KR100511634B1 - Separator for High Advanced Lithium Polymer Secondary Batteries, The Preparation Method thereof, and Lithium Polymer Secondary Batteries Comprising the Separator - Google Patents

Separator for High Advanced Lithium Polymer Secondary Batteries, The Preparation Method thereof, and Lithium Polymer Secondary Batteries Comprising the Separator Download PDF

Info

Publication number
KR100511634B1
KR100511634B1 KR10-2003-0032029A KR20030032029A KR100511634B1 KR 100511634 B1 KR100511634 B1 KR 100511634B1 KR 20030032029 A KR20030032029 A KR 20030032029A KR 100511634 B1 KR100511634 B1 KR 100511634B1
Authority
KR
South Korea
Prior art keywords
lithium
separator
delete delete
secondary battery
lithium polymer
Prior art date
Application number
KR10-2003-0032029A
Other languages
Korean (ko)
Other versions
KR20040099895A (en
Inventor
이용기
김준우
이형춘
Original Assignee
주식회사 화인폴
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 화인폴 filed Critical 주식회사 화인폴
Priority to KR10-2003-0032029A priority Critical patent/KR100511634B1/en
Publication of KR20040099895A publication Critical patent/KR20040099895A/en
Application granted granted Critical
Publication of KR100511634B1 publication Critical patent/KR100511634B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

본 발명은 유기고분자로 폴리비닐리덴플루오라이드 또는/및 비닐리덴 플루오라이드와 헥사플로로프로필렌의 공중합체; 및 폴리올레핀계 섬유상 물질을 포함하며, 미세다공성 구조를 가지는 리튬폴리머 2차 전지용 분리막을 제공한다.The present invention is an organic polymer comprising a copolymer of polyvinylidene fluoride or / and vinylidene fluoride with hexafluoropropylene; And a polyolefin-based fibrous material, and provides a separator for a lithium polymer secondary battery having a microporous structure.

또한, 본 발명은 (a) 유기고분자로 폴리비닐리덴플루오라이드 또는/및 비닐리덴 플루오라이드와 헥사플로로프로필렌의 공중합체를 적당한 용매에 용해하는 단계; (b) 단계 a의 용액에 폴리올레핀계 섬유상 물질을 분산시켜 혼합액을 제조하는 단계; (c) 혼합액을 소정의 기판에 캐스팅 하는 단계; 및 (d) 캐스팅된 슬러리로부터 상기 단계 a의 용매를 녹여내고 건조하는 단계를 포함하는 리튬폴리머 2차 전지용 분리막의 제조방법을 제공한다.In addition, the present invention comprises the steps of (a) dissolving a copolymer of polyvinylidene fluoride or / and vinylidene fluoride with hexafluoropropylene in an organic solvent in a suitable solvent; (b) dispersing the polyolefin fibrous material in the solution of step a to prepare a mixed solution; (c) casting the mixed solution on a predetermined substrate; And (d) provides a method for producing a separator for a lithium polymer secondary battery comprising the step of melting and drying the solvent of the step a from the cast slurry.

상기 본 발명에 의한 분리막을 포함하는 고분자 전해질과 이를 포함하는 리튬폴리머 2차 전지는 제조공정이 간단하고, 액체전해액과의 친화성이 있으며, 과충전 및 과방전시에도 일정온도 이상에서 기공폐쇄를 유도할 수 있어 고성능의 2차전지를 제조할 수 있다.The polymer electrolyte comprising the separator according to the present invention and the lithium polymer secondary battery including the same have a simple manufacturing process, have affinity with a liquid electrolyte, and induce pore closure at a predetermined temperature or more even during overcharging and overdischarging. It is possible to manufacture a high performance secondary battery.

Description

고성능 리튬폴리머 2차 전지용 분리막, 그 제조방법 및 리튬폴리머 2차 전지{Separator for High Advanced Lithium Polymer Secondary Batteries, The Preparation Method thereof, and Lithium Polymer Secondary Batteries Comprising the Separator} Separator for High Advanced Lithium Polymer Secondary Batteries, The Preparation Method, and Lithium Polymer Secondary Batteries Comprising the Separator

본 발명은 리튬폴리머 2차 전지용 분리막 등에 관한 것으로, 보다 상세하게는 제조공정이 간단하고, 액체전해액과의 친화성이 있으며, 과충전 및 과방전시에도 일정온도 이상에서 기공폐쇄를 유도할 수 있는 리튬폴리머 2차 전지용 분리막 및 이의 응용 등에 관한 것이다.The present invention relates to a separator for a lithium polymer secondary battery and the like, and more particularly, a manufacturing process is simple, affinity with a liquid electrolyte, and lithium polymer capable of inducing pore closure at a predetermined temperature or more even during overcharging and overdischarging. A secondary battery separator and its application and the like.

최근 급속한 정보통신 기술의 고도화와 더불어 급격히 성장하고 있는 휴대전화, 노트북 PC, PDA 등 IT (Information Technology)관련 전자기기의 필수적인 전원으로 사용되는 소형 2차 전지에 대한 수요가 기하급수적으로 증가하는 추세에 있다. 각종 휴대형 정보통신기기에서 전지가 차지하는 무게비중이 노트북 PC의 경우 10∼20%, 휴대전화의 경우 50% 내외를 차지할 정도로 2차 전지는 기기 본체의 소형ㆍ경량화에 크게 영향을 미칠 뿐만 아니라 장시간 연속사용여부가 휴대형 정보통신기기의 중요한 경쟁요소가 되고 있어 향후 이와 같은 기기의 요구를 충족해 줄 수 있는 소형 2차전지의 개발이 전지산업뿐만 아니라 전자정보통신 제품의 경쟁력을 결정짓는 핵심요소가 될 것이다. Recently, with the rapid advancement of information and communication technology, the demand for small secondary batteries used as essential power sources for IT (Information Technology) related electronic devices such as mobile phones, notebook PCs, PDAs, etc. is growing exponentially. have. The secondary battery not only affects the compactness and light weight of the main body of the device, but also accounts for 10-20% of the weight of the battery in various portable information and communication devices and about 50% of the mobile phone. Whether or not use is becoming an important competitive factor for portable information and communication devices, the development of small secondary batteries that can meet the needs of these devices will be a key factor in determining the competitiveness of not only the battery industry but also electronic information and communication products. will be.

