions 5
Since the rotating directions of the electric field vectors of the circularly polarized waves generated by the magnetic currents flowing into a and 5b are opposite to each other, the electric field vector components in the direction perpendicular to the feed line 3 cancel each other out, and the electric field vector components in the direction perpendicular to the feed line 3 cancel each other out. The electric field vectors in the directions strengthen each other, and a linearly polarized wave having an electric field vector in the direction of the arrow E is emitted. Further, although the spiral slot portions 5a and 5b are formed in an Archimedean shape, they may be formed in a rectangular shape as shown in FIG. Further, as shown in FIG. 9, two pairs of spiral slot portions 5a, 5b are arranged at regular intervals, and the spiral slot portions 5a, 5b are arranged in a triple plate line 4 (see FIG. 2). By exciting 5b, the radiation beam can be sharpened. [Effects of the Invention] As described above, the present invention excites the pair of spiral slot portions with a triplate line, so it is possible to realize a low-profile antenna and reduce feed line loss. Furthermore, since only one power feeding point is required for the pair of slotted spirals, the power feeding system when the slotted spirals are arranged can be easily configured. Furthermore, the structure can be manufactured easily, and the degree of freedom in antenna design can be increased. Furthermore, impedance matching between the triplate line and the slot-shaped spiral can be achieved by adjusting the length of the feed line end of the triplate line.
Since it is easy to do, there is no need to add a matching circuit to the triplate line. Therefore, it is possible to eliminate the complexity associated with designing and manufacturing a matching circuit.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す斜視図、第2図は同断
面図、第3図はスパイラル状スロット部を示す平面図、
第4図,第5図は放射パターンを示す図、第6図は周波
数と軸比との関係を示す特性図,第7図,第8図,第9
図は本発明の他の実施例を示す図である。
FIG. 1 is a perspective view showing an embodiment of the present invention, FIG. 2 is a sectional view thereof, and FIG. 3 is a plan view showing a spiral slot portion.
Figures 4 and 5 are diagrams showing the radiation pattern, Figure 6 is a characteristic diagram showing the relationship between frequency and axial ratio, Figures 7, 8, and 9.
The figure shows another embodiment of the invention.

Claims (1)

【特許請求の範囲】[Claims] (1)低誘電率の誘電体の表裏両面に平行な一対の導体
板を敷設するとともに、前記誘電体内に給電線路を形成
することによりトリプレートラインを構成し、前記一対
の導体板の一方に、前記給電線路に電磁結合する相互に
連通したスパイラル状スロット部の対を有することを特
徴とするスロット形双スパイラルアンテナ。
(1) A triplate line is constructed by laying a pair of parallel conductor plates on both the front and back surfaces of a dielectric with a low dielectric constant, and forming a feed line within the dielectric, and forming a triplate line on one of the pair of conductor plates. . A slot-type twin spiral antenna, comprising a pair of mutually communicating spiral-shaped slot portions that are electromagnetically coupled to the feed line.
JP15913489A 1989-06-21 1989-06-21 Slot type stacked spiral antenna Pending JPH0324805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15913489A JPH0324805A (en) 1989-06-21 1989-06-21 Slot type stacked spiral antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15913489A JPH0324805A (en) 1989-06-21 1989-06-21 Slot type stacked spiral antenna

Publications (1)

Publication Number Publication Date
JPH0324805A true JPH0324805A (en) 1991-02-01

Family

ID=15686993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15913489A Pending JPH0324805A (en) 1989-06-21 1989-06-21 Slot type stacked spiral antenna

Country Status (1)

