JP3183270B2 - Manufacturing method of organic electrolyte battery - Google Patents

Manufacturing method of organic electrolyte battery

Info

Publication number
JP3183270B2
JP3183270B2 JP25499398A JP25499398A JP3183270B2 JP 3183270 B2 JP3183270 B2 JP 3183270B2 JP 25499398 A JP25499398 A JP 25499398A JP 25499398 A JP25499398 A JP 25499398A JP 3183270 B2 JP3183270 B2 JP 3183270B2
Authority
JP
Japan
Prior art keywords
organic electrolyte
battery
producing
electrode
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25499398A
Other languages
Japanese (ja)
Other versions
JPH11307133A (en
Inventor
明子 石田
昌彦 小川
誠 筒江
一成 木下
信夫 江田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP25499398A priority Critical patent/JP3183270B2/en
Publication of JPH11307133A publication Critical patent/JPH11307133A/en
Application granted granted Critical
Publication of JP3183270B2 publication Critical patent/JP3183270B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は有機電解液を電池に
注液して電気化学的に活性する有機電解質電池におい
て、その注液方法により、電極およびセパレータへの電
解液の吸液性を改善するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic electrolyte battery in which an organic electrolyte is injected into a battery to electrochemically activate the battery. Is what you do.

【0002】[0002]

【従来の技術】携帯電話やノート型パソコンの小型、軽
量、薄型化の傾向が年々強まると共に、その電源として
用いられる電池においても小型、軽量、薄型化の要望が
強まっている。こうした時流の中でリチウム電池、中で
も充電式のリチウム二次電池は高電圧、高エネルギー密
度の観点から生産量が年々増加しており、また、性能向
上をめざした研究開発が盛んに行われている。
2. Description of the Related Art Along with the tendency of a portable telephone and a notebook personal computer to become smaller, lighter and thinner year by year, a demand for a smaller, lighter and thinner battery used as a power source thereof is increasing. Under these circumstances, the production volume of lithium batteries, especially rechargeable lithium secondary batteries, has been increasing year by year from the viewpoint of high voltage and high energy density, and research and development aimed at improving performance have been actively conducted. I have.

【0003】リチウム二次電池の薄型化の方法として、
電池の発電要素は従来の円筒型リチウム・イオン電池と
同様のものを用い、電池ケースをアルミニウム合金など
を用いて角薄型にすることが検討され、一部実用化され
ている。しかし、現在の技術では発電要素を従来の円筒
型リチウム・イオン電池と同様のものを用いる限り、薄
型化には限界がある。
As a method of reducing the thickness of a lithium secondary battery,
The power generation element of the battery is the same as that of a conventional cylindrical lithium-ion battery, and it has been studied to make the battery case square and thin using an aluminum alloy or the like, and some of them have been put to practical use. However, with the current technology, there is a limit to the reduction in thickness as long as a power generation element similar to a conventional cylindrical lithium ion battery is used.

【0004】薄型化を追求する方法のひとつに、電解液
を吸収保持するポリマー材料を用いたリチウム・ポリマ
ー二次電池が注目されている。特に、米国のBellcore社
より発明、提案されたポリマー材料としてフッ化ビニリ
デン(以下、VDFと記す)と6フッ化プロピレン(以
下、HFPと記す)の共重合体(以下、P(VDF−H
FP)と記す)を用いたリチウム・ポリマー二次電池
は、実用化に最も近い電池系として期待されている。こ
の電池系は正極、負極およびセパレータに同一のP(V
DF−HFP)を使い、セパレータと正極および負極を
熱融着により一体化させることを特徴としている。
As one of the methods for pursuing a reduction in thickness, a lithium polymer secondary battery using a polymer material that absorbs and retains an electrolytic solution has attracted attention. Particularly, as a polymer material invented and proposed by Bellcore of the United States, a copolymer of vinylidene fluoride (hereinafter, referred to as VDF) and propylene hexafluoride (hereinafter, referred to as HFP) (hereinafter, referred to as P (VDF-H)
(FP)) is expected as a battery system closest to practical use. In this battery system, the same P (V
DF-HFP), and the separator and the positive electrode and the negative electrode are integrated by heat fusion.

【0005】この電池系のもう一つの大きな特徴は、ポ
リマー材料中に可塑剤を大量に添加していることであ
る。正極・セパレータ・負極を一体化した後、ポリマー
材料中の可塑剤を適当な溶剤で抽出除去することでポリ
マー層中に微細な孔を形成し、この孔に有機電解液を含
浸させることにより電池を活性化している。
[0005] Another major feature of this battery system is that a large amount of a plasticizer is added to the polymer material. After integrating the positive electrode, separator, and negative electrode, the plasticizer in the polymer material is extracted and removed with an appropriate solvent to form fine pores in the polymer layer, and these pores are impregnated with an organic electrolyte to form a battery. Has been activated.

【0006】上記の電池系では、電極部分を積層一体化
した後に有機電解液を注液するため、はじめからポリマ
ー部分に有機電解液を吸収させておく従来のリチウム・
ポリマー二次電池と比較して製造が容易である。しかし
ながら単に有機電解液を注液しただけでは、有機電解液
は水溶液系の電解液と比べ粘度が高いため、セパレータ
および電極の微細な孔に浸透されにくい。また、浸透さ
れた有機電解液の大部分は可塑剤が除去された後に形成
される微細な孔に保持され、ポリマーそのものに吸収さ
れる有機電解液は少ない。このため、有機電解液または
リチウムイオンは、この微細な孔と活物質表面が接触し
ている限られた部分でしか供給されず、高率放電など、
リチウムイオンの供給移動量が大きな影響を与える電池
特性では良好な特性が得られないという問題がある。
In the above-mentioned battery system, since the organic electrolyte is injected after the electrode portions are laminated and integrated, a conventional lithium-based battery in which the organic electrolyte is absorbed in the polymer portion from the beginning.
It is easier to manufacture than a polymer secondary battery. However, simply by injecting the organic electrolyte solution, the organic electrolyte solution has a higher viscosity than the aqueous electrolyte solution, so that it is difficult for the organic electrolyte solution to penetrate into the fine pores of the separator and the electrode. In addition, most of the permeated organic electrolyte is retained in fine pores formed after the plasticizer is removed, and a small amount of the organic electrolyte is absorbed by the polymer itself. For this reason, the organic electrolyte or lithium ion is supplied only in a limited portion where the fine pores and the active material surface are in contact with each other.
There is a problem that good characteristics cannot be obtained with battery characteristics that have a large effect on the amount of supply movement of lithium ions.

【0007】[0007]

【発明が解決しようとする課題】PVDFまたはP(V
DF−HFP)を主成分とするポリマーのように有機電
解液を吸収保持するポリマーをセパレータおよび結着剤
として使用する電池系において、電解液を活物質表面全
体に供給する方法が要求されている。
SUMMARY OF THE INVENTION PVDF or P (V
In a battery system using a polymer that absorbs and retains an organic electrolyte such as a polymer mainly composed of (DF-HFP) as a separator and a binder, a method of supplying the electrolyte to the entire surface of the active material is required. .

【0008】本発明は、セパレータおよび電極の微細な
孔の部分のみならず、ポリマ−そのものにも電解液を含
浸吸収させ、良好な電池特性を有する有機電解質電池を
提供することを目的とする。
An object of the present invention is to provide an organic electrolyte battery having good battery characteristics by impregnating and absorbing the electrolyte solution not only in the fine pores of the separator and the electrode but also in the polymer itself.

【0009】[0009]

【課題を解決するための手段】この課題を解決するため
に本発明は、有機電解液を吸収保持するポリマーを含む
活物質混合物層と活物質混合物層を支持する集電体から
なる一対の電極間に、有機電解液を吸収保持するポリマ
ーからなる多孔性のセパレータを配して積層一体化した
構成の積層電極を電池容器に挿入した後、有機電解液を
注液して電気化学的に活性化する有機電解質電池の製造
法であって、前記有機電解液を注液した後に電池容器を
加熱する工程を具備し、注液後に電解液を加熱すること
でポリマー材料への有機電解液の吸収を促進したもので
ある。
SUMMARY OF THE INVENTION In order to solve this problem, the present invention provides an active material mixture layer containing a polymer that absorbs and retains an organic electrolyte, and a pair of electrodes composed of a current collector that supports the active material mixture layer. A porous separator made of a polymer that absorbs and retains the organic electrolyte is interposed between the electrodes, and the laminated electrode is inserted into the battery container, and then the organic electrolyte is injected and electrochemically activated. A method for producing an organic electrolyte battery, comprising the steps of: heating a battery container after injecting the organic electrolyte solution; and heating the electrolyte solution after the injection to absorb the organic electrolyte solution into the polymer material. It is what promoted.

【0010】さらに、減圧下でセパレータおよび電極の
微細な孔に有機電解液を注液し、熱を加えることでより
効果的にポリマー材料への有機電解液の吸収を行えるよ
うにしたものである。
Furthermore, an organic electrolyte is injected into the separator and the fine pores of the electrode under reduced pressure, and by applying heat, the organic electrolyte can be more effectively absorbed into the polymer material. .

【0011】これら方法により、セパレータおよび電極
の微小孔だけでなくポリマー自身にも有機電解液を保持
することができ、活物質表面全体に電解液が供給される
ことになり、高率放電などで良好な電池特性が得られ
る。
According to these methods, the organic electrolyte can be retained not only in the micropores of the separator and the electrode but also in the polymer itself, so that the electrolyte is supplied to the entire surface of the active material. Good battery characteristics are obtained.

【0012】[0012]

【発明の実施の形態】本発明は、有機電解液を吸収保持
するポリマーを含む活物質混合物層と活物質混合物層を
支持する集電体からなる一対の電極間に、有機電解液を
吸収保持するポリマーからなる多孔性のセパレータを配
して積層一体化した構成の積層電極を電池容器に挿入し
た後、有機電解液を注液して電気化学的に活性化する有
機電解質電池の製造法であって、前記有機電解液を注液
した後に電池容器を加熱することにより、有機電解液の
粘度を下げ、セパレータおよび電極の微細孔内に有機電
解液を浸透しやすくし、さらに本来有機電解液を吸収し
にくい性質を持つポリマー自身にも電解液を吸収保持さ
せることができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention relates to a method of absorbing and holding an organic electrolyte between a pair of electrodes comprising an active material mixture layer containing a polymer for absorbing and holding an organic electrolyte and a current collector supporting the active material mixture layer. A porous separator made of a polymer to be arranged is disposed, and a laminated electrode of a laminated and integrated configuration is inserted into a battery container, and then an organic electrolyte solution is injected to electrochemically activate the organic electrolyte battery. By heating the battery container after injecting the organic electrolytic solution, the viscosity of the organic electrolytic solution is reduced, and the organic electrolytic solution is easily penetrated into the separator and the micropores of the electrodes. The electrolyte itself can be absorbed and held by the polymer itself having a property of hardly absorbing the electrolyte.

【0013】また、本発明は、有機電解液を吸収保持す
るポリマーを含む活物質混合物層と活物質混合物層を支
持する集電体からなる一対の電極間に、有機電解液を吸
収保持するポリマーからなる多孔性のセパレータを配し
て積層一体化した構成の積層電極を電池容器に挿入した
後、有機電解液を注液して電気化学的に活性化する有機
電解質電池の製造法であって、前記有機電解液を注液し
た後に電池容器内を減圧にする工程と、電池容器を加熱
する工程とを経ることにより、大気圧の条件下では有機
電解液を含浸させることが困難な微細な孔にも有機電解
液を含浸させることが可能となり、さらに、ポリマー自
身にも有機電解液を吸収させることで積層電極への有機
電解液の含浸・吸収をより良好にすることができる。
The present invention also relates to a polymer for absorbing and holding an organic electrolyte between a pair of electrodes comprising an active material mixture layer containing a polymer for absorbing and holding an organic electrolyte and a current collector supporting the active material mixture layer. A method for producing an organic electrolyte battery, comprising: inserting a laminated electrode having a configuration in which a porous separator composed of layers is arranged and integrated into a battery container; and injecting an organic electrolyte solution to electrochemically activate the battery. By passing through the step of reducing the pressure inside the battery container after injecting the organic electrolyte solution and the step of heating the battery container, it is difficult to impregnate the organic electrolyte solution under atmospheric pressure conditions. The pores can be impregnated with the organic electrolyte, and the polymer itself can be made to absorb the organic electrolyte, so that the impregnation and absorption of the organic electrolyte into the laminated electrode can be improved.

【0014】注液後の加熱温度は40〜80℃が好まし
く、揮発性有機溶剤を含む有機電解液の組成を変化させ
ることなく積層電極への有機電解液の含浸・吸収を十分
に行うことができる。かた、注液後の加熱時間は20〜
60minが好ましく、20min以下では有機電解液
の含浸が不十分であり、60minまでで有機電解液の
含浸量は増加することがなく一定量となる。
The heating temperature after the injection is preferably 40 to 80 ° C., so that the laminated electrode can be sufficiently impregnated and absorbed with the organic electrolyte without changing the composition of the organic electrolyte containing the volatile organic solvent. it can. Heating time after injection is 20 ~
It is preferably 60 min, and if it is 20 min or less, the impregnation of the organic electrolyte is insufficient, and the impregnation amount of the organic electrolyte is constant without increasing up to 60 min.

【0015】注液後の減圧雰囲気は大気圧より−20〜
−70cmHgで減圧するのが好ましく、揮発性有機溶
剤を含む有機電解液の組成を変化させることなく積層電
極への電解液の含浸・吸収を十分に行うことができる。
After the injection, the reduced pressure atmosphere is -20 to -20 atmosphere pressure.
It is preferable to reduce the pressure at -70 cmHg, so that the laminated electrode can be sufficiently impregnated and absorbed with the electrolytic solution without changing the composition of the organic electrolytic solution containing the volatile organic solvent.

【0016】ポリマー材料としてポリフッ化ビニリデン
またはフッ化ビニリデンと6フッ化プロピレンの共重合
体の群より選ばれる1種以上を主成分とするものを用い
た場合に効果が大きい。これは、有機電解液を吸収する
性質の低いポリフッ化ビニリデンやフッ化ビニリデンと
6フッ化プロピレンの共重合体においても本発明の加熱
する方法、あるいは減圧と加熱をする方法を用いれば十
分に電解液を含浸・吸収させることができる。本発明の
方法によれば、加熱することにより有機電解液の粘度を
下げ、セパレータおよび電極の微細孔内に有機電解液を
浸透させやすくし、また、有機電解液を吸収しにくい性
質のポリマー自身にも十分に有機電解液を吸収保持させ
ることができる。
The effect is great when a polymer material containing at least one selected from the group consisting of polyvinylidene fluoride or a copolymer of vinylidene fluoride and propylene hexafluoride is used as the polymer material. This is because even if polyvinylidene fluoride or a copolymer of vinylidene fluoride and propylene hexafluoride having a low property of absorbing an organic electrolytic solution is used, the method of heating according to the present invention, or the method of heating under reduced pressure and heating is sufficient. Liquid can be impregnated and absorbed. According to the method of the present invention, the viscosity of the organic electrolyte is reduced by heating, the organic electrolyte is easily penetrated into the micropores of the separator and the electrode, and the polymer itself having a property of hardly absorbing the organic electrolyte is used. Thus, the organic electrolyte can be sufficiently absorbed and retained.

【0017】有機電解液の溶媒として鎖状炭酸エステル
を主成分としこれに環状炭酸エステルを含む混合溶媒を
用いた場合は効果が大きい。これは加熱することにより
有機電解液の粘度を下げ、ポリフッ化ビニリデンと親和
性の低い鎖状炭酸エステルなどの、つまり溶解度係数の
離れている有機溶剤であっても十分に含浸・吸収させる
ことができ、放電特性などの電池特性において良好な性
能を得ることができる。鎖状炭酸エステルとしては、エ
チルメチルカーボネート、ジエチルカーボネートまたは
ジエチルカーボネートなどがある。
The effect is large when a mixed solvent containing a chain carbonate as a main component and a cyclic carbonate as a main component is used as a solvent for the organic electrolytic solution. This lowers the viscosity of the organic electrolyte by heating, so that it can sufficiently impregnate and absorb even organic solvents with a low solubility coefficient, such as chain carbonates with low affinity for polyvinylidene fluoride. As a result, good performance can be obtained in battery characteristics such as discharge characteristics. Examples of the chain carbonate include ethyl methyl carbonate, diethyl carbonate, and diethyl carbonate.

【0018】以下、本発明について図面を用いて詳しく
説明する。
Hereinafter, the present invention will be described in detail with reference to the drawings.

【0019】(実施の形態1)本発明に用いた電池の積
層電極部分の構成を図1を用いて説明する。
(Embodiment 1) The structure of a laminated electrode portion of a battery used in the present invention will be described with reference to FIG.

【0020】正極板1は有機電解液を吸収保持するポリ
マーを含んだ正極活物質層1aと正極集電体1bを積層
した構造を有する。負極板2も同様に有機電解液を吸収
保持するポリマーを含んだ負極活物質層2aと負極集電
体2bを積層した構造を有する。有機電解液を吸収保持
するポリマーからなる多孔性のセパレータ3は正極板1
と負極板2との間に設置され、熱融着法やキャスト法に
より正極、負極と積層一体化されている。
The positive electrode plate 1 has a structure in which a positive electrode active material layer 1a containing a polymer that absorbs and retains an organic electrolyte and a positive electrode current collector 1b are laminated. Similarly, the negative electrode plate 2 has a structure in which a negative electrode active material layer 2a containing a polymer that absorbs and retains an organic electrolyte and a negative electrode current collector 2b are laminated. The porous separator 3 made of a polymer that absorbs and retains the organic electrolyte is a positive electrode plate 1
And a negative electrode plate 2, and are laminated and integrated with a positive electrode and a negative electrode by a heat fusion method or a casting method.

【0021】正極集電体1bはアルミニウムまたは導電
性材料にアルミニウムをコーティングしたもの等のパン
チングメタルまたはラスメタル等からなり、表面には導
電性炭素材であるアセチレンブラック、ケッチェンブラ
ックまたは炭素繊維と、結着剤であるポリフッ化ビニリ
デンの混合物が結着している。
The positive electrode current collector 1b is made of punched metal or lath metal such as aluminum or a conductive material coated with aluminum, and has acetylene black, ketjen black or carbon fiber as a conductive carbon material on its surface. A mixture of polyvinylidene fluoride as a binder is bound.

【0022】負極集電体2bは銅,ニッケルまたは導電
性材料に銅あるいはニッケルをコーティングしたもの等
のパンチングメタルまたはラスメタル等からなり、表面
には導電性炭素材であるアセチレンブラック,ケッチェ
ンブラックまたは炭素繊維と、結着剤であるポリフッ化
ビニリデンの混合物が結着している。
The negative electrode current collector 2b is made of a punching metal or a lath metal such as copper, nickel, or a conductive material coated with copper or nickel, and has a conductive carbon material such as acetylene black, ketjen black, or the like. A mixture of carbon fibers and polyvinylidene fluoride as a binder is bound.

【0023】前記導電性炭素材を集電体に結着させる方
法としては、例えばアセチレンブラックをポリフッ化ビ
ニリデンのN−メチルピロリドン溶液中に分散させたも
のを直接集電体に塗布した後、溶剤のN−メチルピロリ
ドンを乾燥除去する。
As a method of binding the conductive carbon material to the current collector, for example, a material obtained by dispersing acetylene black in an N-methylpyrrolidone solution of polyvinylidene fluoride is applied directly to the current collector, Of N-methylpyrrolidone is removed by drying.

【0024】正極活物質層1aおよび負極活物質層2a
は、活物質、導電材およびポリマー溶液からなるペース
トをガラス板上に塗工した後、溶剤を乾燥除去して作製
する。さらに、前記正極活物質層1aと正極集電体1
b、前記負極活物質層2aと負極集電体2bをそれぞれ
熱ローラで熱融着させ正極板1および負極板2を作製
し、つぎにセパレータ3を正極板1と負極板2では挟ん
だものを熱ローラで熱融着させることで積層一体化した
積層電極4を作製する。
The positive electrode active material layer 1a and the negative electrode active material layer 2a
Is prepared by applying a paste composed of an active material, a conductive material and a polymer solution on a glass plate, and then removing the solvent by drying. Further, the positive electrode active material layer 1a and the positive electrode current collector 1
b, the negative electrode active material layer 2a and the negative electrode current collector 2b are each thermally fused by a heat roller to produce a positive electrode plate 1 and a negative electrode plate 2, and then a separator 3 is sandwiched between the positive electrode plate 1 and the negative electrode plate 2. Is heat-fused with a heat roller to produce a laminated electrode 4 which is laminated and integrated.

【0025】前記積層電極4をラミネートシートからな
る電池容器に装入後、電池容器の開口部より6フッ化リ
ン酸リチウムを1mol/lの割合でエチレンカーボネ
ートとエチルメチルカーボネートを1:3の体積比で混
合した混合物に溶解した有機電解液を注液する。注液
後、電池容器内部を減圧、加熱して積層電極に有機電解
液を十分に含浸させた後、大気圧に戻し、電気容器の開
口部を熱シールにより封口し、本発明の有機電解質電池
を得た。ラミネートシートとしては、絶縁性樹脂フィル
ム間に通気遮断性を有する金属フィルムを配し、全体を
積層一体化したものであり、この一対のラミネートシー
トで積層電極を取り囲み、周囲をシールすることにより
積層電極を電池容器に収納する。
After loading the laminated electrode 4 into a battery container made of a laminated sheet, lithium carbonate hexafluoride was added to the battery container at a rate of 1 mol / l with ethylene carbonate and ethyl methyl carbonate in a volume of 1: 3 from the opening of the battery container. The organic electrolyte dissolved in the mixture mixed in the ratio is injected. After the injection, the inside of the battery container was depressurized and heated to sufficiently impregnate the organic electrode into the laminated electrode, and then returned to the atmospheric pressure, and the opening of the electric container was sealed with a heat seal. I got As a laminate sheet, a metal film having a ventilation barrier property is arranged between insulating resin films, and the whole is laminated and integrated. The laminate electrode is surrounded by the pair of laminate sheets, and laminated by sealing the periphery. The electrode is housed in a battery container.

【0026】なお、正、負極集電体にそれぞれの合剤層
を形成する方法は、あらかじめ合剤シートを作製してお
き、熱融着により集電体と合剤シートを接合させる方
法、また集電体に直接合剤ペーストを塗着する方法など
がある。
The method for forming each mixture layer on the positive and negative electrode current collectors is to prepare a mixture sheet in advance and bond the current collector and the mixture sheet by heat fusion. There is a method in which the mixture paste is directly applied to the current collector.

【0027】なお、正極活物質としては、コバルト酸リ
チウム、ニッケル酸リチウムまたはマンガン酸リチウム
など充放電によりリチウムイオンを可逆的に出し入れで
きるリチウム含有複合金属酸化物を用いることができ
る。
As the positive electrode active material, a lithium-containing composite metal oxide such as lithium cobaltate, lithium nickelate or lithium manganate, which can reversibly insert and remove lithium ions by charge and discharge, can be used.

【0028】負極活物質としては、充放電によりリチウ
ムイオンを可逆的に出し入れできる炭素材料、なかでも
炭素質メソフューズ粒体を炭素化および黒鉛化して得ら
れた粒状黒鉛粒子が好ましく、他に金属酸化物あるいは
金属窒化物など充放電によりリチウムイオンを可逆的に
出し入れできる材料を用いることができる。
As the negative electrode active material, a carbon material capable of reversibly taking in and out lithium ions by charging and discharging, and among them, granular graphite particles obtained by carbonizing and graphitizing carbonaceous mesofuses are preferable. It is possible to use a material such as a material or a metal nitride which can reversibly insert and remove lithium ions by charge and discharge.

【0029】電解液は、溶媒としてエチレンカーボネー
トと鎖状炭酸エステルの混合物、エチレンカーボネート
とプロピレンカーボネートの混合物などを用いることが
でき、溶質としてLiPF6,LiCF3SO3,LiC
lO4,LiBF4,LiAsF6あるいはLiN(CF3
SO2)などを用いることができる。
As the electrolyte, a mixture of ethylene carbonate and a chain carbonate, a mixture of ethylene carbonate and propylene carbonate, or the like can be used as a solvent, and LiPF 6 , LiCF 3 SO 3 , LiC
10 4 , LiBF 4 , LiAsF 6 or LiN (CF 3
SO 2 ) can be used.

【0030】[0030]

【実施例】(実施例1)フッ化ビニリデンと6フッ化プ
ロピレンの共重合体(P(VDF−HFP),6フッ化
プロピレン比率12重量%)28gをアセトン144g
に溶解し、造孔剤のフタル酸ジ−n−ブチル(DBP)
28gを添加した混合溶液を調整する。この溶液をガラ
ス板上に塗着厚0.5mmで塗着した後、アセトンを乾
燥除去して厚さ0.08mm、サイズが40mm×70
mmのポリマ電解質シートを作製する。
Example 1 28 g of a copolymer of vinylidene fluoride and propylene hexafluoride (P (VDF-HFP), propylene hexafluoride ratio 12% by weight) was mixed with 144 g of acetone.
Dissolved in water and the pore-forming agent di-n-butyl phthalate (DBP)
A mixed solution to which 28 g has been added is prepared. This solution was applied on a glass plate with a coating thickness of 0.5 mm, and acetone was dried and removed to obtain a thickness of 0.08 mm and a size of 40 mm × 70 mm.
mm polymer electrolyte sheet is prepared.

【0031】正極合剤シートはP(VDF−HFP)7
1gをアセトン1130gに溶解した溶液とコバルト酸
リチウム1000g、アセチレンブラック53g、DB
P110gを混合して調整したペーストをガラス板上に
塗着厚0.9mmで塗着した後、アセトンを乾燥除去す
ることで厚さ0.3mm、サイズが30mm×60mm
のシートを得る。
The positive electrode mixture sheet is P (VDF-HFP) 7
1 g dissolved in 1130 g acetone, 1000 g lithium cobaltate, 53 g acetylene black, DB
A paste prepared by mixing 110 g of P was coated on a glass plate at a coating thickness of 0.9 mm, and then acetone was dried and removed to obtain a thickness of 0.3 mm and a size of 30 mm × 60 mm.
Get a sheet.

【0032】負極合剤シートはP(VDF−HFP)3
5gをアセトン321gに溶解した溶液と炭素質メソフ
ェーズ球体を炭素化および黒鉛化した球状黒鉛粒子(大
阪ガス製)245g、気相成長炭素繊維を黒鉛化したも
の(以下、VGCFと記す)(大阪ガス製)20g、D
BP54gを混合して調整したペーストをガラス板上に
塗着厚1.2mmで塗着した後、アセトンを乾燥除去す
ることで厚さ0.35mm、サイズが30mm×60m
mのシートを得る。
The negative electrode mixture sheet is P (VDF-HFP) 3
A solution prepared by dissolving 5 g in 321 g of acetone, 245 g of spherical graphite particles (manufactured by Osaka Gas) obtained by carbonizing and graphitizing carbonaceous mesophase spheres, and graphitized vapor-grown carbon fibers (hereinafter referred to as VGCF) (Osaka Gas) 20g, D
A paste prepared by mixing 54 g of BP was applied on a glass plate with a coating thickness of 1.2 mm, and then acetone was dried and removed to obtain a 0.35 mm thick, 30 mm × 60 m size.
m sheets are obtained.

【0033】集電体に塗着する導電性炭素材と結着剤の
混合物は、アセチレンブラック30gとポリフッ化ビニ
リデンのN−メチルピロリドン溶液(12重量%)を分
散・混合することで調整する。この混合物を厚さ0.0
6mmのアルミニウムと銅のラス板に塗付した後、80
℃以上の温度でN−メチルピロリドンを乾燥除去するこ
とで集電体を作製する。
The mixture of the conductive carbon material and the binder to be applied to the current collector is prepared by dispersing and mixing 30 g of acetylene black and an N-methylpyrrolidone solution of polyvinylidene fluoride (12% by weight). This mixture is added to a thickness of 0.0
After coating on a 6 mm aluminum and copper lath plate, 80
A current collector is prepared by drying and removing N-methylpyrrolidone at a temperature of at least ℃.

【0034】前記正極合剤シートと前記アルミニウムの
集電体を積層したものをポリテトラフルオロエチレンシ
ート(PTFE、厚さ0.05mm)ではさみ、150
℃に加熱した2本ローラを通して加熱・加圧することで
熱融着させる。PTFEは合剤層がローラに付着するの
を防ぐために用い、銅箔やアルミニウム箔などの他の材
料を用いてもよい。
The laminate of the positive electrode mixture sheet and the aluminum current collector is sandwiched between polytetrafluoroethylene sheets (PTFE, thickness 0.05 mm),
Heat fusion is performed by applying heat and pressure through two rollers heated to ° C. PTFE is used to prevent the mixture layer from adhering to the roller, and other materials such as copper foil and aluminum foil may be used.

【0035】同様の方法で前記負極合剤シートと前記銅
集電体とを用いて負極板を作製する。最後に、前記セパ
レータを正極板と負極板で挟み、120℃に加熱した2
本ローラで加熱・加圧することで熱融着一体化した積層
電極を作製する。一体化した積層電極をジエチルエーテ
ル中に浸漬し、DBPを抽出除去しポリマー部分に多孔
性を設け、50℃、真空で乾燥する。
In the same manner, a negative electrode plate is manufactured using the negative electrode mixture sheet and the copper current collector. Finally, the separator was sandwiched between a positive electrode plate and a negative electrode plate and heated to 120 ° C.
Heat and pressure are applied by this roller to produce a laminated electrode that is heat-sealed and integrated. The integrated laminated electrode is immersed in diethyl ether, DBP is extracted and removed, the polymer portion is provided with porosity, and dried at 50 ° C. under vacuum.

【0036】このように作製した積層電極を絶縁性樹脂
フィルムの間にアルミニウムフィルムを配したラミネー
トフィルムで外装し電池容器として収容した。
The thus prepared laminated electrode was covered with a laminated film having an aluminum film interposed between insulating resin films and housed as a battery container.

【0037】最後に一体化した構成電池をエチレンカー
ボネートとエチルメチルカーボネートを体積比1:3で
混合したものに1.5モル/lの割合で6フッ化リン酸
リチウムを溶解した有機電解液に浸漬した後、恒温槽に
て30℃、45℃、80℃、100℃、20℃(加熱な
し)の温度で加熱を行い、各加熱温度での時間による電
池内積層電極の重量の変化を測定し、有機電解液の吸液
量を求めた。
Finally, the integrated battery was combined with an organic electrolyte obtained by dissolving lithium hexafluorophosphate at a ratio of 1.5 mol / l in a mixture of ethylene carbonate and ethyl methyl carbonate at a volume ratio of 1: 3. After immersion, heating is performed at a temperature of 30 ° C., 45 ° C., 80 ° C., 100 ° C., and 20 ° C. (no heating) in a thermostat, and a change in the weight of the laminated electrode in the battery with time at each heating temperature is measured. Then, the absorption amount of the organic electrolyte was determined.

【0038】有機電解液に浸漬する前の積層電極の重量
は2.3gであり、有機電解液に浸漬した後の積層電極
の重量は2.5gであった。つまり、加熱をしない場合
においても積層電極の重量に対して約10%の吸液量が
ある。図2に有機電解液に浸漬しただけの積層電極の重
量を100として各温度で加熱した場合の加熱時間と有
機電解液の吸液量の関係を示した。図2から明らかなよ
うに加熱温度が上がるにしたがって積層電極の重量が増
加、つまり吸液量が増加することがわかる。また、加熱
時間が20分以上では重量増加がほとんどなく、有機電
解液の積層電極への吸収は平衡状態に達することがわか
る。
The weight of the laminated electrode before dipping in the organic electrolyte was 2.3 g, and the weight of the laminated electrode after dipping in the organic electrolyte was 2.5 g. That is, even when heating is not performed, there is a liquid absorption of about 10% with respect to the weight of the laminated electrode. FIG. 2 shows the relationship between the heating time and the amount of absorbed organic electrolyte when each layer was heated at each temperature, with the weight of the laminated electrode simply immersed in the organic electrolyte being 100. As is apparent from FIG. 2, the weight of the laminated electrode increases, that is, the liquid absorption increases as the heating temperature increases. In addition, when the heating time is 20 minutes or more, there is almost no increase in weight, and it can be seen that the absorption of the organic electrolyte into the laminated electrode reaches an equilibrium state.

【0039】図3に上記の各電池を各放電率により終止
電圧3.0Vまで放電したときの放電率特性を示した。
図より有機電解液注液後の電池容器の加熱温度が40℃
〜80℃の間で作製した電池では良好な放電率特性を示
すが、加熱温度が30℃以下の場合と100℃以上の場
合では特性が急激に悪化している。電池容器を30℃以
下の温度で加熱すると有機電解液が十分にポリマー中に
含浸されないため電池特性が悪く、100℃以上で加熱
した場合にはポリマーの吸液量は十分であっても揮発性
の有機電解液の散逸により電解液組成が大きく変化した
ため電池の放電率特性が悪化したものと考えられる。
FIG. 3 shows discharge rate characteristics when each of the above-mentioned batteries was discharged to a final voltage of 3.0 V at each discharge rate.
As shown in the figure, the heating temperature of the battery container after injecting the organic electrolyte is 40 ° C
Batteries produced at temperatures between -80 ° C show good discharge rate characteristics, but the characteristics sharply deteriorate when the heating temperature is 30 ° C or lower and when the heating temperature is 100 ° C or higher. When the battery container is heated at a temperature of 30 ° C. or less, the organic electrolyte is not sufficiently impregnated into the polymer, so that the battery characteristics are poor. It is considered that the discharge rate characteristics of the battery deteriorated because the composition of the electrolyte significantly changed due to the dissipation of the organic electrolyte.

【0040】(実施例2)実施例1と同様にして作製し
た電池を電解液に浸漬した状態で加温前に減圧容器に設
置し、−50cmHgまで減圧した。
(Example 2) A battery fabricated in the same manner as in Example 1 was placed in a vacuum vessel before heating while being immersed in the electrolytic solution, and the pressure was reduced to -50 cmHg.

【0041】図4は減圧時間と積層電極の重量変化、つ
まり吸液量との関係を示したものである。乾燥状態の重
量を100とする。図4から明らかなように5分以上減
圧すると積層電極の重量はほぼ一定となる。
FIG. 4 shows the relationship between the pressure reduction time and the change in weight of the laminated electrode, that is, the amount of liquid absorption. The dry weight is 100. As apparent from FIG. 4, when the pressure is reduced for 5 minutes or more, the weight of the laminated electrode becomes substantially constant.

【0042】図5は減圧時間を10分とし、減圧容器内
の圧力と積層電極の重量の変化率(乾燥状態の重量を1
00とする)の関係をまとめたものである。容器内の圧
力が低くなるにしたがって、積層電極の重量は増加して
おり、減圧により、積層電極内の微細孔まで電解液が含
浸していくことがわかる。
FIG. 5 shows that the decompression time is 10 minutes, the pressure in the decompression container and the rate of change of the weight of the laminated electrode (the weight in the dry state is 1%).
00). As the pressure in the container decreases, the weight of the laminated electrode increases, and it can be seen that the electrolyte solution impregnates even the fine pores in the laminated electrode due to the reduced pressure.

【0043】図6は圧力−10cmHg,−20cmH
g,−30cmHg,−50cmHg,−60cmH
g,−70cmHgおよび大気圧(0cmHg)の圧力
下で10分間電解液を含浸させた後、大気圧に戻して温
度45℃で20分間加熱した電池を各放電率により終止
電圧3.0Vまで放電したときの電池の放電率特性をま
とめたものである。
FIG. 6 shows pressures of -10 cmHg and -20 cmHg.
g, -30cmHg, -50cmHg, -60cmH
g, at −70 cmHg and atmospheric pressure (0 cmHg) for 10 minutes, and then returned to atmospheric pressure and heated at 45 ° C. for 20 minutes to discharge the battery to a final voltage of 3.0 V at each discharge rate. It is a summary of the discharge rate characteristics of the battery at the time of performing.

【0044】減圧、加熱を行った電池と加熱だけを行っ
た電池で放電容量が大きく異なることから、大気圧下で
は有機電解液が入り込めない積層電極内の微細な孔に、
減圧によって有機電解液が含浸されていることがわか
る。減圧度が−10cmHgでは有機電解液の含浸が不
十分なため有機電解液と電極活物質が接触する面積が少
なく、良好な放電特性が得られない。また減圧度が−7
0cmHgと大きければ短時間で吸収を行うことができ
るが、時間調整を厳密に行わないと電解液中の揮発性分
が散逸し、粘度が高くなるので電解液組成が変化し、放
電率特性が悪化することもある。このことから減圧度は
−20cmHgから−70cmHgの範囲が適している
ことが分かる。
Since the discharge capacity of the battery subjected to reduced pressure and heating is greatly different from that of the battery subjected to heating only, a fine hole in the laminated electrode into which the organic electrolyte cannot enter under the atmospheric pressure is formed.
It can be seen that the organic electrolyte was impregnated by the reduced pressure. If the degree of pressure reduction is −10 cmHg, the impregnation with the organic electrolyte is insufficient, so that the area where the organic electrolyte and the electrode active material come into contact is small, and good discharge characteristics cannot be obtained. The degree of decompression is -7.
If it is as large as 0 cmHg, the absorption can be performed in a short time, but if the time is not strictly adjusted, the volatile component in the electrolyte dissipates and the viscosity becomes high, so that the composition of the electrolyte changes and the discharge rate characteristics are reduced. Sometimes it gets worse. From this, it is understood that the degree of pressure reduction is preferably in the range of −20 cmHg to −70 cmHg.

【0045】[0045]

【発明の効果】以上のように注液後加熱する、さらには
注液後減圧し加熱することにより、有機電解液を吸収し
にくいセパレータおよび電極の微細孔部やポリマー材料
自身へも容易に有機電解液を浸透することが可能とな
り、優れた放電率特性を実現することができる。特に高
率放電に対しては有効な方法である。
As described above, by heating after injecting the liquid, or by heating after injecting the liquid and reducing the pressure, the organic material can be easily applied to the separator and the fine pores of the electrode and the polymer material itself which are difficult to absorb the organic electrolytic solution. The electrolyte solution can be permeated, and excellent discharge rate characteristics can be realized. This method is particularly effective for high-rate discharge.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の積層電極の構成断面図FIG. 1 is a sectional view showing the configuration of a laminated electrode according to the present invention.

【図2】加熱温度別の加熱時間の変化に対する積層電極
の重量変化率を示す図
FIG. 2 is a diagram showing a weight change rate of a laminated electrode with respect to a change in a heating time for each heating temperature

【図3】加熱温度別の放電率特性を示す図FIG. 3 is a diagram showing discharge rate characteristics according to heating temperature.

【図4】減圧時間の変化に対する積層電極の重量変化率
を示す図
FIG. 4 is a diagram showing a weight change rate of the laminated electrode with respect to a change in decompression time.

【図5】減圧度の変化に対する積層電極の重量変化率を
示す図
FIG. 5 is a diagram showing a weight change rate of the laminated electrode with respect to a change in the degree of pressure reduction.

【図6】減圧後の加熱温度別の放電率特性を示す図FIG. 6 is a graph showing discharge rate characteristics at different heating temperatures after pressure reduction.

【符号の説明】[Explanation of symbols]

1 正極板 1a 正極合剤層 1b 正極集電体 2 負極板 2a 負極合剤層 2b 負極集電体 3 セパレータ 4 積層電極 REFERENCE SIGNS LIST 1 positive electrode plate 1a positive electrode mixture layer 1b positive electrode current collector 2 negative electrode plate 2a negative electrode mixture layer 2b negative electrode current collector 3 separator 4 laminated electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 木下 一成 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 江田 信夫 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平9−22731(JP,A) 特開 平5−47418(JP,A) 特開 平10−284121(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/40 H01M 4/02 - 4/04 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kazunari Kinoshita 1006 Kadoma Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. (72) Inventor Nobuo Eda 1006 Kadoma Kadoma Kadoma, Osaka Matsushita Electric Industrial Co., Ltd. In-company (56) References JP-A-9-22731 (JP, A) JP-A-5-47418 (JP, A) JP-A-10-284121 (JP, A) (58) Fields studied (Int. . 7, DB name) H01M 10/40 H01M 4/02 - 4/04

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 正極と負極との間に有機電解液を吸収保
持するポリマーを含むセパレータを配して積層した構成
の積層電極を電池容器に挿入した後、有機電解液を注液
して電気化学的に活性化する有機電解質電池の製造法で
あって、前記有機電解液を注液した後に電池容器を加熱
する工程を具備した有機電解質電池の製造法。
1. A laminated electrode having a structure in which a separator containing a polymer that absorbs and retains an organic electrolyte is disposed between a positive electrode and a negative electrode, and a stacked electrode is inserted into a battery container. A method for producing an organic electrolyte battery which is chemically activated, comprising a step of injecting the organic electrolytic solution and then heating a battery container.
【請求項2】 正極と負極との間に有機電解液を吸収保
持するポリマーを含むセパレータを配して積層した構成
の積層電極を電池容器に挿入した後、有機電解液を注液
して電気化学的に活性化する有機電解質電池の製造法で
あって、前記有機電解液を注液した後に電池容器内を減
圧にする工程と、電池容器を加熱する工程とを具備する
有機電解質電池の製造法。
2. A laminated electrode having a structure in which a separator containing a polymer that absorbs and retains an organic electrolyte is disposed between a positive electrode and a negative electrode, and a laminated electrode is inserted into a battery container. A method for producing a chemically activated organic electrolyte battery, comprising: a step of reducing the pressure inside a battery container after injecting the organic electrolytic solution; and a step of heating the battery container. Law.
【請求項3】 有機電解液を吸収保持するポリマーを含
む活物質混合物層と活物質混合物層を支持する集電体か
らなる一対の電極間に、有機電解液を吸収保持するポリ
マーからなる多孔性のセパレータを配して積層一体化し
た構成の積層電極を電池容器に挿入した後、有機電解液
を注液して電気化学的に活性化する有機電解質電池の製
造法であって、前記有機電解液を注液した後に電池容器
を加熱する工程を具備した有機電解質電池の製造法。
3. A porous material comprising a polymer capable of absorbing and holding an organic electrolyte, between a pair of electrodes comprising an active material mixture layer containing a polymer capable of absorbing and holding an organic electrolyte and a current collector supporting the active material mixture layer. A method for producing an organic electrolyte battery in which a laminated electrode having a configuration in which a separator is arranged and laminated and integrated is inserted into a battery container, and an organic electrolyte is injected to electrochemically activate the organic electrolyte battery. A method for producing an organic electrolyte battery, comprising a step of heating a battery container after injecting a liquid.
【請求項4】 有機電解液を吸収保持するポリマーを含
む活物質混合物層と活物質混合物層を支持する集電体か
らなる一対の電極間に、有機電解液を吸収保持するポリ
マーからなる多孔性のセパレータを配して積層一体化し
た構成の積層電極を電池容器に挿入した後、有機電解液
を注液して電気化学的に活性化する有機電解質電池の製
造法であって、前記有機電解液を注液した後に電池容器
内を減圧にする工程と、電池容器を加熱する工程とを具
備した有機電解質電池の製造法。
4. A porous material comprising a polymer capable of absorbing and holding an organic electrolyte between a pair of electrodes comprising an active material mixture layer containing a polymer capable of absorbing and holding an organic electrolyte and a current collector supporting the active material mixture layer. A method for producing an organic electrolyte battery in which a laminated electrode having a configuration in which a separator is arranged and laminated and integrated is inserted into a battery container, and an organic electrolyte is injected to electrochemically activate the organic electrolyte battery. A method for manufacturing an organic electrolyte battery, comprising: a step of reducing the pressure inside a battery container after injecting a liquid; and a step of heating the battery container.
【請求項5】 前記注液後の加熱温度が40〜80℃で
ある請求項1から4のいずれかに記載の有機電解質電池
の製造法。
5. The method for producing an organic electrolyte battery according to claim 1, wherein a heating temperature after the injection is 40 to 80 ° C.
【請求項6】 前記注液後の減圧雰囲気が大気圧に対し
て−20〜−70cmHgで減圧される請求項2あるい
は4に記載の有機電解質電池の製造法。
6. The method for producing an organic electrolyte battery according to claim 2, wherein the reduced pressure atmosphere after the liquid injection is reduced at −20 to −70 cmHg with respect to the atmospheric pressure.
【請求項7】 前記ポリマー材料がポリフッ化ビニリデ
ンまたはフッ化ビニリデンと6フッ化プロピレンの共重
合体の群より選ばれる1種以上を主成分とする請求項3
から6のいずれかに記載の有機電解質電池の製造法。
7. The polymer material according to claim 3, wherein the main component is at least one selected from the group consisting of polyvinylidene fluoride or a copolymer of vinylidene fluoride and propylene hexafluoride.
7. The method for producing an organic electrolyte battery according to any one of items 1 to 6.
【請求項8】 電解液の溶媒が鎖状炭酸エステルを主成
分とし、これに環状炭酸エステルを含む混合溶媒である
請求項1から7のいずれかに記載の有機電解質電池の製
造法。
8. The method for producing an organic electrolyte battery according to claim 1, wherein the solvent of the electrolytic solution is a mixed solvent containing a chain carbonate as a main component and a cyclic carbonate therein.
JP25499398A 1998-02-19 1998-09-09 Manufacturing method of organic electrolyte battery Expired - Lifetime JP3183270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25499398A JP3183270B2 (en) 1998-02-19 1998-09-09 Manufacturing method of organic electrolyte battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3697998 1998-02-19
JP10-36979 1998-02-19
JP25499398A JP3183270B2 (en) 1998-02-19 1998-09-09 Manufacturing method of organic electrolyte battery

Publications (2)

Publication Number Publication Date
JPH11307133A JPH11307133A (en) 1999-11-05
JP3183270B2 true JP3183270B2 (en) 2001-07-09

Family

ID=26376082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25499398A Expired - Lifetime JP3183270B2 (en) 1998-02-19 1998-09-09 Manufacturing method of organic electrolyte battery

Country Status (1)

Country Link
JP (1) JP3183270B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102048830B1 (en) * 2018-05-16 2019-11-27 대한민국 Manufacturing method for ice cream coated glutinous rice cake

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4538866B2 (en) * 1999-06-07 2010-09-08 パナソニック株式会社 Non-aqueous electrolyte electrochemical device
JP2001319641A (en) * 2000-05-10 2001-11-16 Denso Corp Manufacturing method of non-aqueous electrolyte secondary battery
JP2002110246A (en) * 2000-09-29 2002-04-12 At Battery:Kk Method of producing thin battery
JP5207569B2 (en) * 2001-01-16 2013-06-12 旭化成イーマテリアルズ株式会社 Lithium battery separator
KR20030024055A (en) * 2001-09-15 2003-03-26 삼성에스디아이 주식회사 Method for manufacturing lithium battery
KR100511634B1 (en) * 2003-05-20 2005-09-01 주식회사 화인폴 Separator for High Advanced Lithium Polymer Secondary Batteries, The Preparation Method thereof, and Lithium Polymer Secondary Batteries Comprising the Separator
WO2014158768A1 (en) * 2013-03-14 2014-10-02 Enevate Corporation Clamping device for an electrochemical cell stack
JPWO2016152860A1 (en) * 2015-03-24 2018-01-18 日本電気株式会社 Lithium ion secondary battery and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102048830B1 (en) * 2018-05-16 2019-11-27 대한민국 Manufacturing method for ice cream coated glutinous rice cake

Also Published As

Publication number Publication date
JPH11307133A (en) 1999-11-05

Similar Documents

Publication Publication Date Title
US6024773A (en) Method of fabricating a lithium ion secondary battery
US6423447B1 (en) Non-aqueous electrolyte secondary battery and method of production of the same
JP4431304B2 (en) Lithium ion secondary battery separator and lithium ion secondary battery provided with the same
KR100767196B1 (en) Solid electrolyte cell
JP2000235868A (en) Nonaqueous electrolyte secondary battery
US6235066B1 (en) Manufacture of lithium ion secondary battery
JP5729442B2 (en) Separator and battery using the same
WO2020071377A1 (en) Method for manufacturing lithium-ion cell and lithium-ion cell
JP3443773B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP5357518B2 (en) ELECTRODE BODY FOR STORAGE ELEMENT AND NON-AQUEOUS LITHIUM TYPE STORAGE ELEMENT CONTAINING THE SAME
JP4243096B2 (en) Method for manufacturing lithium secondary battery including multi-phase separator
JP3183270B2 (en) Manufacturing method of organic electrolyte battery
JPH11307131A (en) Sheet-type lithium ion secondary battery
JP2009070609A (en) Separator and battery using the same
JP2001210377A (en) Polymer electrolyte composition, its manufacturing method and lithium secondary battery which utilizes it
JP3297034B2 (en) Secondary battery and method of manufacturing the same
JP4449214B2 (en) Non-aqueous electrolyte battery
JPH11307084A (en) Organic electrolyte battery
JP3540629B2 (en) Method for producing electrode for electrochemical device and electrochemical device
JP4207238B2 (en) Stacked organic electrolyte battery
JP2000113872A (en) Nonaqueous electrolyte secondary battery and its manufacture
JP4235285B2 (en) Organic electrolyte battery
JP2001319693A (en) Nonaqueous-electrolyte secondary battery
JP2001052742A (en) Sheet secondary battery
JP4005789B2 (en) Secondary battery

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010327

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080427

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090427

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140427

Year of fee payment: 13

EXPY Cancellation because of completion of term