이동통신 시스템의 전송속도 변화추이에 따라 기존의 2차 전지 (니켈-카드뮴전지, 니켈수소합금전지)로는 휴대형 정보통신기기와 소형 전자기기의 고기능화 (무선 인터넷 및 무선 데이터 통신 서비스)에 따른 에너지 소비량을 충족시킬 수 없으므로 소형 2차 전지의 고에너지밀도화ㆍ고성능화ㆍ고안정성이 요구되고 있다.According to the change of the transmission speed of mobile communication system, the existing secondary battery (nickel-cadmium battery, nickel hydride battery) is energy consumption according to the high functionalization of portable information communication device and small electronic device (wireless internet and wireless data communication service). Because of this problem, high energy density, high performance, and high stability of small secondary batteries are required.

최근에는 기존의 액체전해질(유기용매+리튬염)을 고분자 전해질 (고분자+유기용매+리튬염)로 대체하여 전지의 박형화 및 안전성을 향상시킨 리튬폴리머 2차 전지 (Lithium Polymer Secondary Batteries)의 기술개발이 이루어지고 있다. 이와 같은 리튬폴리머 2차 전지는 고성능 차세대 첨단 신형 전지 중의 하나로서, 기존 전지에 비해 단위 무게당 에너지 밀도가 크고 다양한 형태로 제조가 가능하고 적층에 의한 고전압·대용량의 전지개발이 용이하며, 카드뮴이나 수은 같은 환경을 오염시키는 중금속을 사용하지 않아서 환경 친화적이라는 장점을 갖고 있다. Recently, the technology development of lithium polymer secondary battery (Lithium Polymer Secondary Batteries) which improved the thickness and safety of battery by replacing the existing liquid electrolyte (organic solvent + lithium salt) with polymer electrolyte (polymer + organic solvent + lithium salt) This is being done. Such a lithium polymer secondary battery is one of the next-generation high-performance new battery cells, and has a higher energy density per unit weight than the existing battery, and can be manufactured in various forms, and it is easy to develop high voltage and large capacity batteries by lamination. It does not use heavy metals that pollute the environment like mercury, so it has the advantage of being environmentally friendly.

리튬폴리머 2차 전지는 크게 부극(anode), 고분자 전해질(polymer electrolyte), 정극(cathode)으로 구성되는데, 부극 활물질로는 리튬, 탄소 등이 사용되며, 정극 활물질로는 전이금속산화물, 금속칼코겐 화합물, 전도성 고분자 등이 사용된다. 고분자 전해질은 고분자와 염, 비수계 유기용매(선택적) 및 기타 첨가제 등으로 구성되는 물질로서 상온에서 대략 10-3∼10-8 S/cm의 이온 전도도를 나타낸다.Lithium polymer secondary battery is largely composed of an anode (anode), a polymer electrolyte (polymer electrolyte), a cathode (cathode), lithium, carbon, etc. are used as the negative electrode active material, transition metal oxide, metal chalcogen as the positive electrode active material Compounds, conductive polymers and the like are used. A polymer electrolyte is a substance composed of a polymer, a salt, a non-aqueous organic solvent (optional), and other additives, and exhibits an ionic conductivity of about 10 −3 to 10 −8 S / cm at room temperature.

상용화된 리튬 2차 전지용 분리막(separator)은 두께 9∼35㎛의 폴리올레핀계 고분자(폴리에틸렌, 폴리프로필렌) 필름이며, 미세다공성 구조를 가진다. 최근 리튬폴리머 2차 전지의 안전성, 고분자 전해질의 기계적 강도의 향상 및 전지의 박형화를 실현하기 위하여 상용화된 폴리올레핀계 분리막을 도입한 리튬폴리머 2차 전지의 개발이 이루어지고 있다.(미국특허 5,639,573, 일본특허 P2000-149905 ) Commercially available separators for lithium secondary batteries are polyolefin-based polymers (polyethylene and polypropylene) films having a thickness of 9 to 35 µm and have a microporous structure. Recently, in order to realize the safety of the lithium polymer secondary battery, the mechanical strength of the polymer electrolyte, and the thinning of the battery, a lithium polymer secondary battery incorporating a commercially available polyolefin separator has been developed. (US Patent 5,639,573, Japan). Patent P2000-149905)

그러나, 폴리올레핀계 분리막의 박막화 및 기공(pore) 형성을 유도하기 위해서는 높은 생산단가가 요구되기 때문에 상용화하기 위한 고성능의 분리막의 개발에는 한계가 있다. 또한 폴리올레핀계 분리막은 액체전해액과의 낮은 친화성으로 인하여 전해액의 낮은 함유특성을 나타내고 이러한 문제로 인하여 전지의 전체저항을 증가시키는 결과를 초래하여 싸이클에 따른 용량의 지속적인 감소 및 고율충방전 특성을 저하시키는 근본적인 원인이 되고 있다.However, there is a limit to the development of high-performance separators for commercialization because high production costs are required to induce thinning and pore formation of polyolefin-based separators. In addition, the polyolefin-based separator exhibits a low content of electrolyte due to its low affinity with the liquid electrolyte, resulting in an increase in the overall resistance of the battery, resulting in a continuous reduction in capacity and high rate charge / discharge characteristics. Has become the underlying cause.

본 발명은 상기와 같이 종래 기술이 가지는 문제를 해결하기 위해 안출된 것으로, 그 주된 목적은 종래 폴리올레핀계 분리막 보다 제조공정이 간단하고, 액체전해액과의 친화성이 있으며, 과충전 및 과방전시에도 일정온도 이상에서 기공폐쇄를 유도할 수 있는 리튬폴리머 2차 전지용 분리막을 제공함에 있다.The present invention has been made to solve the problems of the prior art as described above, the main object of the present invention is that the manufacturing process is simpler than the conventional polyolefin-based membrane, has affinity with the liquid electrolyte, and at a constant temperature during overcharge and overdischarge The present invention provides a separator for a lithium polymer secondary battery capable of inducing pore closure.

본 발명의 다른 목적은 상기 리튬폴리머 2차 전지용 분리막의 제조방법을 제공함에 있다.Another object of the present invention to provide a method for producing a separator for a lithium polymer secondary battery.

본 발명의 또다른 목적은 상기 리튬폴리머 2차 전지용 분리막을 소정의 액체전해액에 함침시켜 제조되는 리튬폴리머 2차 전지용 고분자 전해질의 제조방법을 제공함에 있다.Another object of the present invention is to provide a method for preparing a polymer electrolyte for lithium polymer secondary batteries prepared by impregnating the separator for a lithium polymer secondary battery in a predetermined liquid electrolyte.

본 발명의 또다른 목적은 상기 고분자 전해질을 포함하는 리튬폴리머 2차 전지를 제공함에 있다. Another object of the present invention to provide a lithium polymer secondary battery comprising the polymer electrolyte.

상기 목적을 달성하기 위하여 본 발명은 유기고분자로 폴리비닐리덴플루오라이드 또는/및 비닐리덴 플루오라이드와 헥사플로로프로필렌의 공중합체; 및 폴리올레핀계 섬유상 물질을 포함하며, 미세다공성 구조를 가지는 리튬폴리머 2차 전지용 분리막을 제공한다.In order to achieve the above object, the present invention is a copolymer of polyvinylidene fluoride or / and vinylidene fluoride and hexafluoropropylene as an organic polymer; And a polyolefin-based fibrous material, and provides a separator for a lithium polymer secondary battery having a microporous structure.

또한, 본 발명은 (a) 유기고분자로 폴리비닐리덴플루오라이드 또는/및 비닐리덴 플루오라이드와 헥사플로로프로필렌의 공중합체를 적당한 용매에 용해하는 단계; (b) 단계 a의 용액에 폴리올레핀계 섬유상 물질을 분산시켜 혼합액을 제조하는 단계; (c) 혼합액을 소정의 기판에 캐스팅하는 단계; 및 (d) 캐스팅된 슬러리로부터 상기 단계 a의 용매를 녹여내고 건조하는 단계를 포함하는 리튬폴리머 2차 전지용 분리막의 제조방법을 제공한다.In addition, the present invention comprises the steps of (a) dissolving a copolymer of polyvinylidene fluoride or / and vinylidene fluoride with hexafluoropropylene in an organic solvent in a suitable solvent; (b) dispersing the polyolefin fibrous material in the solution of step a to prepare a mixed solution; (c) casting the mixed solution onto a predetermined substrate; And (d) provides a method for producing a separator for a lithium polymer secondary battery comprising the step of melting and drying the solvent of the step a from the cast slurry.

또한, 본 발명은 상기 분리막을 소정의 액체전해액에 함침시켜 제조되는 리튬폴리머 2차 전지용 고분자 전해질의 제조방법을 제공한다.The present invention also provides a method for producing a polymer electrolyte for lithium polymer secondary batteries prepared by impregnating the separator in a predetermined liquid electrolyte.

또한, 본 발명은 상기 고분자 전해질을 포함하는 리튬폴리머 2차 전지를 제공한다.In addition, the present invention provides a lithium polymer secondary battery comprising the polymer electrolyte.

이하, 본 발명의 내용을 보다 상세히 설명하기로 한다.Hereinafter, the content of the present invention will be described in more detail.

분리막에 함유되는 유기고분자는 폴리비닐리덴플루오라이드 또는/및 비닐리덴 플루오라이드와 헥사플로로프로필렌의 공중합체이다. 폴리비닐리덴플루오라이드 와, 비닐리덴 플루오라이드와 헥사플로로프로필렌의 공중합체를 혼합사용하는 경우에 이들 물질간의 조성비는 특별한 한정을 요하지는 않는다. 상기 폴리비닐리덴플루오라이드는 특별한 한정을 요하는 것은 아니나, 바람직하게는 중량평균 분자량 10,000∼1,000,000인 것이 좋다. 비닐리덴 플루오라이드와 헥사플로로프로필렌의 공중합체는 특별한 한정을 요하는 것은 아니나, 바람직하게는 헥사플로로프로필렌의 조성비가 1∼30중량%인 것이 좋다.The organic polymer contained in the separator is a copolymer of polyvinylidene fluoride or / and vinylidene fluoride and hexafluoropropylene. In the case of using a mixture of polyvinylidene fluoride and a copolymer of vinylidene fluoride and hexafluoropropylene, the composition ratio between these materials does not require special limitation. The polyvinylidene fluoride does not require special limitation, but preferably has a weight average molecular weight of 10,000 to 1,000,000. Although the copolymer of vinylidene fluoride and hexafluoropropylene does not require a special limitation, Preferably the composition ratio of hexafluoropropylene is 1-30 weight%.

폴리올레핀계 섬유상 물질은 과충전 및 과방전시에 일정온도 이상에서 기공폐쇄를 유도하기 위해 첨가된다. 이러한 폴리올레핀계 섬유상 물질은 특별한 한정을 요하는 것은 아니나, 바람직하게는 폴리에틸렌 또는/및 폴리프로필렌이 여기에 포함된다. 상기 폴리올레핀계 섬유상 물질은 바람직하게는 직경 0.1∼20㎛, 길이 0.5∼5㎜인 것이 좋다. Polyolefin-based fibrous material is added to induce pore closure at a certain temperature or more during overcharging and overdischarging. Such polyolefin-based fibrous materials do not require any particular limitation, but preferably polyethylene or / and polypropylene are included here. The polyolefin fibrous material is preferably 0.1-20 탆 in diameter and 0.5-5 mm in length.

상기 유기고분자와 폴리올레핀계 섬유상 물질의 조성비는 특별한 한정을 요하는 것은 아니나, 바람직하게는 1:9∼9:1로 한다. 만일, 폴리올레핀계 섬유상 물질이 상기 조성 이하로 첨가되는 경우에는 온도종료(Thermal Shutdown)기능이 소실될 우려가 있으며, 상기 조성을 초과하는 경우에는 점성이 너무 커서 고분자 용액의 흐름성을 저하시켜 제조공정상의 문제를 야기할 우려가 있다. Although the composition ratio of the said organic polymer and a polyolefin fibrous substance does not require a special limitation, Preferably it is 1: 9-9: 1. If the polyolefin-based fibrous material is added below the composition, the thermal shutdown function may be lost. If the polyolefin-based fibrous material is added below the composition, the viscosity may be too high to reduce the flowability of the polymer solution, thereby reducing the flow of the polymer solution. It may cause problems.

도 1은 본 발명에 따른 분리막의 개략적인 제조공정도를 보여주고 있다. Figure 1 shows a schematic manufacturing process of the separator according to the present invention.

리튬폴리머 2차 전지용 분리막의 제조공정은 습식법 및 건식법이 있으나, 본 발명은 바람직하게는 습식법에 의하며 미세다공성 분리막을 얻기 위해 상전환법(Phase Inversion Method)이 이용된다.The manufacturing process of the separator for a lithium polymer secondary battery includes a wet method and a dry method, but the present invention is preferably a wet method, and a phase inversion method is used to obtain a microporous separator.

유기고분자를 용해하기 위한 용매는 선택된 유기고분자의 용해에 적합한 것인 한 특별한 한정을 요하지 않으며, 이러한 예로는, 유기용매인 N-메틸피롤리돈, 디메틸포름아마이드, 디메틸설폭사이드, 감마부틸로락톤, 테트라하이드로퓨란, 아세톤의 군에서 선택되는 적어도 1종 이상의 용매가 있다. 상기 유기용매는 유기고분자를 기준으로 100∼1500중량% 정도 사용하는 것이 좋다.The solvent for dissolving the organic polymer does not require special limitation as long as it is suitable for dissolution of the selected organic polymer, and examples thereof include organic solvents such as N-methylpyrrolidone, dimethylformamide, dimethyl sulfoxide, and gamma butyrolactone. , At least one solvent selected from the group of tetrahydrofuran and acetone. The organic solvent is preferably used about 100 to 1500% by weight based on the organic polymer.

상기 유기고분자와 폴리올레핀계 섬유상 물질의 혼합에는 도 2에서와 같은 혼합반응조가 이용될 수 있다. 이러한 혼합반응조는 자전형 교반기(4), 공전형 교반기(5), 기포제거장치(2), 벤트(3) 및 온도조절용 수조써큘레이터(1)를 포함한다. 용액은 호퍼로 유입되어 자전형 교반기(4)와 공전형 교반기(5)의 회전력에 의해 고르게 혼합되며, 교반되는 과정에서 발생하는 기포는 기포제거장치(2)를 통해 제거된다. 수조써큘레이터(1)는 혼합반응조를 항온상태로 유지하기 위하여 설치되며, 벤트(3)을 통해서는 외부공기가 유입된다. 바람직하게는, 유기 고분자의 초기혼합시 응집을 방지하기 위해 반응조 내부와 공전형 교반기에 구비된 패들(5') 사이의 간격이 1mm 이내인 것이 좋다. The mixing reaction tank as shown in FIG. 2 may be used to mix the organic polymer and the polyolefin fibrous material. This mixing reactor includes a rotating stirrer (4), a revolving stirrer (5), a bubble removing device (2), a vent (3) and a water tank circulator for temperature control (1). The solution flows into the hopper and is evenly mixed by the rotational force of the rotating stirrer 4 and the revolving stirrer 5, and bubbles generated during the stirring process are removed through the bubble removing device 2. The water tank circulator 1 is installed to maintain the mixing reactor at a constant temperature, and external air is introduced through the vent 3. Preferably, in order to prevent agglomeration during the initial mixing of the organic polymer, the distance between the inside of the reactor and the paddle 5 'provided in the idler type stirrer may be within 1 mm.

폴리올레핀계 섬유상 물질의 분산과 유기고분자의 용해를 원활하게 수행하기 위해 기계식교반기, 플래너터리 교반기, 고속 분산기 등이 이용될 수 있으며, 바람직하게는 용액조제시 기포를 제거하기 위해 진공펌프를 사용하는 것이 좋다.A mechanical stirrer, a planetary stirrer, a high speed disperser, etc. may be used to smoothly disperse the polyolefin fibrous material and dissolve the organic polymer. Preferably, it is preferable to use a vacuum pump to remove bubbles in preparing a solution. good.

유기고분자와 폴리올레핀계 섬유상 물질의 혼합액은 소정의 기판(예를 들면, 마일러필름(Mylar film), 알파산업)에 캐스팅되며, 미세다공의 형성은 캐스팅된 슬러리로부터 상기 단계 a의 용매를 녹여내는 과정을 통해 달성될 수 있다. 이는 상전환법을 이용해 도 3에 도시된 바와 같은 장치를 통해 달성될 수 있다. 도 3의 장치는 콤마코터(애플리케이터 기능 수행, 11), 응고조(12), 세척조(13), 건조기(14) 및 기판(15)로 구성된 것이다. 용액이 콤마코터(11)에 의해 기판(15)상에 코팅된 상태로 응고조(12)로 유입되어 여기서 미세다공성 막이 형성되고, 세척조(13)을 통해 불순물을 세척하여 건조기(14)에서 잔존용매가 완전히 제거된다. The mixture of organic polymer and polyolefinic fibrous material is cast on a predetermined substrate (e.g., Mylar film, Alpha Industries), and the formation of micropores dissolves the solvent of step a from the cast slurry. This can be achieved through the process. This can be accomplished via a device as shown in FIG. 3 using a phase inversion method. The apparatus of FIG. 3 consists of a comma coater (applicator function 11), a coagulation bath 12, a washing bath 13, a dryer 14 and a substrate 15. The solution flows into the coagulation bath 12 in a state in which the solution is coated on the substrate 15 by the comma coater 11, whereby a microporous film is formed, and the impurities are washed through the cleaning bath 13 to remain in the dryer 14. The solvent is completely removed.

비용매가 들어 있는 응고조에 상기 캐스팅된 기판을 담궈 용액내 용매와 비용매간의 상전환법에 의해 10∼60㎛ 두께의 미세다공성 분리막을 제조할 수 있다. 이때, 비용매로는 물, 알콜류(메탄올, 에탄올, 프로판올 등) 또는 이들의 혼합용매를 들 수 있다. 응고조의 온도는 바람직하게는 10∼60℃로 하며, 세척조의 온도는 바람직하게는 10∼50℃로 한다. 만일, 비용매의 온도가 10℃미만인 경우 미세다공성의 균일도가 떨어질 우려가 있으며, 60℃를 초과하는 경우 제조공정상의 제막에 대한 문제가 발생할 우려가 있다.The cast substrate may be immersed in a coagulation bath containing a non-solvent to prepare a microporous separator having a thickness of 10 to 60 μm by a phase inversion method between a solvent and a non-solvent in a solution. In this case, the nonsolvent may be water, alcohols (methanol, ethanol, propanol, etc.) or a mixed solvent thereof. The temperature of the coagulation bath is preferably 10 to 60 ° C, and the temperature of the washing bath is preferably 10 to 50 ° C. If the temperature of the non-solvent is less than 10 ° C., the uniformity of microporosity may be lowered. If the temperature of the non-solvent is more than 60 ° C., there may be a problem in the film forming process.

상기 과정을 통해 얻어진 미세다공성 분리막은 바람직하게는 100∼180℃ 정도에서 진공건조함으로써 잔류하는 용매를 완전히 제거할 수 있다.The microporous separator obtained through the above process may preferably completely remove the remaining solvent by vacuum drying at about 100 to 180 ° C.

본 발명의 리튬폴리머 2차 전지는 양극(예를 들면, LiCoO2, LiNiO2, LiMn2O 4 등), 고분자 전해질 및 부극(예를 들면, 경질카본, 연질카본, 그라파이트 등)으로 구성되며, 상기 고분자 전해질은 상기 과정을 거쳐 제조된 분리막을 소정의 액체전해액에 함침시켜 제조될 수 있다. 상기 과정에 사용될 수 있는 액체전해액의 예로는,The lithium polymer secondary battery of the present invention is composed of a positive electrode (for example, LiCoO 2 , LiNiO 2 , LiMn 2 O 4, etc.), a polymer electrolyte and a negative electrode (for example, hard carbon, soft carbon, graphite, etc.), The polymer electrolyte may be prepared by impregnating a separator prepared through the above process into a predetermined liquid electrolyte. Examples of the liquid electrolyte solution that can be used in the above process,

A: 에틸렌 카보네이트, 프로필렌 카보네이트, 디메틸카보네이트, 디에틸카보네이트, 감마부틸로락톤, 메틸에틸카보네이트의 군에서 선택되는 1종 이상의 유기용매와,A: at least one organic solvent selected from the group of ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, gamma butyrolactone, methyl ethyl carbonate,

B: 리튬퍼클로레이트, 리튬헥사플루오로포스페이트, 리튬트리플레이트, 리튬비스트리플로로메틸설포닐이미드, 리튬테트라플루오로 보레이트염의 군에서 선택되는 1종 이상의 혼합리튬염의 혼합조성을 들 수 있다. B: The mixing composition of 1 or more types of mixed lithium salts chosen from the group of lithium perchlorate, lithium hexafluoro phosphate, lithium triplate, lithium bistrifluoromethylsulfonyl imide, and lithium tetrafluoro borate salt is mentioned.

상기 유기용매 A는 특별한 한정을 요하는 것은 아니나, 바람직하게는 유기고분자를 기준으로 50∼1500 중량% 첨가되며, 리튬염 B는 유기고분자를 기준으로 바람직하게는 5∼30 중량% 첨가된다. The organic solvent A is not particularly limited, but preferably 50 to 1500% by weight based on the organic polymer, lithium salt B is preferably 5 to 30% by weight based on the organic polymer.

도 4은 상기 과정을 통해 제조된 분리막의 표면 및 단면 모폴로지로서, 100nm 근처의 미세다공성 구조를 가지고 있음을 보여준다. 도 5는 분리막의 DSC 더모그램(thermograms)으로서, 132℃에서 폴리에틸렌 섬유상 물질의 용융피크가 관찰되고 있다. 이러한 폴리올레핀계 섬유상 물질의 용융현상은 과충전 및 과방전시에 일정온도 이상에서 분리막의 기공을 폐쇄하여 전지의 안정성을 확보할 수 있음을 잘 증명해 보여주고 있다. Figure 4 shows the surface and cross-sectional morphology of the membrane prepared by the above process, having a microporous structure near 100nm. FIG. 5 is DSC thermograms of the membrane, in which a melt peak of polyethylene fibrous material is observed at 132 ° C. Melting of the polyolefin-based fibrous material has proved well that the stability of the battery can be secured by closing the pores of the separator at a predetermined temperature or more during overcharging and overdischarging.

이하 본 발명의 내용을 실시예에 의해 보다 상세하게 설명하기로 한다. 다만 이들 실시예는 본 발명의 내용을 이해하기 위해 제시되는 것일 뿐 본 발명의 권리범위가 이들 실시예에 한정되어지는 것으로 해석되어져서는 아니된다.Hereinafter, the content of the present invention will be described in more detail with reference to Examples. However, these examples are only presented to understand the content of the present invention, and the scope of the present invention should not be construed as being limited to these embodiments.

<실시예 1> 분리막의 제조Example 1 Preparation of Membrane

중량평균분자량 600,000의 폴리비닐리덴 플루오라이드(PVdF) 47g를 N-메틸피롤리돈(NMP) 344㎖에 용해시킨 후, 직경 17㎛, 길이 5㎜인 폴리에틸렌 섬유상 물질(한국화이바) 5g을 위 용해된 폴리비닐리덴 플루오라이드 용액에 분산시켰다. 폴리에틸렌 섬유상 물질의 분산과 폴리비닐리덴 플루오라이드의 용해를 원활하게 하기 위하여 플레너터리 교반기(platanary mixer, 한양기계)를 이용하여 분산과 교반을 수행하였으며, 용액 조제시 기포를 제거하기 위해 진공펌프를 사용하였다. 47 g of polyvinylidene fluoride (PVdF) having a weight average molecular weight of 600,000 was dissolved in 344 mL of N-methylpyrrolidone (NMP), and then 5 g of polyethylene fibrous material (fiber Korea) having a diameter of 17 µm and a length of 5 mm were dissolved in the stomach. In a polyvinylidene fluoride solution. In order to facilitate the dispersion of polyethylene fibrous material and the dissolution of polyvinylidene fluoride, dispersion and agitation were carried out using a planetary mixer (Hanyang Machinery), and a vacuum pump was used to remove bubbles when preparing a solution. It was.

이 혼합용액을 애플리케이터(applicator)(11)에 일정량 주입하여 기판(마일러필름(Mylar film), 알파산업)에 캐스팅한 후, 비용매(non-solvent)로서 물이 들어있는 응고조(12)에 담궈 용액내 용매와 비용매간의 상전환법에 의해 53㎛ 두께의 미세다공성 분리막을 얻었다. 이 때 응고조(12)의 온도는 30℃로 하며, 세척조(13)의 온도는 40℃로 유지시켰다. 상기 과정을 통해 제조된 미세다공성 분리막을 160℃에서 진공건조를 실시하여 잔여 용매를 완전히 제거하였다. The mixed solution is injected into the applicator 11 in a predetermined amount, cast onto a substrate (Mylar film, Alpha Industries), and then a coagulation bath 12 containing water as a non-solvent. It was immersed in the solution to obtain a microporous membrane having a thickness of 53㎛ by a phase inversion method between the solvent and the non-solvent. At this time, the temperature of the coagulation tank 12 was 30 degreeC, and the temperature of the washing tank 13 was kept at 40 degreeC. The microporous separator prepared by the above process was vacuum dried at 160 ° C. to completely remove the residual solvent.

건조된 미세다공성 분리막의 단면 및 표면 몰폴로지는 SEM(Scanning electron microscopy)를 이용하여 관찰하였으며 그 결과 이미지는 도 3에 나타내었다. 또한 도 4에서 보여주듯이, 제조된 미세다공성 분리막의 DSC 더모그램으로부터 132℃에서 폴리에틸렌 마이크로입자의 용융피크가 관찰됨을 확인하였으며 이러한 용융은 전지의 과충전·과방전시 기공을 폐쇄하여 온도종료기능을 유도할 수 있다.The cross-section and surface morphology of the dried microporous membrane were observed by scanning electron microscopy (SEM), and the image is shown in FIG. 3. In addition, as shown in Figure 4, it was confirmed that the melt peak of the polyethylene microparticles at 132 ℃ from the DSC thermogram of the prepared microporous membrane, the melting closes the pores during overcharge and over-discharge of the battery to induce temperature termination function Can be.

상기 과정에 따라 제조된 본 발명의 분리막과 대조군인 폴리에틸렌 분리막의 두께, 기공도, 평균기공크기 및 기계적 물성값은 표 1에 나타내었다. Table 1 shows the thickness, porosity, average pore size, and mechanical properties of the membrane and the control polyethylene membrane prepared according to the above process.

<실시예 2> 고분자 전해질의 제조 및 이온전도도 측정Example 2 Preparation of Polymer Electrolyte and Measurement of Ion Conductivity

실시예 1에서 제조된 미세다공성 분리막을 아르곤 분위기의 글로브 박스내로 옮겨 액체 전해질[EC/DMC(1/2, w/w)/1M LiPF6]에 함침시켜 고분자 전해질을 제조한 후, 두 개의 스테인레스 스틸 전극사이에 접착시켜 폴리에틸렌이 코팅된 알루미늄 포장재로 밀봉한 다음 이온 전도도를 측정하였다. 본 발명에서 제조된 미세다공성 분리막과 대조군인 폴리에틸렌 분리막의 이온전도도 값은 하기 표 1에 나타내었다.The microporous separator prepared in Example 1 was transferred to a glove box in an argon atmosphere and impregnated with a liquid electrolyte [EC / DMC (1/2, w / w) / 1M LiPF 6 ] to prepare a polymer electrolyte, followed by two stainless steels. Bonded between steel electrodes, sealed with polyethylene coated aluminum packaging, and ionic conductivity was measured. Ionic conductivity values of the microporous membrane prepared in the present invention and the polyethylene membrane as a control group are shown in Table 1 below.

<표 1>TABLE 1

단위unit value 측정방법How to measure 대조군Control 실시예Example 두 께thickness mmmm 2727 5353 기공도Porosity %% 3636 4040 ASTM D1622ASTM D1622 평균기공크기Average pore size nmnm 4343 ∼100-100 Bubble sorption analysisBubble sorption analysis 인장강도The tensile strength MD: kg/cm2 MD: kg / cm 2 990990 850850 KS M 3054KS M 3054 TD: kg/cm2 TD: kg / cm 2 710710 640640 KS M 3054KS M 3054 신율Elongation MD: %MD:% 250250 5050 KS M 3054KS M 3054 TD: %TD:% 240240 6565 KS M 3054KS M 3054 기공폐쇄온도Pore Closure Temperature oC o C 135135 132132 DSC 분석DSC analysis 이온전도도Ion conductivity mS/cmmS / cm 1~21 ~ 2 33 FRAFRA

<실시예 3> 단위전지의 제조 및 특성측정(방전용량 특성, 싸이클 특성)Example 3 Fabrication and Characterization of Unit Cells (Discharge Capacity Characteristics, Cycle Characteristics)

액체전해액(EC/DMC(1/2, w/w)/1M LiPF6)을 함유한 미세다공성 분리막을 리튬코발트옥사이드(LiCoO2)양극과 그라파이트(Graphite)음극사이에 단순적층하여 단위전지를 제조하여 상온 충방전 실험을 수행하였다. 또한 방전속도(C rate)에 따른 단위전지의 방전용량특성을 조사한 결과는 도 6과 같았다. (충전조건:CC/CV to 4.2V at 25℃, 방전조건: CC, 2.8V cut-off at 25℃)A microporous separator containing liquid electrolyte (EC / DMC (1/2, w / w) / 1M LiPF 6 ) was simply laminated between a lithium cobalt oxide (LiCoO 2 ) anode and a graphite cathode to produce a unit cell. At room temperature charge and discharge experiments were performed. In addition, the result of examining the discharge capacity characteristics of the unit cell according to the discharge rate (C rate) was as shown in FIG. (Charging condition: CC / CV to 4.2V at 25 ℃, Discharge condition: CC, 2.8V cut-off at 25 ℃)

대조군인 폴리에틸렌 분리막을 적용한 단위전지와 본 발명에서 제조된 미세다공성 분리막을 적용한 단위전지의 싸이클에 따른 방전용량 특성은 도 7에 나타내었다. 도 7의 결과로부터 본 발명에서 제조된 미세다공성 분리막을 적용한 단위전지의 싸이클 특성이 더 우수함을 확인할 수 있었다. (충전조건:CC/CV 10mA to 4.2V, 2mA cut-off at 25℃, 방전조건: CC, 10mA(1C rate), 2.8V cut-off at 25℃)Discharge capacity characteristics according to the cycle of the unit cell to which the polyethylene separator as a control and the unit cell to which the microporous separator prepared in the present invention is applied are shown in FIG. 7. From the results of FIG. 7, it was confirmed that the cycle characteristics of the unit cell to which the microporous separator prepared in the present invention was applied were more excellent. (Charging condition: CC / CV 10mA to 4.2V, 2mA cut-off at 25 ℃, Discharge condition: CC, 10mA (1C rate), 2.8V cut-off at 25 ℃)

본 발명에 의하면 종래 폴리올레핀계 분리막 보다 제조공정이 간단하고, 액체전해액과의 친화성이 있으며, 과충전 및 과방전시에도 일정온도 이상에서 기공폐쇄를 유도할 수 있는 리튬폴리머 2차 전지용 분리막을 제공할 수 있다.According to the present invention, a manufacturing process is simpler than that of a conventional polyolefin-based membrane, and has affinity with a liquid electrolyte, and can provide a separator for a lithium polymer secondary battery that can induce pore closure at a predetermined temperature or more even during overcharging and overdischarging. have.

도 1은 본 발명에 따른 분리막의 개략적인 제조공정도.1 is a schematic manufacturing process of the separator according to the present invention.

도 2는 본 발명 실시예를 구성하는 혼합반응조의 일 예시도.Figure 2 is an illustration of a mixing reactor constituting an embodiment of the present invention.

도 3은 본 발명의 실시예를 구성하는 상전환법을 이용한 미세다공성 구조의형성을 위한 공정도.3 is a process chart for formation of a microporous structure using a phase inversion method constituting an embodiment of the present invention.

도 4는 본 발명에 따른 분리막의 표면(a) 및 단면(b) 모폴로지Figure 4 is a surface (a) and cross-section (b) morphology of the separator according to the invention

도 5는 본 발명에 따른 분리막의 DSC 더모그램 5 is a DSC thermogram of the separator according to the present invention

도 6은 방전속도(C rate)에 따른 단위전지의 방전용량특성을 조사한 결과6 is a result of examining the discharge capacity characteristics of the unit cell according to the discharge rate (C rate)

도 7은 단위전지의 싸이클에 따른 방전용량 특성결과[1: 대조군, 2: 본 발명]7 is a result of the discharge capacity characteristics according to the cycle of the unit cell [1: control, 2: the present invention]

<도면의 주요부분에 대한 부호설명><Code Description of Main Parts of Drawing>

1: 수조써큘레이터 2: 기포제거장치          1: Water tank circulator 2: Bubble removing device

3: 벤트(Vent) 4: 자전형 교반기          3: vent 4: rotating stirrer

5: 공전형 교반기 11: 콤마코터(Comma coater)          5: Static Stirrer 11: Comma coater

12: 응고조 13: 세척조          12: coagulation bath 13: washing bath

14: 건조기 15: 기판          14: dryer 15: substrate

Claims (15)

삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 유기고분자로 폴리비닐리덴플루오라이드와 헥사플로로프로필렌의 공중합체, 비닐리덴 플루오라이드와 헥사플로로프로필렌의 공중합체, 폴리비닐리덴플루오라이드 및 비닐리덴 플루오라이드와 헥사플로로프로필렌의 공중합체 중에서 선택된 어느 하나의 공중합체; 및 폴리올레핀계 섬유상 물질을 포함하며, 미세다공성 구조를 가지는 리튬폴리머 2차 전지용 분리막에 하기 성분 A 및 B로 구성되는 액체전해액에 함침시켜 제조되는 리튬폴리머 2차 전지용 고분자 전해질의 제조방법.Organic polymers selected from copolymers of polyvinylidene fluoride and hexafluoropropylene, copolymers of vinylidene fluoride and hexafluoropropylene, polyvinylidene fluoride and copolymers of vinylidene fluoride and hexafluoropropylene Any one copolymer; And a polyolefin-based fibrous material, wherein the separator for a lithium polymer secondary battery having a microporous structure is impregnated into a liquid electrolyte composed of the following components A and B. A: 유기고분자를 기준으로 50∼1500 중량% 첨가되며, 에틸렌 카보네이트, 프로필렌 카보네이트, 디메틸카보네이트, 디에틸카보네이트, 감마부틸로락톤, 메틸에틸카보네이트의 군에서 선택되는 1종 이상의 유기용매.A: 50 to 1500% by weight based on organic polymer, at least one organic solvent selected from the group of ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, gamma butyrolactone, methyl ethyl carbonate. B: 유기고분자를 기준으로 5∼30 중량% 첨가되며, 리튬퍼클로레이트, 리튬헥사플루오로포스페이트, 리튬트리플레이트, 리튬비스트리플로로메틸설포닐이미드, 리튬테트라플루오로 보레이트염의 군에서 선택되는 1종 이상의 혼합리튬염. B: 5 to 30% by weight based on the organic polymer, 1 selected from the group of lithium perchlorate, lithium hexafluoro phosphate, lithium triplate, lithium bistrifluoromethylsulfonylimide, lithium tetrafluoro borate salt Mixed lithium salts of more than one species. 제 14항에 의해 제조된 고분자 전해질을 포함함을 특징으로 하는 리튬폴리머 2차 전지A lithium polymer secondary battery comprising the polymer electrolyte prepared by claim 14
KR10-2003-0032029A 2003-05-20 2003-05-20 Separator for High Advanced Lithium Polymer Secondary Batteries, The Preparation Method thereof, and Lithium Polymer Secondary Batteries Comprising the Separator KR100511634B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2003-0032029A KR100511634B1 (en) 2003-05-20 2003-05-20 Separator for High Advanced Lithium Polymer Secondary Batteries, The Preparation Method thereof, and Lithium Polymer Secondary Batteries Comprising the Separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2003-0032029A KR100511634B1 (en) 2003-05-20 2003-05-20 Separator for High Advanced Lithium Polymer Secondary Batteries, The Preparation Method thereof, and Lithium Polymer Secondary Batteries Comprising the Separator

Publications (2)

Publication Number Publication Date
KR20040099895A KR20040099895A (en) 2004-12-02
KR100511634B1 true KR100511634B1 (en) 2005-09-01

Family

ID=37377363

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2003-0032029A KR100511634B1 (en) 2003-05-20 2003-05-20 Separator for High Advanced Lithium Polymer Secondary Batteries, The Preparation Method thereof, and Lithium Polymer Secondary Batteries Comprising the Separator

Country Status (1)

Country Link
KR (1) KR100511634B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100705760B1 (en) * 2005-06-24 2007-04-10 한국과학기술원 Separator composition and its preparation method for lithium rechargeable battery by means of phase inversion and uni-axial drawing
CN103903871A (en) * 2012-12-28 2014-07-02 海洋王照明科技股份有限公司 Electrochemical power supply diaphragm, manufacturing method thereof, electrochemical battery or capacitor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11307133A (en) * 1998-02-19 1999-11-05 Matsushita Electric Ind Co Ltd Manufacture of organic electrolyte battery
KR20020001035A (en) * 2000-06-23 2002-01-09 노기호 Multi-component composite membrane and method for preparing the same
KR20020063020A (en) * 2001-01-26 2002-08-01 한국과학기술연구원 Method for Preparing Thin Fiber -Structured Polymer Webs
KR20020071204A (en) * 2001-03-05 2002-09-12 주식회사 엘지화학 Electrochemical device using multicomponent composite membrane film
US20020168564A1 (en) * 2001-05-08 2002-11-14 Celgard Inc. Separator for polymer battery
US20030031924A1 (en) * 2000-01-10 2003-02-13 Sang-Young Lee High crystalline polypropylene microporous membrane, multicomponent microporous membrane and method for preparing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11307133A (en) * 1998-02-19 1999-11-05 Matsushita Electric Ind Co Ltd Manufacture of organic electrolyte battery
US20030031924A1 (en) * 2000-01-10 2003-02-13 Sang-Young Lee High crystalline polypropylene microporous membrane, multicomponent microporous membrane and method for preparing the same
KR20020001035A (en) * 2000-06-23 2002-01-09 노기호 Multi-component composite membrane and method for preparing the same
KR20020063020A (en) * 2001-01-26 2002-08-01 한국과학기술연구원 Method for Preparing Thin Fiber -Structured Polymer Webs
KR20020071204A (en) * 2001-03-05 2002-09-12 주식회사 엘지화학 Electrochemical device using multicomponent composite membrane film
US20020168564A1 (en) * 2001-05-08 2002-11-14 Celgard Inc. Separator for polymer battery

Also Published As

Publication number Publication date
KR20040099895A (en) 2004-12-02

Similar Documents

Publication Publication Date Title
Chen et al. Porous cellulose diacetate-SiO2 composite coating on polyethylene separator for high-performance lithium-ion battery
Hussain et al. Porous membrane with improved dendrite resistance for high-performance lithium metal-based battery
US8343388B2 (en) Electrode having porous active coating layer, manufacturing method thereof and electrochemical device containing the same
Liu et al. A study on PVDF-HFP gel polymer electrolyte for lithium-ion batteries
Kim et al. Electrochemical characterization of gel polymer electrolytes prepared with porous membranes
CN103515607B (en) A kind of lithium ion battery cathode slurry, negative pole and battery
CN105470564A (en) Solid electrolyte membrane, preparation method of solid electrolyte membrane and lithium ion battery
Yang et al. A core–shell structured polyacrylonitrile@ poly (vinylidene fluoride-hexafluoro propylene) microfiber complex membrane as a separator by co-axial electrospinning
CN110364667A (en) Perforated membrane and lithium ion battery
CN111653828A (en) Solid electrolyte film, preparation method thereof and assembly method of solid battery
US20230098496A1 (en) All solid-state electrolyte composite based on functionalized metal-organic framework materials for lithium secondary battery and method for manufacturing the same
Tabani et al. High electrochemical stability of polyvinylidene fluoride (PVDF) porous membranes using phase inversion methods for lithium-ion batteries
KR101198672B1 (en) Method for synthesizing electrode for secondary cell, electrode synthesized by the method, and secondary cell comprising the electrode
Xu et al. A facile strategy to improve the cycle stability of 4.45 V LiCoO2 cathode in gel electrolyte system via succinonitrile additive under elevated temperature
Zhou et al. Highly dispersible silicon nitride whiskers in asymmetric porous separators for high-performance lithium-ion battery
Aravindan et al. Comparison among the performance of LiBOB, LiDFOB and LiFAP impregnated polyvinylidenefluoride-hexafluoropropylene nanocomposite membranes by phase inversion for lithium batteries
KR20170016881A (en) Rechargeable battery and separator used therein
CN112615111A (en) High-liquid-retention self-repairing diaphragm, preparation method thereof and lithium ion battery
Yang et al. An interlayer containing dissociated LiNO3 with fast release speed for stable lithium metal batteries with 400 wh kg− 1 energy density
Javadi et al. PVDF/PU blend membrane separator for lithium-ion batteries via non-solvent-induced phase separation (NIPS)
KR100273506B1 (en) Polymer gel and manufacturing method for secondary battery
KR100511634B1 (en) Separator for High Advanced Lithium Polymer Secondary Batteries, The Preparation Method thereof, and Lithium Polymer Secondary Batteries Comprising the Separator
KR100511635B1 (en) Separator for High Advanced Lithium Polymer Secondary Batteries, The Preparation Method thereof, and Lithium Polymer Secondary Batteries Comprising the Separator
KR20050028570A (en) Separator for high advanced lithium polymer secondary batteries, the preparation method thereof, and lithium polymer secondary batteries comprising the separator
CN116014360A (en) Composite diaphragm and preparation method and application thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090824

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee