JP3186041B2 - Method for manufacturing MOSFET semiconductor device - Google Patents

Method for manufacturing MOSFET semiconductor device

Info

Publication number
JP3186041B2
JP3186041B2 JP15298698A JP15298698A JP3186041B2 JP 3186041 B2 JP3186041 B2 JP 3186041B2 JP 15298698 A JP15298698 A JP 15298698A JP 15298698 A JP15298698 A JP 15298698A JP 3186041 B2 JP3186041 B2 JP 3186041B2
Authority
JP
Japan
Prior art keywords
oxide film
semiconductor device
nitride film
gate electrode
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15298698A
Other languages
Japanese (ja)
Other versions
JPH11345963A (en
Inventor
岳 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP15298698A priority Critical patent/JP3186041B2/en
Publication of JPH11345963A publication Critical patent/JPH11345963A/en
Application granted granted Critical
Publication of JP3186041B2 publication Critical patent/JP3186041B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ゲート電極との間
に酸化膜を介在させた窒化膜からなるゲート側壁を有す
るMOSFET半導体装置に関する。
The present invention relates to a MOSFET semiconductor device having a gate side wall made of a nitride film with an oxide film interposed between the gate electrode and the gate electrode.

【0002】[0002]

【従来の技術】ゲート電極との間に酸化膜を介在させた
窒化膜からなるゲート側壁を有するMOSFET半導体
装置は、半導体装置として種々の回路に広く使用されて
いる。
2. Description of the Related Art MOSFET semiconductor devices having a gate sidewall made of a nitride film having an oxide film interposed between the gate electrode and the gate electrode are widely used as various semiconductor devices in various circuits.

【0003】このようなMOSFET半導体装置におい
て、高い信頼性を確保するためには、チップ外部からの
水の浸入を阻止することが重要である。
In such a MOSFET semiconductor device, it is important to prevent water from entering from outside the chip in order to ensure high reliability.

【0004】すなわち、層間膜形成中に取り込まれた水
が、ゲート酸化膜へ拡散すると、酸化膜自身と反応して
欠陥を生成する。このようにして生成した欠陥は、電荷
捕獲中心として働くため、MOSFETの動作中に発生
したホットキャリアが捕獲される確率が高くなり、しき
い値電圧やドレイン電流などの特性変動を増加させる。
That is, when water taken in during the formation of the interlayer film diffuses into the gate oxide film, it reacts with the oxide film itself to generate defects. Since the defect thus generated serves as a charge trapping center, the probability that hot carriers generated during the operation of the MOSFET are trapped is increased, and characteristic fluctuations such as threshold voltage and drain current are increased.

【0005】このような観点から、たとえば、特開平9
−45705号公報には、第1導電型の半導体基板の表
面部の第2導電型のウエハ内に設けられた第1導電型の
ソース領域およびドレイン領域と、前記ウェハ上にゲー
ト酸化膜を介して設けられたゲート電極とを有する横型
MOSFETを備えた半導体装置において、横型MOS
FETのゲート電極を窒化シリコン膜で直接覆うことに
より、層間膜からの水の浸入を防止することが提案され
ている。
From such a viewpoint, for example, Japanese Patent Application Laid-Open
Japanese Patent No. 45705 discloses a first conductivity type source region and a drain region provided in a second conductivity type wafer on a surface portion of a first conductivity type semiconductor substrate, and a gate oxide film on the wafer. A semiconductor device provided with a lateral MOSFET having a gate electrode provided by
It has been proposed to directly cover the gate electrode of the FET with a silicon nitride film to prevent water from entering from an interlayer film.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、特開平
9−45705号公報に記載されているMOSFETの
ように、ゲート電極を直接窒化膜で覆うことは、前述の
水の浸入防止に対しては有効であるが、ゲート電極の側
面およびシリコン基板上に、窒化膜側壁を直接形成する
と、ストレスの影響により逆にホットキャリア耐性が劣
化したり、酸化膜との誘電率の差からゲートフリンジ容
量が増加するなどの別の問題が生じる。
However, covering the gate electrode directly with a nitride film as in the MOSFET described in Japanese Patent Application Laid-Open No. 9-45705 is effective for preventing the above-described water intrusion. However, when the nitride film sidewall is formed directly on the side surface of the gate electrode and on the silicon substrate, the hot carrier resistance deteriorates due to the influence of stress, and the gate fringe capacitance increases due to the difference in dielectric constant from the oxide film. Another problem arises.