Country Link
JP (1) JPH0324805A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1158606A1 (en) * 2000-05-26 2001-11-28 Sony International (Europe) GmbH Dual-spiral-slot antenna for circular polarization
FR2831734A1 (en) * 2001-10-29 2003-05-02 Thomson Licensing Sa DEVICE FOR RECEIVING AND / OR TRANSMITTING RADIATION DIVERSITY ELECTROMAGNETIC SIGNALS
FR2831733A1 (en) * 2001-10-29 2003-05-02 Thomson Licensing Sa Linearly polarized antenna system for wireless communication in closed and semi-closed environment e.g. gymnasia, includes microstrip lines that pass through symmetric tangent points of adjacent annular slots
KR100507932B1 (en) * 2002-06-28 2005-08-17 임종식 Coplanar Waveguide Transmission Lines with Spiral-Shaped Defected Ground Structure
JP2007116300A (en) * 2005-10-19 2007-05-10 Fujitsu Ltd Tag antenna, tag using the same, and rfid system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5015107A (en) * 1973-06-12 1975-02-18
JPS62216407A (en) * 1986-03-17 1987-09-24 Nippon Dengiyou Kosaku Kk Spiral antenna

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5015107A (en) * 1973-06-12 1975-02-18
JPS62216407A (en) * 1986-03-17 1987-09-24 Nippon Dengiyou Kosaku Kk Spiral antenna

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1158606A1 (en) * 2000-05-26 2001-11-28 Sony International (Europe) GmbH Dual-spiral-slot antenna for circular polarization
FR2831734A1 (en) * 2001-10-29 2003-05-02 Thomson Licensing Sa DEVICE FOR RECEIVING AND / OR TRANSMITTING RADIATION DIVERSITY ELECTROMAGNETIC SIGNALS
FR2831733A1 (en) * 2001-10-29 2003-05-02 Thomson Licensing Sa Linearly polarized antenna system for wireless communication in closed and semi-closed environment e.g. gymnasia, includes microstrip lines that pass through symmetric tangent points of adjacent annular slots
EP1309035A1 (en) * 2001-10-29 2003-05-07 Thomson Licensing S.A. Switched antenna
US6917342B2 (en) 2001-10-29 2005-07-12 Thomson Licensing S.A. Antenna system for the transmission of electromagnetic signals
KR100941124B1 (en) * 2001-10-29 2010-02-10 톰슨 라이센싱 Antenna system for the transmission of electromagnetic signals
KR100507932B1 (en) * 2002-06-28 2005-08-17 임종식 Coplanar Waveguide Transmission Lines with Spiral-Shaped Defected Ground Structure
JP2007116300A (en) * 2005-10-19 2007-05-10 Fujitsu Ltd Tag antenna, tag using the same, and rfid system

Similar Documents

Publication Publication Date Title
JP4440266B2 (en) Broadband phased array radiator
US5594455A (en) Bidirectional printed antenna
CA1252193A (en) Dual polarized sinuous antennas
US4063245A (en) Microstrip antenna arrays
US4839663A (en) Dual polarized slot-dipole radiating element
US4843403A (en) Broadband notch antenna
JPS6145401B2 (en)
JP4010650B2 (en) ANTENNA DEVICE AND RADIO DEVICE INCLUDING THE SAME
US12003027B2 (en) Magneto-electric dipole antenna
EP1158606B1 (en) Dual-spiral-slot antenna for circular polarization
JPH046125B2 (en)
JP4516246B2 (en) antenna
JPH0324805A (en) Slot type stacked spiral antenna
CN115117611B (en) Sidelobe-controllable high-gain high-order mode compressed dipole antenna loaded with bending lines and design method thereof
JP3804878B2 (en) Dual-polarized antenna
Wang et al. A broadband circularly polarized endfire loop antenna for millimeter-wave applications
JP4108246B2 (en) Loop antenna
JP2505327Y2 (en) Slot-shaped twin spiral antenna
JP2911088B2 (en) Helical antenna
JP3404568B2 (en) Planar antenna
JP3038205B1 (en) Waveguide-fed planar antenna
Wahib et al. A planar wideband Quasi-Yagi antenna with high gain and FTBR
JPH10209743A (en) Slot-coupling type microstrip antenna
JPH03175802A (en) Circular polarization antenna
JP3014431B2 (en) Circularly polarized antenna