【0007】本発明の目的は、このようなゲート電極を
直接窒化膜で覆うことによる問題を生じることなく、層
間膜からの水の浸入を効果的に防止することが可能のM
OSFET半導体装置の製造方法を提供することであ
る。
An object of the present invention is to provide a semiconductor device capable of effectively preventing water from entering from an interlayer film without causing a problem caused by directly covering the gate electrode with a nitride film.
An object of the present invention is to provide a method for manufacturing an OSFET semiconductor device.

【0008】[0008]

【0009】[0009]

【課題を解決するための手段】本発明は、上記のMOS
FET半導体装置を製造する方法であって、シリコン基
板上のゲート電極側面に、酸化膜を介在させて、窒化膜
からなるゲート側壁を形成する工程と、ついで前記ゲー
ト電極および前記シリコン基板と前記窒化膜からなるゲ
ート側壁との間に介在する前記酸化膜の一部を除去する
工程と、窒化膜を一様に被着させた後、異方性のエッチ
ングを行って、酸化膜の除去された部分を窒化膜で塞ぐ
工程と、を備えたことを特徴とする。
According to the present invention, there is provided the above-mentioned MOS transistor.
A method of manufacturing an FET semiconductor device, comprising: forming a gate sidewall made of a nitride film on a side surface of a gate electrode on a silicon substrate with an oxide film interposed therebetween; and forming the gate electrode and the silicon substrate with the nitride film. A step of removing a part of the oxide film interposed between the gate side wall made of a film and a step of uniformly depositing a nitride film, and then performing anisotropic etching to remove the oxide film. Closing the portion with a nitride film.

【0010】すなわち本発明によれば、酸化膜を介して
形成した窒化膜側壁を有するMOSFET半導体装置に
おいて、ゲート電極およびシリコン基板と窒化膜側壁と
の間の酸化膜の一部を除去し、代わりに窒化膜で塞ぐこ
とにより、層間膜からゲート酸化膜への水の拡散を防ぐ
ことができる。
That is, according to the present invention, in a MOSFET semiconductor device having a nitride film side wall formed with an oxide film interposed therebetween, a gate electrode and a part of the oxide film between the silicon substrate and the nitride film side wall are removed and replaced. by closing a nitride film, it is possible to prevent diffusion of water from the interlayer film to the gate oxide film.

【0011】[0011]

【発明の実施の形態】本発明の実施の形態について図面
を参照して説明する。
Embodiments of the present invention will be described with reference to the drawings.

【0012】図1および図2は、本発明にしたがってM
OSFET半導体装置を製造する一連の工程を示してい
る。まず、図1(a)に示すように、p型のシリコン基
板1上に、厚さ4nmのゲート酸化膜2を介して、高さ
150nm、幅150nmの多結晶シリコンのゲート電
極3を形成する。次に、厚さ8nmの酸化膜4をCVD
法により被着させ、ヒ素を30keVで5×1013/c
2注入して、n型低濃度拡散層5を形成する。次に、
厚さ100nmの窒化膜をCVD法により被着させ、異
方性エッチングを行って、図1(b)に示すように、ゲ
ート電極3の側面に窒化膜側壁6を形成する。
FIGS. 1 and 2 illustrate the use of M according to the present invention.
3 shows a series of steps for manufacturing an OSFET semiconductor device. First, as shown in FIG. 1A, a polycrystalline silicon gate electrode 3 having a height of 150 nm and a width of 150 nm is formed on a p-type silicon substrate 1 via a gate oxide film 2 having a thickness of 4 nm. . Next, an oxide film 4 having a thickness of 8 nm is formed by CVD.
Arsenic at 30 keV and 5 × 10 13 / c
By implanting m 2 , an n-type low concentration diffusion layer 5 is formed. next,
A nitride film having a thickness of 100 nm is deposited by the CVD method and anisotropically etched to form a nitride film sidewall 6 on the side surface of the gate electrode 3 as shown in FIG.

【0013】次に、図1(c)に示すように、ゲート電
極3およびシリコン基板1と窒化膜側壁6との間の酸化
膜4を、バッファードフッ酸により途中まで除去する。
次に、図1(d)に示すように、厚さ80nmの窒化膜
11をCVD法により被着させる。
Next, as shown in FIG. 1C, the gate electrode 3 and the oxide film 4 between the silicon substrate 1 and the nitride film side wall 6 are partially removed by buffered hydrofluoric acid.
Next, as shown in FIG. 1D, a nitride film 11 having a thickness of 80 nm is deposited by a CVD method.

【0014】次に、異方性エッチングを行って、図2
(e)に示すように、ゲート電極3およびシリコン基板
1と窒化膜側壁6との間の酸化膜4の除去された部分を
窒化膜で塞ぐ。この結果、窒化膜側壁6は、図1(c)
の状態では露出されていた、酸化膜4の側壁の上端面と
ともに、シリコン基板1の表面に沿って延びる部分の端
面をも覆うことになる。
Next, by performing anisotropic etching, FIG.
As shown in FIG. 3E, the portion of the gate electrode 3 and the portion of the oxide film 4 between the silicon substrate 1 and the nitride film side wall 6 where removed is covered with the nitride film. As a result, the nitride film side wall 6 becomes as shown in FIG.
In this state, not only the upper end face of the side wall of the oxide film 4 exposed but also the end face of the portion extending along the surface of the silicon substrate 1 is covered.

【0015】次に、図2(f)に示すように、ヒ素を5
0keVで3×1015/cm2注入し、1000℃で1
0秒間活性化アニールを行って、n型高濃度拡散層7を
形成する。この後、ゲート電極3の頂部および高濃度拡
散層7の表面に、自己整合的に厚さ30nmのコバルト
シリサイド8を形成する。
Next, as shown in FIG.
Inject 3 × 10 15 / cm 2 at 0 keV and 1 at 1000 ° C.
Activation annealing is performed for 0 seconds to form an n-type high concentration diffusion layer 7. Thereafter, a 30 nm-thick cobalt silicide 8 is formed in a self-aligning manner on the top of the gate electrode 3 and on the surface of the high concentration diffusion layer 7.

【0016】最後に、図2(g)に示すように、厚さ1
00nmの酸化膜9と厚さ1000nmのBPSG膜1
0をCVD法により連続して被着させ、CMPで平坦化
を行う。この後、図示しない金属配線を形成し、MOS
FET半導体装置が完成する。
Finally, as shown in FIG.
00 nm oxide film 9 and 1000 nm thick BPSG film 1
0 is continuously deposited by a CVD method, and planarization is performed by CMP. Thereafter, a metal wiring (not shown) is formed, and a MOS
The FET semiconductor device is completed.

【0017】ここで、外部から浸入する水の影響に対す
る防御作用について、図3および図4に示す本発明のM
OSFET半導体装置と、図5に示す従来例のMOSF
ET半導体装置とを比較して説明する。なお図3は、前
述の第1の実施態様で得られたMOSFET半導体装
置、図4は第2の実施態様で得られたMOSFET半導
体装置にそれぞれ対応する。
Here, the protection effect against the influence of water entering from the outside will be described with reference to FIG. 3 and FIG.
An OSFET semiconductor device and a conventional MOSF shown in FIG.
A description will be given in comparison with an ET semiconductor device. FIG. 3 corresponds to the MOSFET semiconductor device obtained in the first embodiment, and FIG. 4 corresponds to the MOSFET semiconductor device obtained in the second embodiment.

【0018】まず、図5に示した従来の半導体装置で
は、ゲート電極3と窒化膜側壁6との間に酸化膜4が、
またシリコン基板1と窒化膜側壁6との間にゲート酸化
膜2がそれぞれ存在し、その端面が酸化膜9に接してい
る。このため、水(H2O)がBPSG膜10からこの
酸化膜9部分を通って、矢印で示す箇所からゲート酸化
膜2へ容易に拡散し、この結果、ゲート酸化膜2中に欠
陥が生成され、ホットキャリア耐性が劣化する。
First, in the conventional semiconductor device shown in FIG. 5 , an oxide film 4 is formed between a gate electrode 3 and a nitride film side wall 6.
Gate oxide films 2 are present between silicon substrate 1 and nitride film side walls 6, respectively, and their end faces are in contact with oxide film 9. For this reason, water (H 2 O) easily diffuses from the BPSG film 10 through the portion of the oxide film 9 to the gate oxide film 2 from the position indicated by the arrow, and as a result, defects are generated in the gate oxide film 2. As a result, the hot carrier resistance deteriorates.

【0019】一方、図3に示した本発明の半導体装置で
は、ゲート電極3およびシリコン基板1と窒化膜側壁6
との間の酸化膜4の一部を除去し、代わりに窒化膜で塞
いでおり、酸化膜4の端面は酸化膜9に接していない。
このため、水の拡散経路が絶たれ(図中に×印で示
す)、ホットキャリア耐性が顕著に改善される。
On the other hand, in the semiconductor device of the present invention shown in FIG. 3 , the gate electrode 3, the silicon substrate 1, and the nitride film side wall 6 are formed.
A portion of the oxide film 4 between them is removed and replaced with a nitride film, and the end face of the oxide film 4 is not in contact with the oxide film 9.
Therefore, the diffusion path of water is cut off (indicated by a cross in the figure), and the hot carrier resistance is remarkably improved.

【0020】同様に、図4に示した本発明の半導体装置
においても、ゲート電極3およびシリコン基板1と窒化
膜側壁6との間の酸化膜4の一部を除去し、代わりにシ
リコン(後にシリサイド8化)で塞いでいる。このた
め、水の拡散経路が絶たれ(×印)、ホットキャリア耐
性が改善される。
Similarly, also in the semiconductor device of the present invention shown in FIG. 4 , the gate electrode 3 and a part of the oxide film 4 between the silicon substrate 1 and the nitride film side wall 6 are removed, and instead of silicon (to be described later). (Silicide 8). For this reason, the diffusion path of water is cut off (marked by x), and the hot carrier resistance is improved.

【0021】[0021]

【発明の効果】以上に説明したように、本発明によれ
ば、ゲート電極の周囲に設けられた酸化膜は、その端面
が層間膜に接触することがないように窒化膜で覆われて
いるので、水の拡散経路が遮断され、層間膜形成中に取
り込まれた水が、ゲート酸化膜へ拡散することがなくな
り、ホットキャリア耐性が改善され、MOSFET半導
体装置の信頼性が向上する。またゲート電極の側面およ
びシリコン基板上に窒化膜側壁を直接形成することによ
るストレスの影響から、逆にホットキャリア耐性が劣化
したり、酸化膜との誘電率の差からゲートフリンジ容量
が増加するなどの問題が生じることもない。
As described above, according to the present invention, the oxide film provided around the gate electrode is covered with the nitride film so that the end face does not contact the interlayer film. Therefore, the diffusion path of water is cut off, and the water taken in during the formation of the interlayer film does not diffuse into the gate oxide film, so that the hot carrier resistance is improved and the reliability of the MOSFET semiconductor device is improved. In addition, the influence of stress due to the direct formation of the nitride film sidewall on the side surface of the gate electrode and the silicon substrate deteriorates hot carrier resistance, and increases the gate fringe capacitance due to the difference in dielectric constant from the oxide film. No problem occurs.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の一例によるMOSFET
半導体装置の製造工程の前半部を示す工程説明図。
FIG. 1 is a MOSFET according to an embodiment of the present invention;
Process explanatory drawing which shows the first half part of the manufacturing process of a semiconductor device.

【図2】本発明の実施の形態の一例によるMOSFET
半導体装置の製造工程の後半部を示す工程説明図。
FIG. 2 is a MOSFET according to an embodiment of the present invention;
FIG. 4 is a process explanatory view showing the latter half of the manufacturing process of the semiconductor device.

【図3】本発明の実施の形態の一例によるMOSFET
半導体装置を示す縦断面図。
FIG. 3 is a MOSFET according to an embodiment of the present invention;
FIG. 4 is a longitudinal sectional view illustrating a semiconductor device.

【図4】本発明の実施の形態の他の例によるMOSFE
T半導体装置を示す縦断面図。
FIG. 4 shows a MOSFE according to another embodiment of the present invention.
FIG. 3 is a longitudinal sectional view showing a T semiconductor device.

【図5】従来のMOSFET半導体装置を示す縦断面
図。
FIG. 5 is a longitudinal sectional view showing a conventional MOSFET semiconductor device.

【符号の説明】[Explanation of symbols]

1 シリコン基板 2 ゲート酸化膜 3 ゲート電極 4 酸化膜 5 低濃度拡散層 6 窒化膜側壁 7 高濃度拡散層 8 コバルトシリサイド 9 酸化膜 10 BPSG膜 11 窒化膜 Reference Signs List 1 silicon substrate 2 gate oxide film 3 gate electrode 4 oxide film 5 low concentration diffusion layer 6 nitride film side wall 7 high concentration diffusion layer 8 cobalt silicide 9 oxide film 10 BPSG film 11 nitride film

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 29/78 H01L 21/336 ──────────────────────────────────────────────────続 き Continued on the front page (58) Fields surveyed (Int. Cl. 7 , DB name) H01L 29/78 H01L 21/336

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 シリコン基板上のゲート電極側面に、酸
化膜を介在させて、窒化膜からなるゲート側壁を形成す
る工程と、ついで前記ゲート電極および前記シリコン基
板と前記窒化膜からなるゲート側壁との間に介在する前
記酸化膜の一部を除去する工程と、窒化膜を一様に被着
させた後、異方性のエッチングを行って、酸化膜の除去
された部分を窒化膜で塞ぐ工程と、を備えたことを特徴
とするMOSFET半導体装置の製造方法。
A step of forming a gate sidewall made of a nitride film on a side surface of a gate electrode on a silicon substrate with an oxide film interposed therebetween; and forming a gate sidewall made of the silicon substrate and the nitride film with the gate electrode. A step of removing a part of the oxide film interposed therebetween, and, after uniformly depositing a nitride film, performing anisotropic etching to close the removed portion of the oxide film with the nitride film. And a method for manufacturing a MOSFET semiconductor device.
JP15298698A 1998-06-02 1998-06-02 Method for manufacturing MOSFET semiconductor device Expired - Fee Related JP3186041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15298698A JP3186041B2 (en) 1998-06-02 1998-06-02 Method for manufacturing MOSFET semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15298698A JP3186041B2 (en) 1998-06-02 1998-06-02 Method for manufacturing MOSFET semiconductor device

Publications (2)

Publication Number Publication Date
JPH11345963A JPH11345963A (en) 1999-12-14
JP3186041B2 true JP3186041B2 (en) 2001-07-11

Family

ID=15552472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15298698A Expired - Fee Related JP3186041B2 (en) 1998-06-02 1998-06-02 Method for manufacturing MOSFET semiconductor device

Country Status (1)

Country Link
JP (1) JP3186041B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101663711B1 (en) * 2015-02-13 2016-10-10 김영수 a feeding entrance of separator for injection and suction needle

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6593198B2 (en) 2000-09-18 2003-07-15 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method for fabricating the same
FR2815174A1 (en) * 2000-10-06 2002-04-12 St Microelectronics Sa MINIATURIZED LD M-TYPE TRANSISTORS
JP2003068879A (en) * 2001-08-27 2003-03-07 Mitsubishi Electric Corp Semiconductor device and method of manufacturing the same
JP4529025B2 (en) * 2003-09-16 2010-08-25 ルネサスエレクトロニクス株式会社 Manufacturing method of semiconductor device
JP4744576B2 (en) 2008-09-10 2011-08-10 パナソニック株式会社 Manufacturing method of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101663711B1 (en) * 2015-02-13 2016-10-10 김영수 a feeding entrance of separator for injection and suction needle

Also Published As

Publication number Publication date
JPH11345963A (en) 1999-12-14

Similar Documents

Publication Publication Date Title
US4808544A (en) LDD structure containing conductive layer between gate oxide and sidewall spacer
KR100526366B1 (en) Semiconductor device and method for manufacturing the same
US6300207B1 (en) Depleted sidewall-poly LDD transistor
JP2576506B2 (en) MOS semiconductor device
JP2984990B2 (en) Method for manufacturing semiconductor device
JP3186041B2 (en) Method for manufacturing MOSFET semiconductor device
US5610424A (en) Metal oxide semiconductor field effect transistor
KR0170515B1 (en) A semiconductor device with a gold structure and a method of fabricating the same
JP2959978B2 (en) Field effect transistor and method of manufacturing the same
US5985712A (en) Method of fabricating field effect transistor with an LDD structure
KR100579850B1 (en) Method for fabricating the MOS field effect transistor
US7033932B2 (en) Method for fabricating a semiconductor device having salicide
KR20030079806A (en) Method for manufacturing a semiconductor device having a layered gate electrode
JPH0818042A (en) Method for manufacturing mos transistor
US6709959B2 (en) Semiconductor device having a shallow junction and a fabrication process thereof
KR20050033179A (en) Sb-mosfet(schottky barrier metal-oxide-semiconductor field effect transistor) and fabricating method thereof
US20060118887A1 (en) Semiconductor device and manufacturing method thereof
JP3397804B2 (en) Manufacturing method of nonvolatile memory
JP3482201B2 (en) Semiconductor device and manufacturing method thereof
US6720224B2 (en) Method for forming transistor of semiconductor device
KR100875039B1 (en) Manufacturing Method of Semiconductor Device
JP3955123B2 (en) Manufacturing method of MOS transistor
JP3039475B2 (en) Semiconductor device and manufacturing method thereof
JP2961388B2 (en) Manufacturing method of nonvolatile semiconductor memory
KR0135670B1 (en) Method of manufacturing semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees