JP3181237B2 - Microalgae chlorella and method for immobilizing CO2 using microalgae chlorella - Google Patents

Microalgae chlorella and method for immobilizing CO2 using microalgae chlorella

Info

Publication number
JP3181237B2
JP3181237B2 JP06346297A JP6346297A JP3181237B2 JP 3181237 B2 JP3181237 B2 JP 3181237B2 JP 06346297 A JP06346297 A JP 06346297A JP 6346297 A JP6346297 A JP 6346297A JP 3181237 B2 JP3181237 B2 JP 3181237B2
Authority
JP
Japan
Prior art keywords
strain
chlorella
algae
water
hak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06346297A
Other languages
Japanese (ja)
Other versions
JPH10248553A (en
Inventor
みゆき 川田
勝 難波
美子 宍戸
直人 堺
征夫 軽部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute of Innovative Technology for Earth
Hitachi Ltd
Sumitomo Heavy Industries Ltd
Toyo Engineering Corp
Original Assignee
Research Institute of Innovative Technology for Earth
Hitachi Ltd
Sumitomo Heavy Industries Ltd
Toyo Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute of Innovative Technology for Earth, Hitachi Ltd, Sumitomo Heavy Industries Ltd, Toyo Engineering Corp filed Critical Research Institute of Innovative Technology for Earth
Priority to JP06346297A priority Critical patent/JP3181237B2/en
Publication of JPH10248553A publication Critical patent/JPH10248553A/en
Application granted granted Critical
Publication of JP3181237B2 publication Critical patent/JP3181237B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/59Biological synthesis; Biological purification

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高温及び高濃度C
2雰囲気中でCO2固定能を有するクロレラ属の新規藻
類、その培養方法、該クロレラを用いたCO2固定化方
法などに関する。
TECHNICAL FIELD The present invention relates to a high-temperature and high-concentration C
The present invention relates to a novel algae of the genus Chlorella having a CO 2 fixation ability in an O 2 atmosphere, a culture method thereof, a CO 2 fixation method using the Chlorella, and the like.

【0002】[0002]

【従来の技術】化石燃料の燃焼などで生じたCO2を固
定化する方法の一つとして微細藻類の光合成によるCO
2固定能を利用する方法がある。この方法は反応のエネ
ルギ−源として太陽光を直接利用でき、常圧で反応する
という利点がある。よって現在、CO2固定化バイオリ
アクタの開発が急がれている。
2. Description of the Related Art As one method for fixing CO 2 generated by burning fossil fuels, etc., CO 2 generated by photosynthesis of microalgae is used.
2 There is a method that utilizes the fixing ability. This method has an advantage that sunlight can be directly used as an energy source of the reaction and the reaction is performed at normal pressure. Therefore, development of a bioreactor immobilized with CO 2 is currently urgent.

【0003】該バイオリアクタの開発における重要な問
題として、使用する微細藻類の選定がある。微細藻類
は、多くの種では15〜30℃の温度範囲及び0.03%のCO
2濃度の環境に適応し、それ以上の高温では細胞内の酵
素等の変性を引き起こして壊死したりあるいは高濃度の
CO2雰囲気下ではCO2の麻酔作用によって新陳代謝が
影響を受け、増殖阻害を生ずることが知られている。ら
ん藻と紅藻の数種は55℃の増殖可能であることが知られ
ている。緑藻では、クロレラ属であるChlorellasorokin
iana Shihira et Krarusが40℃で増殖可能であることが
Alogological Studies(1980)26:80-86に記載されてい
る。高濃度CO2供給条件下で増殖可能な微細藻類とし
ては、緑藻クロロコックム属であるChlorococcum litto
rale Chihara,Nakayama et InouyeがJ Mar Biotechnol
(1993)1:21-25に記載されている。
[0003] An important issue in the development of the bioreactor is the selection of the microalgae to be used. Microalgae have a temperature range of 15-30 ° C. and 0.03% CO
2 adapted to the concentration of the environment, affected metabolism by anesthetic action of CO 2 in the CO 2 atmosphere necrosis or or high concentrations causing denaturation of enzymes or the like in the cell at higher elevated temperatures, the growth inhibition It is known to occur. Several species of cyanobacteria and red algae are known to be able to grow at 55 ° C. In green algae, Chlorellasorokin
that iana Shihira et Krarus can grow at 40 ° C
Alogological Studies (1980) 26: 80-86. Microalgae that can grow under high CO 2 supply conditions include Chlorococcum litto, a green alga Chlorococcum sp.
rale Chihara, Nakayama et Inouye by J Mar Biotechnol
(1993) 1: 21-25.

【0004】特開平5−304945号公報には、高濃
度CO2を固定するクロレラ属の微細藻類が記載されて
いる。また、特開平5−252930号公報には、クロ
レラ培養装置が記載されている。
Japanese Patent Application Laid-Open No. 5-304945 discloses a microalga of the genus Chlorella which fixes high concentration of CO 2 . Japanese Patent Application Laid-Open No. 5-252930 describes a chlorella culture apparatus.

【0005】[0005]

【発明が解決しようとする課題】CO2を大気中に拡散
させないための有効な方法は、火力発電所の排ガスを処
理することである。火力発電所の排ガスは、CO2濃度
約15%、温度約100℃といわれている。該排ガスを冷却
してから処理させるとして、反応槽内温度は30℃以上、
40℃程度になることが予想される。一方、効率良くCO
2を固定化するためには該排ガス中CO2を希釈すること
なく、処理した方が良い。
An effective way to keep CO 2 from diffusing into the atmosphere is to treat the exhaust gas of a thermal power plant. It is said that exhaust gas from thermal power plants has a CO 2 concentration of about 15% and a temperature of about 100 ° C. As the exhaust gas is cooled and then treated, the temperature in the reaction tank is 30 ° C. or higher,
It is expected to be around 40 ° C. On the other hand, efficient CO
In order to fix 2 , it is better to treat CO 2 in the exhaust gas without diluting it.

【0006】そこで、冷却エネルギを節約し被処理ガス
中CO2を希釈することなくあるいは濃縮してからCO2
を固定するために、高温、高濃度CO2雰囲気の環境で
光合成によりCO2を固定化する、新規な藻類の提供が
望まれていた。一方、CO2固定化バイオリアクタの小
型化を図るには、増殖能が高く、高密度培養が可能な性
質が必要である。
[0006] Therefore, to save cooling energy from the or concentrated without diluting the treated gas in CO 2 CO 2
It has been desired to provide a novel algae that immobilizes CO 2 by photosynthesis in an environment of a high-temperature, high-concentration CO 2 atmosphere in order to immobilize. On the other hand, in order to reduce the size of the CO 2 -immobilized bioreactor, it is necessary that the bioreactor has a high proliferative ability and can be cultured at high density.

【0007】さらには、微細藻類には付着性あるいは群
体形成の性質を持つものが多いが、該バイオリアクタに
適用する際、特に光照射を均一にするためには付着性が
なく均一に分散する性質が必要である。さらに、微細藻
類の培養には大量の栄養塩(N,P)を含む水が必要で
あり、その供給方法が問題となっていた。
[0007] Furthermore, many microalgae have the property of adhesion or colony formation, but when applied to the bioreactor, especially in order to make the light irradiation uniform, there is no adhesion and the particles are uniformly dispersed. Nature is required. Further, culture of microalgae requires water containing a large amount of nutrients (N, P), and there has been a problem in a method of supplying the water.

【0008】そこで、本発明の目的は、少なくとも40℃
の高温でかつ高濃度CO2雰囲気下でCO2固定能を有
し、増殖能が高く、高密度培養が可能で、付着性のない
微細藻類を自然界から探索してCO2固定化に利用し、
その際必要な栄養塩の供給源として富栄養水を使用する
ことにある。
[0008] Therefore, the object of the present invention is to provide at least
It has the ability to fix CO 2 under high temperature and high concentration CO 2 atmosphere, has high growth ability, enables high-density cultivation, searches for non-adherent microalgae from nature and uses it for CO 2 fixation. ,
It consists in using eutrophic water as a source of the necessary nutrients.

【0009】[0009]

【課題を解決しようとする手段】本発明者らは、高温耐
性をもつ藻類が生息すると考えられる、源泉温度が40℃
以上の温泉において不特定多数の微細藻類を採取した。
次に該微細藻類を40℃の空気雰囲気にあるインキュベー
タ中で振とう培養して40℃の温度に耐性のある株が選択
されるようにした。次に、温度を35℃に保ち、供給空気
中CO2濃度を5%→10%→30%→40%と徐々に高めて培養す
ることにより40%のCO2濃度に耐性のある株が選択され
るようにした。また、付着性については目視により観察
して均一に分散しながら増殖する株を選択した。さらに
培養中に藻体量を測定することで増殖能を比較し、増殖
能の高い株を選択した。以上の手段で選択された株につ
いて、寒天培地法によって株を単離及び無菌化した。
Means for Solving the Problems The present inventors consider that algae having a high temperature tolerance inhabit, and a source temperature of 40 ° C.
An unspecified number of microalgae were collected in the above hot springs.
Next, the microalgae were shake-cultured in an incubator in an air atmosphere at 40 ° C so that strains resistant to the temperature of 40 ° C were selected. Next, by maintaining the temperature at 35 ° C and gradually increasing the CO 2 concentration in the supply air from 5% → 10% → 30% → 40%, a strain resistant to 40% CO 2 concentration was selected. I was doing it. Further, regarding the adhesiveness, a strain that grows while dispersing uniformly was selected by visual observation. Furthermore, the growth ability was compared by measuring the amount of algal bodies during the culture, and a strain having a high growth ability was selected. For the strain selected by the above means, the strain was isolated and sterilized by the agar medium method.

【0010】その結果、40℃以上の高温かつ40%までの
高CO2濃度に耐性があり、付着性がなく、増殖能が高
い微細藻類の単離無菌株を4株、すなわち、HAK−2
株、HFK−6株、YSK株、HHK−6株を見い出し
た。北海道の旭岳温泉の排水溜まりから採取し選択され
たHAK−2株を代表株として、形態及び生理学的性質
を光学顕微鏡写真観察、電子顕微鏡観察、培養実験及び
光合成活性測定実験により調べた。その結果は、以下の
通りである。なお、図3に電子顕微鏡写真像を示す。 1.形態的性状 (1)細胞は直径3〜6μmの球形の単細胞で群体を形成
しない。 (2)細胞は外囲を細胞壁に囲まれ、内部に一個の核2
1、個の葉緑体23及び一個のピレノイド24が認めら
れる。 (3)葉緑体23は一個でカップ状であり、緑色を呈す
る。 (4)ラメラが2〜数枚のチラコイドから構成されてい
る。 (5)細胞壁は一層である。 (6)ピレノイド基質が2枚の時計皿型のデンプン鞘に被
われ、チラコイド22が貫通している。 (7)生殖は無性生殖のみを行い、母細胞内に形成される
自生胞子は多くの場合2個であるが、4個の場合もあ
る。胞子を放出した母細胞の細胞壁は、花弁状に分裂す
る。 2.生理学的性状 (1)光合成能 光合成による無機栄養生物である。照射
光強度400μE/m2/s以上において、光合成速度は300μmo
lーO2/mgーchl/hである。 (2)含有色素系 クロロフィルa、クロロフィルb (3)増殖温度域 25〜42℃(至適増殖温度:35〜40℃) (4)増殖CO2濃度域 0.03〜40%(至適増殖CO2
度:20〜40%) 上記の形質は緑藻綱クロロコックム目クロレラ科クロレ
ラ亜科のクロレラ ソロキニアナ( Chlorella sorokini
ana) の特徴と一致するものであり、このことからこの
藻類はクロレラ ソロキニアナ( Chlorella sorokinian
a) と結論づけた。
[0010] As a result, four isolated and sterile microalgae which are resistant to high temperatures of 40 ° C. or higher and high CO 2 concentrations of up to 40%, are non-adherent and have high growth ability, namely, HAK-2
Strains, HFK-6 strain, YSK strain, and HHK-6 strain were found. The morphology and physiological properties of the HAK-2 strain collected from the drainage pool of Asahidake Onsen in Hokkaido were examined by light microscopic observation, electron microscopic observation, culture experiment, and photosynthetic activity measurement experiment using the selected HAK-2 strain as a representative strain. The results are as follows. FIG. 3 shows an electron micrograph image. 1. Morphological properties (1) Cells are spherical single cells having a diameter of 3 to 6 μm and do not form a colony. (2) The cell is surrounded by a cell wall, with one nucleus 2 inside.
One chloroplast 23 and one pyrenoid 24 are found. (3) One chloroplast 23 is cup-shaped and exhibits a green color. (4) The lamella is composed of two to several thylakoids. (5) Single cell wall. (6) The pyrenoid substrate is covered by two watchglass-shaped starch sheaths, and thylakoid 22 penetrates. (7) Only asexual reproduction is performed, and the number of autologous spores formed in the mother cell is often two, but sometimes four. The cell wall of the mother cell that has released the spores divides into petals. 2. Physiological properties (1) Photosynthetic ability It is an inorganic nutrient by photosynthesis. At an irradiation light intensity of 400 μE / m 2 / s or more, the photosynthesis rate is 300 μmo
a l over O 2 / mg over chl / h. (2) Pigment system chlorophyll a, chlorophyll b (3) Growth temperature range 25-42 ° C (optimum growth temperature: 35-40 ° C) (4) Growth CO 2 concentration range 0.03-40% (optimal growth CO 2 Concentration: 20-40%) The above traits are Chlorella sorokini (Chlorella sorokini)
ana), which indicates that this algae is Chlorella sorokinian (Chlorella sorokinian).
a) was concluded.

【0011】40℃の高温条件下で増殖するクロレラ属と
してはただ一種クロレラ ソロキニアナ(Chlorella sor
okiniana)のみが知られている。そこで米国テキサス大
学より該藻株の分譲をうけ、形態及び生理学的性状につ
いてHAK−2株と比較した。結果は以下のとおりであ
る。 1.形態的比較 図3に示すように、HAK−2株は1本のチラコイドが
ピレノイドを直線に貫通しているのに対し、図9に示す
ように、既知のクロレラ ソロキニアナは数箇所で折れ
曲がって貫通している。 2.生理学的比較 図10に示すようにHAK−2株本藻類は至適増殖CO
2濃度が20〜40%の範囲にあるのに対し、クロレラ ソ
ロキニアナの至適増殖CO2濃度は10%である。
Chlorella sorkiniana (Chlorella sor) is the only genus Chlorella that grows under high temperature conditions of 40 ° C.
okiniana) is known. Thus, the algal strain was ordered from the University of Texas, USA, and compared with the HAK-2 strain in terms of morphology and physiological properties. The results are as follows. 1. Morphological Comparison As shown in FIG. 3, in the HAK-2 strain, one thylakoid penetrates the pyrenoid in a straight line, whereas as shown in FIG. 9, the known chlorella solokiniana bends at several places and penetrates. are doing. 2. Physiological comparison As shown in FIG.
2 The optimal growth CO 2 concentration of Chlorella solokiniana is 10%, while the concentration is in the range of 20-40%.

【0012】以上の比較検討から両者の藻類は同一の種
からなるももの、HAK−2株は高濃度のCO2に耐性
を有することから株としては異なり、HAK−2株は新
規な株であると結論づけた。なお、他の3種については
諸性質すなわちCO2耐性、温度耐性、付着性が、HA
K−2株と同様な性質を有することからいずれもHAK
−2株と同様の新規な株であると判断した。なお、現
在、工業技術院生命工学工業技術研究所では藻類は受託
していないため、本発明に係る新規株のいずれも寄託さ
れていない。
From the above comparative studies, both algae are of the same species, but the HAK-2 strain is different from the strain because it is resistant to high concentrations of CO 2 , and the HAK-2 strain is a new strain. I concluded that there was. The properties of the other three types, that is, the resistance to CO 2 , the temperature resistance, and the adhesion, are HA
All have the same properties as the K-2 strain,
It was determined to be a new strain similar to -2 strains. Note that, at present, no algae have been deposited at the National Institute of Bioscience and Biotechnology, and no new strain according to the present invention has been deposited.

【0013】表1に、各藻株の採取地と特徴を示す。以
下、該新規クロレラ4株を本藻類という。
Table 1 shows the collection locations and characteristics of each algae strain. Hereinafter, the four new chlorella strains are referred to as the present algae.

【0014】[0014]

【表1】 [Table 1]

【0015】従って、第1の発明は、25〜40℃の温度下
でかつ0.03〜40%濃度のCO2を含む混合気体下におい
て増殖能を有する、クロレラ ソロキニアナ(Chlorella
sorokiniana)HAK株、クロレラ ソロキニアナHF
K株、クロレラ ソロキニアナYSK株及びクロレラ
ソロキニアナHHK株のいずれかよりなる微細藻クロレ
ラである。
[0015] Accordingly, the first invention is directed to Chlorella solokiniana having a growth ability at a temperature of 25 to 40 ° C and in a mixed gas containing 0.03 to 40% CO 2.
sorokiniana) HAK strain, Chlorella solokiniana HF
K strain, Chlorella Solokiniana YSK strain and Chlorella
It is a microalga Chlorella consisting of any of the Solokiniana HHK strains.

【0016】ところで本発明者らは、本藻類は、0.03%
CO2濃度雰囲気下にあったものを直接、40%CO2濃度
雰囲気下にさらすと、一時的に増殖が停止する現象が見
られることがあるが、CO2濃度を段階的にあるいは徐
々に高めていくことで最大の増殖能を保ちながら40%C
2濃度雰囲気下においても連続した増殖が可能である
という知見を得た。
By the way, the present inventors have found that this algae is 0.03%
When a substance that had been in a CO 2 concentration atmosphere was directly exposed to a 40% CO 2 concentration atmosphere, a phenomenon that the growth was temporarily stopped might be observed. However, the CO 2 concentration was increased stepwise or gradually. 40% C while keeping maximum growth ability by going
It has been found that continuous growth is possible even in an O 2 concentration atmosphere.

【0017】次に、本藻類は、酸性を呈しかつ高温状態
にある場所、例えば温泉などで採取したクロレラに徐々
にCO2を高濃度に供給して培養し、生存している菌株
を分離することにより創成または選別することができ
る。すなわち、第2の発明は、酸性を呈しかつ高温状態
にある場所で採取したクロレラに徐々にCO2をに供給
して培養し、生存している菌株を分離することにより、
25〜40℃の温度下でかつ0.03〜40%濃度のCO2を含む
混合気体下において増殖能を有する、クロレラ ソロキ
ニアナHAK株、クロレラ ソロキニアナHFK株、ク
ロレラ ソロキニアナYSK株及びクロレラ ソロキニ
アナHHK株のいずれかよりなる微細藻クロレラを創成
または選別する方法である。
Next, the present algae are cultured by gradually supplying high concentration of CO 2 to a chlorella collected in a place having an acidic and high temperature state, for example, a hot spring or the like, to isolate a viable strain. It can be created or sorted out. That is, the second invention is to gradually supply CO 2 to chlorella collected in a place exhibiting an acidity and in a high temperature state, to culture the chlorella, and to isolate a surviving strain,
Any of the chlorella solokiniana HAK strain, the chlorella solokiniana HFK strain, the chlorella solokiniana YSK strain, and the chlorella solokiniana HHK strain, which have a growth ability at a temperature of 25 to 40 ° C. and in a mixed gas containing CO 2 at a concentration of 0.03 to 40%. It is a method of creating or selecting microalga Chlorella.

【0018】本藻類を培養する培地は、炭素、窒素及び
リンを含有する通常の培地である。炭素源としては、C
2を含む気体を培地に接触させて溶解させたもの、或
いはNa2CO3のような炭酸塩を溶解させた炭酸イオンであ
る。窒素源としては、NaNO3,KNO3等の硝酸態窒素あるい
はNH4Clのようなアンモニウム態窒素さらには尿素等の
有機態窒素である。その他微量成分として、Mg, Fe, M
n, B, Zn, Mo等を適宜用いる。本藻類を維持、保存する
ための合成培地は、例えば表2に示す、フィツゲラルド
(Fitzgerald)改変培地が有効である。
The medium for culturing the algae is an ordinary medium containing carbon, nitrogen and phosphorus. As a carbon source, C
It is a gas obtained by bringing a gas containing O 2 into contact with a medium and dissolved, or a carbonate ion obtained by dissolving a carbonate such as Na 2 CO 3 . As the nitrogen source, NaNO 3, KNO 3, etc. Furthermore ammonium nitrogen, such as nitrate or of NH 4 Cl is an organic nitrogen such as urea. Other minor components include Mg, Fe, M
n, B, Zn, Mo, etc. are appropriately used. The synthetic medium for maintaining and preserving the algae is, for example, Fitzgerald as shown in Table 2.
(Fitzgerald) modified medium is effective.

【0019】[0019]

【表2】 [Table 2]

【0020】本藻類の培養は、後述の実施例で示すよう
に、40℃の高温度と0.03〜40%のCO2含有空気雰囲気
下、pH 5.5 〜7.0で行われる。本藻類の培養はこのよう
な条件下で行うことができるので、例えば本藻類を用い
て火力発電所等の排ガス中CO2を固定化処理する場合
は、該排ガス中CO2濃度を調節する必要はない。ま
た、本藻類を用いることにより、排ガス冷却の際の温度
制御において40℃以下に冷却すれば良く、反応槽に光照
射した場合の冷却も必要がない。増殖能においては、本
藻類は、倍加時間3.9時間を示す。
The algae are cultured at a high temperature of 40 ° C. and an air atmosphere containing 0.03 to 40% CO 2 at a pH of 5.5 to 7.0, as shown in Examples described later. Since the cultivation of the present algae can be performed under such conditions, for example, when the present algae is used to fix CO 2 in exhaust gas from a thermal power plant or the like, it is necessary to adjust the concentration of CO 2 in the exhaust gas. There is no. In addition, by using the present algae, it is sufficient that the temperature is controlled to 40 ° C. or less in the temperature control at the time of cooling the exhaust gas, and there is no need to cool the reaction tank when irradiating light. In terms of growth ability, the algae show a doubling time of 3.9 hours.

【0021】従って、第3の発明は、25〜40℃の温度下
でかつ0.03〜40%濃度のCO2を含む混合気体下におい
て増殖能を有する、クロレラ ソロキニアナHAK株、
クロレラ ソロキニアナHFK株、クロレラ ソロキニ
アナYSK株及びクロレラソロキニアナHHK株のいず
れかよりなる微細藻クロレラをCO2を含む培地中で培
養しCO2を固定することを特徴とするCO2の固定化方
法にある。
Accordingly, a third invention is a chlorella solokiniana HAK strain, which has a growth ability at a temperature of 25 to 40 ° C. and in a mixed gas containing 0.03 to 40% CO 2 .
Chlorella Sorokiniana HFK strain, Chlorella Sorokiniana YSK Inc. and Chlorella solo Kinnear Na HHK any more made microalga chlorella cultivated in a medium containing a CO 2 method immobilization CO 2, characterized in that to fix the CO 2 strains It is in.

【0022】このCO2を固定化するための培養は、本
藻類をCO2を含む培地中、上記培養条件下で行われ
る。特に本藻類は、例えば火力発電所の排ガス中CO2
を固定する場合に、一般の微細藻類にない有利な特性を
示すが、処理すべきCO2としては、焼却場、エンジ
ン、炉、暖房等の、炭素含有物質を燃焼させて生じた排
ガスあるいは、発酵、腐敗により生じた排ガスや廃液中
の溶存CO2、さらには空気でも良く、少なくともCO2
を含有する気体またはCO2あるいは炭酸イオンが溶存
する液体であれば良い。
The culture for immobilizing CO 2 is performed by subjecting the algae to a culture medium containing CO 2 under the above culture conditions. In particular, the algae are, for example, CO 2 in exhaust gas from thermal power plants.
When fixing the, show advantageous properties not generally of microalgae, as the CO 2 to be treated, incineration, engine, furnace, heating or the like, or exhaust gas resulting by burning a carbon-containing material, Exhaust gas generated by fermentation and decay or dissolved CO 2 in waste liquid, or even air, at least CO 2
Or a liquid in which CO 2 or carbonate ions are dissolved.

【0023】CO2を固定化する培養において、大量に
培地の供給が必要となる場合がある。上記炭素源、窒素
源及びリンを含有する水として、汚染された河川水や湖
沼水あるいは生活排水、産業排水、し尿等のいわゆる富
栄養水は適当である。従って、本発明の上記CO2の固
定化方法において、培地として例えば富栄養水を使用す
ることができる。ここで富栄養水とは、上記の他に、発
酵や腐敗によって生じた排水や深海の海水、ダム湖水な
ど、少なくとも窒素またはリンを含有する水である。
In the culture for immobilizing CO 2 , a large amount of medium may need to be supplied. As the water containing the carbon source, the nitrogen source and the phosphorus, so-called eutrophic water such as polluted river water, lake water, domestic wastewater, industrial wastewater, and human waste is suitable. Therefore, in the CO 2 immobilization method of the present invention, for example, eutrophic water can be used as a medium. Here, the eutrophic water is water containing at least nitrogen or phosphorus, such as wastewater generated by fermentation or decay, deep sea water, or dam lake water, in addition to the above.

【0024】本藻類の、高い増殖能と高密度培養が可能
である特徴は、CO2固定化に目的を限らなくとも、例
えば微細藻類を培養して該微細藻類が合成する物質を回
収する場合に、本藻類を用いることによって、培養に要
する時間の短縮及び培養槽の容積の小型化が可能にな
る。また、高温、高CO2濃度において培養することで
殺菌処理をしなくても、混在する雑菌等の繁殖を抑えら
れる。さらに、培地として富栄養水を使用することでコ
ストダウンができる。
The characteristics of the present algae, which enable high growth ability and high-density cultivation, are not limited to CO 2 immobilization, for example, when microalgae are cultured to recover substances synthesized by the microalgae. In addition, by using the algae, the time required for culturing can be reduced and the volume of the culture tank can be reduced. In addition, by culturing at a high temperature and a high CO 2 concentration, propagation of mixed bacteria and the like can be suppressed without performing a sterilization treatment. Furthermore, the cost can be reduced by using eutrophic water as the medium.

【0025】従って、第4の発明は 25〜40℃の温度下
でかつ0.03〜40%濃度のCO2を含む混合気体下におい
て増殖能を有する、クロレラ ソロキニアナHAK株、
クロレラ ソロキニアナHFK株、クロレラ ソロキニ
アナYSK株及びクロレラソロキニアナHHK株のいず
れかよりなる微細藻クロレラを培養し培地中に有用物質
を蓄積せしめ、該有用物質を採取することを特徴とする
有用物質の製造方法である。
Accordingly, a fourth invention is a strain of Chlorella solokiniana HAK, which has a growth ability at a temperature of 25 to 40 ° C. and in a mixed gas containing 0.03 to 40% CO 2 .
A useful substance characterized by culturing a microalga Chlorella consisting of any of Chlorella solokiniana HFK strain, Chlorella solokiniana YSK strain and Chlorella solokiniana HHK strain, accumulating the useful substance in a medium, and collecting the useful substance. It is a manufacturing method.

【0026】ここで、微細藻類が合成する有用物質と
は、蛋白質、ペプチド、脂肪、糖、有機酸などの有機物
の他に、例えば本藻類の放出する蛍光や酸素、CO2
のガス、無機物等がある。さらに、本藻類は上述したよ
うに大量培養において一般の藻類と比較して有利な特徴
を有するので、微細藻類を培養して増殖させた藻体を燃
料や食料、肥料、土壌改良剤、建築材料、土木用材料、
紙等の材料として利用する場合に本藻類を使用すること
で時間、コスト及び敷地の節約ができる。
Here, useful substances synthesized by microalgae include not only organic substances such as proteins, peptides, fats, sugars, and organic acids, but also, for example, fluorescence emitted by the algae, gases such as oxygen and CO 2 , and inorganic substances. Etc. Further, as described above, the algae have advantageous characteristics in large-scale culture as compared with general algae, so that alga bodies obtained by culturing and growing microalgae are used as fuels, foods, fertilizers, soil conditioners, building materials. , Civil engineering materials,
Use of the algae when used as a material such as paper can save time, cost, and site.

【0027】従って、第5の発明は、25〜40℃の温度下
でかつ0.03〜40%濃度のCO2を含む混合気体下におい
て増殖能を有する、クロレラ ソロキニアナHAK株、
クロレラ ソロキニアナHFK株、クロレラ ソロキニ
アナYSK株及びクロレラソロキニアナHHK株のいず
れかよりなる微細藻クロレラを培養して増殖させた該微
細藻類を含んで成る燃料である。
Therefore, the fifth invention provides a chlorella solokiniana HAK strain, which has a growth ability at a temperature of 25 to 40 ° C. and in a mixed gas containing 0.03 to 40% CO 2 .
A fuel comprising the microalgae grown by culturing and growing a microalga, chlorella, comprising any of the chlorella solokiniana HFK strain, the chlorella solokiniana YSK strain, and the chlorella solokiniana HHK strain.

【0028】[0028]

【作用】上述したように本藻類は高温(少なくとも40℃)
かつ40%CO2雰囲気下でCO2固定能を有するために、
冷却エネルギを節約し被処理ガス中CO2を希釈するこ
となくあるいは濃縮してからCO2を固定することが可
能で、さらには増殖能が高く、高密度培養が可能なの
で、CO2固定化バイオリアクタの小型化を図ることが
でき、さらに付着性がなく均一に分散する性質であるの
で、光効率の良いCO2固定が可能となる。
[Action] As described above, this algae is hot (at least 40 ° C)
And in order to have CO 2 fixing ability under 40% CO 2 atmosphere,
Saving cooling energy is possible to fix the CO 2 from Without or concentrated diluting the treated gas CO 2, further high proliferative capacity, so capable of high-density culture, CO 2 immobilized bio Since the reactor can be reduced in size and has a property of being uniformly dispersed without adhesion, it is possible to fix CO 2 with high light efficiency.

【0029】次に本発明においては、クロレラに徐々に
CO2を高濃度に供給するので、該クロレラは最大の増
殖能を保ちながら40%CO2濃度雰囲気下においても連
続した増殖が可能である。次に本発明においては、本藻
類の増殖に必要な栄養塩の供給源として富栄養水を使用
するので、CO2固定化と同時に富栄養水の浄化ができ
る。
Next, in the present invention, since CO 2 is gradually supplied to chlorella at a high concentration, the chlorella can continuously grow even in a 40% CO 2 concentration atmosphere while maintaining the maximum growth ability. . Next, in the present invention, eutrophic water is used as a source of nutrients necessary for the growth of the algae, so that eutrophic water can be purified simultaneously with CO 2 fixation.

【0030】次に本藻類を培養して本藻類が合成する物
質を回収するので、増殖が速すなわち該物質の合成が速
く、高密度培養が可能なので培養槽を小型化できる。さ
らに培地として富栄養水を使用することで、コストダウ
ンが可能である。
Next, the present algae is cultured to recover the substance synthesized by the present algae, so that the growth is fast, that is, the synthesis of the substance is fast, and high-density cultivation is possible, so that the size of the culture tank can be reduced. Further, the cost can be reduced by using eutrophic water as a medium.

【0031】[0031]

【発明の実施の形態】以下、本発明を実施例により具体
的に説明する。ただし、本発明はこれら実施例に限定さ
れるものではない。 〔実施例1〕高温耐性を有する微細藻類が増殖している
と思われる源泉温度が40℃以上の温泉(旭岳温泉、幌加
温泉、層雲峡温泉、大雪高原温泉、十勝岳温泉、吹上温
泉、愛山渓温泉、白金温泉、天人峡温泉、等)や湖(西
湖)、池、等で緑色を呈する温水または浮遊物付着物を
採取した。表2に示すフィツゲラルド改変培地を0.03l
入れた、0.05lの三角フラスコに採取水または採取物を
加え、40℃の空気雰囲気のインキュベータ中で100(μE/
m2/s)の蛍光灯を照射して振とう培養した。その結果、4
0℃で増殖可能な微細藻類を選択した。次にフィツゲラ
ルド改変培地を0.08l入れた、0.1lの三角フラスコに
該微細藻類を接種し、温度を35℃に保った水浴中で底面
から100(μE/m2/s)の蛍光灯を照射した。供給CO2濃度
を5%、10%、30%、40%と徐々に高めて培養し、高CO2
性藻類を選択した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described specifically with reference to examples. However, the present invention is not limited to these examples. [Example 1] Hot springs with a source temperature of 40 ° C or higher at which high temperature resistant microalgae are likely to grow (Asahidake Onsen, Horoka Onsen, Sounkyo Onsen, Daisetsu Kogen Onsen, Tokachidake Onsen, Fukiage Onsen, Aizankei Onsen , Shirokane Onsen, Tenninkyo Onsen, etc.), lakes (West Lake), ponds, etc., to collect green hot water or suspended matter deposits. 0.03 l of the modified Fitzgerald medium shown in Table 2
The collected water or the collected material was added to a 0.05-l Erlenmeyer flask, and 100 (μE /
m 2 / s) and cultivated by shaking with irradiation of a fluorescent lamp. As a result, 4
Microalgae capable of growing at 0 ° C were selected. Next, the microalgae were inoculated into a 0.1-l Erlenmeyer flask containing 0.08 l of the modified Fitzgerald medium and irradiated with a 100 (μE / m 2 / s) fluorescent lamp from the bottom in a water bath maintained at 35 ° C. did. Cultivation was performed while gradually increasing the supplied CO 2 concentration to 5%, 10%, 30%, and 40%, and high CO 2 -resistant algae were selected.

【0032】これらのうち、特に増殖の速い株につい
て、培養中経時的に培地を2ml抜き出し、濁度を測定
することで増殖能を求めた。このように選択培養をする
ことで、高温、高CO2濃度に耐性のある、かつ増殖能
の高い微細藻類を得た。HAK−2株とHFK−6株に
ついて、温度が増殖に及ぼす影響を調べた。内径120m
m,高さ110mmの透明円筒形培養槽にフィツゲラルド改変
培地を入れ、外周から蛍光灯を用いて照射した。培養温
度は、フラスコ外周のウォ−タージャケットに恒温水を
循環させて一定に保持した。CO2と空気の混合ガスは
多孔質ガラス製の散気管を培地中に浸して、0.5l/min
で供給した。混合ガス中CO2濃度は30%とした。以上
の条件を同じにして、温度を30、35、40、45℃に設定し
た4通りの培養を行なった。図1及び図8に示す通り、
35〜40℃において最も良好な増殖が認められた。
Among these strains, 2 ml of the medium was withdrawn over time during the cultivation, and the proliferation ability was determined by measuring the turbidity. By performing the selective cultivation in this way, microalgae having high temperature, high CO 2 concentration and high proliferation ability were obtained. The effect of temperature on growth was examined for the HAK-2 and HFK-6 strains. 120m inside diameter
m, a modified Fitzgerald medium was placed in a 110 mm-high transparent cylindrical culture tank, and irradiation was performed from the outer periphery using a fluorescent lamp. The culture temperature was kept constant by circulating constant temperature water through a water jacket around the periphery of the flask. A mixed gas of CO 2 and air is immersed in a porous glass diffuser tube in the medium, and 0.5 l / min
Supplied with The CO 2 concentration in the mixed gas was 30%. Under the same conditions described above, four types of cultures were performed at temperatures of 30, 35, 40, and 45 ° C. As shown in FIGS. 1 and 8,
The best growth was observed at 35-40 ° C.

【0033】本藻類を培養することで、光照射をした場
合の冷却を必要とせずに、効率の良いCO2固定ができ
る。HAK−2株について、CO2濃度と増殖能の関係
を調べた。前述と同じ培養槽を用いて、通気空気中のC
2濃度を5,10,20,30,40%の条件で培養した。図2に
示す通り、CO2濃度が20〜40%の混合気体を供給した
場合に最も良好な増殖が認められた。
By culturing the algae, it is possible to fix CO 2 efficiently without requiring cooling when irradiating light. For the HAK-2 strain, the relationship between the CO 2 concentration and the growth ability was examined. Using the same culture tank as above, C in ventilated air
The O 2 concentration and cultured at 5,10,20,30,40% conditions. As shown in FIG. 2, the best growth was observed when a mixed gas having a CO 2 concentration of 20 to 40% was supplied.

【0034】本藻類を培養することで、排ガス中のCO
2を希釈せずに固定化処理させることができる。HAK
−2株について、高密度培養を行った。幅110mm,厚さ2
6mm,高さ280mmの透明偏平培養容器にフィツゲラルド改
変培地とHAK−2株を入れ、外周から蛍光灯を照射し
た。温度40℃、通気量500l/minで底部より通気撹拌し
た。供給空気中CO2濃度は10%とした。培養中、経時
的に培地を2ml抜き出し、濁度を測定して増殖能を求
めた。図4に示す通り、乾燥重量で4.0g/lまでの高密
度培養が可能であった。
By culturing the algae, CO in the exhaust gas is reduced.
2 can be immobilized without dilution. HAK
-2 strains were cultured at high density. Width 110mm, thickness 2
The Fitzgerald modified medium and the HAK-2 strain were placed in a 6 mm, 280 mm high transparent flat culture vessel, and irradiated with a fluorescent lamp from the outer periphery. The mixture was agitated from the bottom at a temperature of 40 ° C. and a flow rate of 500 l / min. The CO 2 concentration in the supply air was 10%. During the culture, 2 ml of the medium was withdrawn over time, and the turbidity was measured to determine the proliferation ability. As shown in FIG. 4, high-density culture up to 4.0 g / l in dry weight was possible.

【0035】本藻類を培養することで、CO2固定化バ
イオリアクタの小型化が図れる。 〔実施例2〕下水の二次処理水を内径120mm,高さ110mm
の透明円筒形培養槽に入れ、HAK−2株を接種し、蛍
光灯を照射した。図5のように、良好な増殖を示した。
本藻類に二次処理水を供給しながら培養することで、C
2固定と二次処理水浄化が同時にできる。 〔実施例3〕本発明におけるCO2固定の一実施例につ
いて説明する。図6に示すCO2固定化装置において、
1は光合成反応槽で、火力発電所2からの燃焼排ガスが
ブロワ−4によって該反応槽に供給される。なお、本発
明の実施例では燃焼排ガスの発生源を火力発電所2とし
ているが、例えばゴミ焼却場等の炭素含有物質を燃焼さ
せたもの、あるいは、生ゴミ発酵装置等の発酵や腐敗の
行われるところでもよく特に限定されるものではない。
また、ブロワ−4は排ガスを光合成反応槽1に送りこむ
手段であれば、特に限定されるものではない。
By culturing the present algae, the size of the CO 2 immobilized bioreactor can be reduced. [Example 2] Secondary treatment water of sewage was supplied with an inner diameter of 120 mm and a height of 110 mm.
Was inoculated with the HAK-2 strain and irradiated with a fluorescent lamp. As shown in FIG. 5, good growth was exhibited.
By culturing the algae while supplying the secondary treatment water, C
O 2 fixation and secondary treatment water purification can be performed simultaneously. Example 3 An example of a CO 2 fixation in the present invention will be described. In the CO 2 fixing device shown in FIG.
Reference numeral 1 denotes a photosynthesis reaction tank, and combustion exhaust gas from a thermal power plant 2 is supplied to the reaction tank by a blower-4. In the embodiment of the present invention, the generation source of the combustion exhaust gas is the thermal power plant 2. For example, the combustion power of a carbon-containing substance such as a garbage incineration plant, or the fermentation or decay of a garbage fermentation apparatus or the like is used. It is not particularly limited.
The blower 4 is not particularly limited as long as it is a means for sending the exhaust gas to the photosynthesis reaction tank 1.

【0036】前記した光合成反応槽1内にはクロレラH
AK−2株、HFK−6株、YSK株、HHK−6株を
単独あるいは混合して、図7に示すように被処理水19
に懸濁させている。3は被処理水の前処理槽である沈殿
槽で、5は排水を光合成反応槽1に供給するためのポン
プで、本実施例では生活排水を沈殿槽3により粒子を取
り除いた水を被処理水19として光合成反応槽1に供給
するようにしているが、被処理水19は、例えば工業排
水、農業排水等の産業排水、あるいは生ゴミ発酵装置の
排水でも良く、それらの排水を沈殿やろ過、生物処理等
の浄化処理をしたものでも良く、さらには河川、湖沼、
池水等でも良く、水中に水溶性物質として窒素、リンを
含有するものであれば特に限定されるものではない、ま
た、ポンプ5を使用する代わりに、河川水中、湖沼水中
及び海水中に光合成反応槽1を浸漬し、河川流、対流、
海流等を利用して被処理水19が光合成反応槽1に流れ
込むようにしても良い。7は光合成反応槽1で増加した
藻を回収したものを移動する藻回収手段で、回収された
藻はバイオマス8として乾燥し、燃料として利用する
か、肥料として利用する。
Chlorella H is contained in the photosynthesis reaction tank 1 described above.
The AK-2 strain, HFK-6 strain, YSK strain, HHK-6 strain alone or as a mixture were used as shown in FIG.
In suspension. Reference numeral 3 denotes a sedimentation tank, which is a pretreatment tank for the water to be treated. Reference numeral 5 denotes a pump for supplying wastewater to the photosynthesis reaction tank 1. In this embodiment, water from which domestic wastewater is removed by the sedimentation tank 3 is treated. Although the water 19 is supplied to the photosynthesis reaction tank 1, the water 19 to be treated may be, for example, industrial wastewater such as industrial wastewater or agricultural wastewater, or wastewater from a garbage fermentation apparatus. , Biological treatment etc. may be used, and furthermore, rivers, lakes,
The water may be pond water or the like, and is not particularly limited as long as it contains nitrogen and phosphorus as water-soluble substances. In addition, instead of using the pump 5, the photosynthetic reaction occurs in river water, lake water and sea water. Tank 1 is immersed, and river flow, convection,
The water 19 to be treated may flow into the photosynthesis reaction tank 1 using a sea current or the like. Numeral 7 denotes algae collecting means for moving the collected alga that has been collected in the photosynthesis reaction tank 1, and the collected alga is dried as biomass 8 and used as fuel or as fertilizer.

【0037】図7は図6の光合成反応槽1の部分を詳し
く表したものである。排ガスは排ガス供給管11、排水
は排水供給管13より光合成反応槽1に供給されるが、
これら供給管は、図に示すように光合成反応槽1内の被
処理水19の液面16よりも下部に接続している。光合
成反応槽1の一部は光合成反応槽1内に保持している藻
の大きさより小さな孔あるいは隙間を有するろ過膜15
により処理水放流管6へ開放されている。処理水放流管
6には放流ポンプ14が設置されている。光合成反応槽
1内の被処理水19中には発光担体17が浸漬されてい
る。発光担体17には光ファイバ18が接続されてい
る。
FIG. 7 shows the details of the photosynthesis reaction tank 1 shown in FIG. The exhaust gas is supplied to the photosynthesis reaction tank 1 from the exhaust gas supply pipe 11 and the wastewater is supplied from the wastewater supply pipe 13 to the photosynthesis reaction tank 1.
These supply pipes are connected below the liquid surface 16 of the water 19 to be treated in the photosynthesis reaction tank 1 as shown in the figure. A part of the photosynthesis reaction tank 1 has a filtration membrane 15 having holes or gaps smaller than the size of the algae held in the photosynthesis reaction tank 1.
To open the treated water discharge pipe 6. A discharge pump 14 is installed in the treated water discharge pipe 6. The luminescent carrier 17 is immersed in the water 19 to be treated in the photosynthesis reaction tank 1. An optical fiber 18 is connected to the light emitting carrier 17.

【0038】次に、かかる装置の動作について説明す
る。まず、沈殿槽3により粒子を除去した生活排水はポ
ンプ5により排水供給管12へ誘導され、光合成反応槽
1に供給され、ろ過膜15の下部までは光合成反応槽1
に保持され、それ以上の量の被処理水19は放流ポンプ
14によりろ過膜15を介して処理水放流管6へ放流さ
れる。この光合成反応槽1にクロレラを接種する。火力
発電所2の排ガスはブロワ−4により排ガス冷却装置2
0に引き込まれ、冷却されたのち、排ガス供給管11を
介して光合成反応槽1へ供給される。光ファイバ18は
外部の光、例えば太陽光を発光担体17に導入し、発光
担体17は導入された光を全面から均一に照射する。光
合成反応槽1内のクロレラは発光担体17からの光照射
を受け、光合成を行って排ガス中のCO2と被処理水1
9中の窒素、リンを吸収して増殖する。排水供給管13
から排水が順次光合成反応槽1へ供給されることで、液
面16が上昇し、光合成反応槽内1において溶存窒素、
リンが除去された処理水はろ過膜15によりろ過されて
処理水放流管6より放流される。CO2が除去され、ク
ロレラが放出した酸素を含む処理ガスは、液面16また
は放流ガス放出口9より大気中へ放出される。
Next, the operation of such an apparatus will be described. First, the domestic wastewater from which particles have been removed by the sedimentation tank 3 is guided to the drainage supply pipe 12 by the pump 5 and is supplied to the photosynthesis reaction tank 1.
Is discharged to the treated water discharge pipe 6 through the filtration membrane 15 by the discharge pump 14. Chlorella is inoculated into this photosynthesis reaction tank 1. The exhaust gas from the thermal power plant 2 is cooled by the exhaust gas cooling device 2 by the blower-4.
After being drawn into 0 and cooled, it is supplied to the photosynthesis reaction tank 1 via an exhaust gas supply pipe 11. The optical fiber 18 introduces external light, for example, sunlight, into the light-emitting carrier 17, and the light-emitting carrier 17 uniformly irradiates the introduced light from the entire surface. The chlorella in the photosynthesis reaction tank 1 receives light irradiation from the luminous carrier 17 and performs photosynthesis to obtain CO 2 in the exhaust gas and the water 1 to be treated.
Proliferates by absorbing nitrogen and phosphorus in 9. Drainage supply pipe 13
Is supplied to the photosynthesis reaction tank 1 sequentially, the liquid level 16 rises, and dissolved nitrogen,
The treated water from which phosphorus has been removed is filtered by the filtration membrane 15 and discharged from the treated water discharge pipe 6. The processing gas containing oxygen from which CO 2 has been removed and released by the chlorella is discharged into the atmosphere from the liquid surface 16 or the discharge gas discharge port 9.

【0039】このようにして排ガスと富栄養水を同時に
浄化するわけであるが、既に説明したように、排ガスを
処理するために藻を大量に培養するためには、窒素、リ
ンを大量に供給する必要がある。ところで、窒素、リン
を供給するに際して、本発明では光合成反応槽1内に富
栄養水を連続して供給するようにしている。従って、窒
素、リンが不足することなく、さらに、排ガスと富栄養
水を同時に浄化できる。特に富栄養水中の窒素、リンを
除去するので、水圏におけるアオコの発生を防ぐことが
できる。 〔実施例4〕本発明におけるCO2 固定の一実施例につ
いて説明する。まず、クロレラ ソロキニアナHAK株
の藻体中に固定化される炭素の量を調べた。培養後の藻
体を遠心分離によって回収し、藻体に付着した培地中の
無機塩類等を除去するために、蒸留水に懸濁して再度遠
心する洗浄操作を2回以上行った。再度回収した藻体を
−20℃で冷凍したあと60℃で5時間の脱気乾燥をし、乳
鉢で粉砕した。試料を酸素通気下で燃焼させた燃焼ガス
をCHN分析計を用いて分析した。
As described above, the exhaust gas and the eutrophic water are simultaneously purified. However, as described above, in order to culture a large amount of algae for treating the exhaust gas, a large amount of nitrogen and phosphorus are supplied. There is a need to. By the way, when supplying nitrogen and phosphorus, in the present invention, eutrophic water is continuously supplied into the photosynthesis reaction tank 1. Therefore, the exhaust gas and the eutrophic water can be simultaneously purified without a shortage of nitrogen and phosphorus. In particular, since nitrogen and phosphorus in eutrophic water are removed, it is possible to prevent the occurrence of blue water in the hydrosphere. [Embodiment 4] An embodiment of CO 2 fixation in the present invention will be described. First, the amount of carbon immobilized in the algal cells of the Chlorella solokiniana HAK strain was examined. After the culture, the alga bodies were collected by centrifugation, and in order to remove inorganic salts and the like in the medium adhered to the alga bodies, a washing operation of suspending in distilled water and centrifuging again was performed twice or more. The collected alga bodies were frozen at -20 ° C, degassed and dried at 60 ° C for 5 hours, and pulverized in a mortar. The combustion gas obtained by burning the sample under oxygen was analyzed using a CHN analyzer.

【0040】次に、クロレラ ソロキニアナHAK株を
培養し、藻体増加速度を求めた。培地は、MDM培地の
硝酸塩を約10mMになるようにあらかじめ増量した。直径
16cmの円筒ガラス容器に培地4Lを入れ、容器内部に設
置した攪拌棒を100rpmで回転させ、CO2 濃度5%の空
気混合ガスを0.3L/分でガラス製の散気管により培地
中に供給した。培養温度は40℃とした。光照射は培養槽
の外周に配置した15Wの蛍光灯4本により、培養槽中央
部での平均光強度を101μE/m2/sとした。培養中、経時
的に培地を2ml抜き出し、分光光度計により波長750nm
の吸光度を測定した。吸光度を乾燥重量に換算するため
に、藻体懸濁液を段階的に希釈して吸光度と乾燥重量を
測定し、吸光度と藻体乾燥重量濃度の検量線を作成し
た。培養時間に対する藻体濃度のグラフから、次式によ
り藻体増加速度を求めた。
Next, the Chlorella solokiniana HAK strain was cultured, and the algal body increase rate was determined. The amount of the nitrate in the MDM medium was previously increased to about 10 mM. diameter
4 L of medium was placed in a 16 cm cylindrical glass container, a stirring rod installed inside the container was rotated at 100 rpm, and an air mixed gas having a CO 2 concentration of 5% was supplied into the medium at 0.3 L / min through a glass aeration tube. . The culture temperature was 40 ° C. Light irradiation was performed by using four 15 W fluorescent lamps arranged on the outer periphery of the culture tank, and the average light intensity at the center of the culture tank was set to 101 μE / m 2 / s. During the culture, 2 ml of the medium was withdrawn over time, and the wavelength was 750 nm using a spectrophotometer.
Was measured for absorbance. To convert the absorbance into dry weight, the algal suspension was diluted stepwise, and the absorbance and dry weight were measured to prepare a calibration curve of absorbance and algal dry weight concentration. From the graph of the algal cell concentration with respect to the culture time, the algal cell increasing rate was determined by the following equation.

【0041】 藻体増加速度=(X2 −X1 )/(t2 −t1 )……………………(1) X1: 培養時間t1での藻体乾燥重量濃度(1 =1,2),
t1:培養時間( h) また、藻体増加速度と前述の藻体中炭素含有量からCO
2 固定化速度を次式により算出した。 CO2 固定化速度 (g-CO2 /m2 /h) =藻体増加速度×藻体中炭素含有率×44(CO2 分子量)/12(炭素原子量) (g-d.w./m2/h) (wt.%×1/100) ……………………(3) 比較として、財団法人地球人間環境フォーラムに保存さ
れているクロレラ株クロレラ ブルガリス(Chlorella v
ulgaris)(NIES-227)(以下、既知クロレラ株と記す)
を、C培地の硝酸塩を7.6mMになるように増量した培地
で25℃で培養する他はクロレラ ソロキニアナHAK株
と同じ方法により培養し、藻体増加速度と藻体中炭素含
有量からCO2 固定化速度を算出した。
The algal increasing rate = (X 2 -X 1) / (t 2 -t 1) ........................ (1) X 1: algae body dry weight concentration in the incubation time t 1 (1 = 1,2),
t 1 : cultivation time (h) In addition, from the algal increase rate and the carbon content in the algal body, CO
(2) The immobilization speed was calculated by the following equation. CO 2 immobilization rate (g-CO 2 / m 2 / h) = algal increase rate × algal carbon content × 44 (CO 2 molecular weight) / 12 (carbon atomic weight) (gd.w./m 2 / h) (wt.% × 1/100) ……………………… (3) For comparison, Chlorella vulgaris (Chlorella v.
ulgaris) (NIES-227) (hereinafter referred to as known chlorella strains)
Was cultured in the same manner as the Chlorella solokiniana HAK strain except that it was cultured at 25 ° C. in a medium in which the nitrate of the C medium was increased to 7.6 mM, and CO 2 was fixed based on the algal growth rate and the carbon content in the alga. The conversion rate was calculated.

【0042】クロレラ ソロキニアナHAK株と既知ク
ロレラ株はどちらも藻体中炭素含有率が約47%と、同程
度であった。図11に示すように、クロレラ ソロキニ
アナHAK株の方が藻体増加速度が速かった。このグラ
フから求めたCO2 固定化速度は、クロレラ ソロキニ
アナHAK株は16(g-CO2 /m2/h)、既知クロレラ株は15
(g-CO2 /m2/h)であった。このように、本発明のクロレ
ラ ソロキニアナHAK株は、既知クロレラよりも速い
CO2 固定化速度を示した。
Chlorella Solokiniana HAK strain and the known Chlorella strain both had a carbon content in the alga of about 47%, which was almost the same. As shown in FIG. 11, the algal cells increased faster in the Chlorella solokiniana HAK strain. The CO 2 immobilization rate obtained from this graph was 16 (g-CO 2 / m 2 / h) for the Chlorella solokiniana HAK strain and 15 for the known Chlorella strain.
(g-CO 2 / m 2 / h). Thus, the Chlorella solokiniana HAK strain of the present invention exhibited a higher CO 2 immobilization rate than known Chlorella.

【0043】本藻類を培養することで、速いCO2 固定
化が可能となる。 〔実施例5〕本藻類を培養して微細藻類が合成する物質
を回収する方法の一実施例として、本藻類からβ−カロ
チンを回収する方法を説明する。例えば実施例3のよう
な装置により大量かつ高密度に増殖させた本藻類を1日
静置させることで、あるいは5000rpmで15分の遠心をす
ることで沈殿させ、上澄を捨てて沈殿を回収する。これ
に60%水酸化カリウム、ついでエタノールを加えて加熱
する。遠心または自然沈降により上澄をわけ、さらにエ
タノールを加えて抽出を繰り返す。エタノール液を分液
漏斗に移し、等量のエーテルを加え、ついで2相に分か
れるまで水を加える。エーテル液をさらに水洗後脱水し
て溶剤を除く。以上の操作により、粗脂質が得られる。
By culturing the algae, fast CO 2 fixation becomes possible. [Example 5] As an example of a method of culturing the present algae and recovering a substance synthesized by the microalgae, a method of recovering β-carotene from the present algae will be described. For example, the algae grown in a large amount and at a high density by a device as in Example 3 are allowed to stand for one day, or by centrifugation at 5000 rpm for 15 minutes, and the supernatant is discarded to collect the precipitate. I do. 60% potassium hydroxide and then ethanol are added thereto and heated. The supernatant is separated by centrifugation or spontaneous sedimentation, and ethanol is added, and the extraction is repeated. Transfer the ethanol solution to a separatory funnel, add an equal volume of ether, and then add water until it separates into two phases. The ether solution is further washed with water and then dehydrated to remove the solvent. By the above operation, a crude lipid is obtained.

【0044】この粗脂質をエタノールに溶かし、60%水
酸化カリウムを1/10量加え、よく混和したのち気相を
窒素ガスに置換し、暗所に室温で放置する。これに2〜
3倍量の水を加え、さらに等量のエーテルを加えてエー
テル相に抽出する。エーテル抽出は3〜4回繰返し、全
カロチノイドをエーテルに移す。エーテル溶液を1/2
量の水で洗浄して、脂質、エタノール、アルカリを除去
し、無水硫酸ナトリウムを加えて脱水する。これを減圧
下で濃縮する。これにより、粗カロチノイドが得られ
る。
The crude lipid is dissolved in ethanol, and 1/10 amount of 60% potassium hydroxide is added. After mixing well, the gas phase is replaced with nitrogen gas, and the mixture is allowed to stand at room temperature in a dark place. 2 to this
Add 3 volumes of water, add an equal volume of ether and extract into ether phase. The ether extraction is repeated three to four times, transferring all carotenoids to ether. 1/2 ether solution
Wash with an amount of water to remove lipids, ethanol, and alkali, and add anhydrous sodium sulfate to dehydrate. It is concentrated under reduced pressure. Thereby, a crude carotenoid is obtained.

【0045】この粗カロチノイドを石油エーテルに溶か
し、90%メタノールを加えよく混合する。石油エーテル
層を水で数回洗浄してメタノールを十分に除き無水硫酸
ナトリウムで脱水後減圧濃縮する。等量のエーテルを加
えよく混和し、水を少量ずつ加えて2層に分け、エーテ
ル層を水で洗浄してメタノールを除き無水硫酸ナトリウ
ムで脱水したのち減圧濃縮する。このようにしてカロチ
ン粗標品が得られる。
This crude carotenoid is dissolved in petroleum ether, and 90% methanol is added and mixed well. The petroleum ether layer is washed several times with water to remove methanol sufficiently, dehydrated with anhydrous sodium sulfate and concentrated under reduced pressure. An equal amount of ether is added and mixed well, and water is added little by little to separate two layers. The ether layer is washed with water to remove methanol, dehydrated with anhydrous sodium sulfate, and then concentrated under reduced pressure. Thus, a crude carotene standard is obtained.

【0046】次に、カラムクラマトグラフにかける。カ
ロチン粗標品を活性アルミナカラムに吸着させ、展開液
に石油エーテル−アセトン混液を使用する。はじめは石
油エーテルのみで次にアセトン少しずつ加え、その濃度
を順次上げていく。黄色の色素が先に、ついで黄澄色の
色素が溶出される。前者はα−カロチン、後者はβ−カ
ロチンである。本藻類からは、0.33g/kg-d.w.のβ−カ
ロチンが得られる。
Next, it is applied to a column chromatograph. A crude carotene sample is adsorbed on an activated alumina column, and a mixed solution of petroleum ether and acetone is used as a developing solution. At first, use only petroleum ether, then add acetone little by little, and gradually increase its concentration. The yellow dye is eluted first, followed by the yellow dye. The former is α-carotene and the latter is β-carotene. The alga provides 0.33 g / kg-dw of β-carotene.

【0047】このように、本藻類を培養することで、健
康食品や医薬品として価値の高いβ−カロチンを大量に
生産できる。
As described above, by culturing the present algae, β-carotene, which is valuable as a health food or pharmaceutical, can be produced in large quantities.

【0048】[0048]

【発明の効果】本発明により、高温度で、かつ高CO2
濃度雰囲気下でCO2固定能を有する新規な藻類を提供
し、該藻類に火力発電所等の燃焼排ガス中CO2を固定
化させることにより地球温暖化を防止することを可能と
した。また、該藻類を用いて湖、及び河川の富栄養水中
の窒素、リンを吸収させて水圏環境浄化ができる。
According to the present invention, high temperature and high CO 2
The present invention provides a novel algae having a CO 2 fixation ability under a concentration atmosphere, and makes it possible to prevent global warming by fixing CO 2 in combustion exhaust gas from a thermal power plant or the like to the algae. In addition, the algae can be used to absorb nitrogen and phosphorus in eutrophic water of lakes and rivers to purify the aquatic environment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】HAK−2株の増殖の温度特性を示す図。FIG. 1 is a diagram showing the temperature characteristics of the growth of the HAK-2 strain.

【図2】HAK−2株の増殖のCO2濃度特性を示す
図。
FIG. 2 is a graph showing the CO 2 concentration characteristics of the growth of the HAK-2 strain.

【図3】HAK−2株の粒子構造を示す電子顕微鏡写真
観察による図。
FIG. 3 is an electron micrograph showing the particle structure of the HAK-2 strain.

【図4】HAK−2株を高密度に培養した場合の増殖曲
線を示す図。
FIG. 4 is a view showing a growth curve when the HAK-2 strain is cultured at a high density.

【図5】HAK−2株を二次処理水中で培養した場合の
増殖曲線を示す図。
FIG. 5 is a view showing a growth curve when the HAK-2 strain is cultured in secondary treatment water.

【図6】本発明の一実施例である、CO2固定化装置の
構成図。
FIG. 6 is a configuration diagram of a CO 2 immobilization device according to an embodiment of the present invention.

【図7】図7における光合成反応槽の部分を詳しく示し
た図。
FIG. 7 is a diagram showing the photosynthesis reaction tank in FIG. 7 in detail.

【図8】HFK−6株の増殖のCO2濃度特性を示す
図。
FIG. 8 is a graph showing the CO 2 concentration characteristics of the growth of the HFK-6 strain.

【図9】クロレラ ソロキニアナの粒子構造を示す電子
顕微鏡写真。
FIG. 9 is an electron micrograph showing the particle structure of Chlorella solokiniana.

【図10】HAK−2株の至適増殖CO2濃度特性を示
グラフ。
FIG. 10 is a graph showing the optimal growth CO 2 concentration characteristics of the HAK-2 strain.

【図11】クロレラ ソロキニアナHAK株及び既知ク
ロレラ株の藻体濃度増加を示すグラフ。
FIG. 11 is a graph showing an increase in algal cell concentration of Chlorella solokiniana HAK strain and known Chlorella strain.

【符号の説明】[Explanation of symbols]

1…光合成反応槽、2…火力発電所、3…沈殿槽、4…
ブロワ−、5…ポンプ、6…処理水放流管、7…藻回収
手段、8…バイオマス、9…放流ガス放出口、10…、
11…排ガス供給管、12…排水供給管、13…排水供
給管、14…放流ポンプ、15…ろ過膜、16…液面、
17…発光担体、18…光ファイバ、19…被処理水、
20…排ガス冷却装置、21…細胞核、22…チラコイ
ド、23…葉緑体、24…ピレノイド。
DESCRIPTION OF SYMBOLS 1 ... Photosynthetic reaction tank, 2 ... Thermal power plant, 3 ... Sedimentation tank, 4 ...
Blower, 5 ... Pump, 6 ... Treated water discharge pipe, 7 ... Algae recovery means, 8 ... Biomass, 9 ... Discharge gas discharge port, 10 ...
11 ... exhaust gas supply pipe, 12 ... drainage supply pipe, 13 ... drainage supply pipe, 14 ... discharge pump, 15 ... filtration membrane, 16 ... liquid level,
17: luminescent carrier, 18: optical fiber, 19: water to be treated,
20: exhaust gas cooling device, 21: cell nucleus, 22: thylakoid, 23: chloroplast, 24: pyrenoid.

フロントページの続き (51)Int.Cl.7 識別記号 FI C12P 1/00 B01D 53/34 135Z //(C12N 1/12 C12R 1:89) (C12P 1/00 C12R 1:89) (72)発明者 川田 みゆき 東京都港区西新橋2−8−11 第7東洋 海事ビル 財団法人 地球環境産業技術 研究機構内 (72)発明者 難波 勝 東京都港区西新橋2−8−11 第7東洋 海事ビル 財団法人 地球環境産業技術 研究機構内 (72)発明者 宍戸 美子 東京都港区西新橋2−8−11 第7東洋 海事ビル 財団法人 地球環境産業技術 研究機構内 (72)発明者 堺 直人 東京都港区西新橋2−8−11 第7東洋 海事ビル 財団法人 地球環境産業技術 研究機構内 (72)発明者 軽部 征夫 神奈川県川崎市宮前区東有馬1−13−16 (56)参考文献 特開 平7−313141(JP,A) 特開 平4−110395(JP,A) (58)調査した分野(Int.Cl.7,DB名) C12N 1/00 - 7/08 Continued on the front page (51) Int.Cl. 7 Identification FI C12P 1/00 B01D 53/34 135Z // (C12N 1/12 C12R 1:89) (C12P 1/00 C12R 1:89) (72) Invention Person Miyuki Kawada 2-8-11 Nishi-Shimbashi, Minato-ku, Tokyo 7th Oriental Maritime Building Inside the Institute for Global Environmental Technology (72) Inventor Masaru Namba 7-8-11 Nishi-Shimbashi, Minato-ku, Tokyo 7th Oriental Maritime Building Japan Institute for Global Environmental Technology (72) Inventor Yoshiko Shishido 2-8-11 Nishi-Shimbashi, Minato-ku, Tokyo 7th Oriental Maritime Building Inside the Japan Institute for Global Environmental Technology (72) Inventor Naoto Sakai Tokyo 2-8-11 Nishi-Shimbashi, Minato-ku, Tokyo The 7th Oriental Maritime Building Institution for Research on Global Environmental Technology (72) Inventor: Seiou Karube 1-13-16, Higashiarima, Miyamae-ku, Kawasaki-shi, Kanagawa (56) References Special open flat 7-313141 (JP, a) JP flat 4-110395 (JP, a) (58 ) investigated the field (Int.Cl. 7, DB ) C12N 1/00 - 7/08

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 生育至適CO2濃度が20〜40%である微
細藻クロレラ ソロキニアナHAK−2株。
1. A microalga Chlorella solokiniana HAK-2 strain having an optimal CO 2 concentration of 20 to 40% for growth.
【請求項2】 請求項1記載の微細藻クロレラ ソロキ
ニアナHAK−2株をCO2を含む培地中で培養しCO2
を固定することを特徴とするCO2の固定化方法。
2. The microalga Chlorella solokiniana HAK-2 strain according to claim 1, which is cultured in a medium containing CO 2 to obtain CO 2.
A method for immobilizing CO 2 , wherein
【請求項3】 培地が富栄養水であることを特徴とする
請求項2記載の微細藻クロレラ ソロキニアナHAK−
2株の培養方法。
3. The microalga Chlorella solokiniana HAK- according to claim 2, wherein the medium is eutrophic water.
Culture method of two strains.
【請求項4】 請求項1記載の微細藻クロレラ ソロキ
ニアナHAK−2株を培養し培地中に有用物質を蓄積せ
しめ、該有用物質を採取することを特徴とする有用物質
の製造方法。
4. A method for producing a useful substance, comprising culturing the microalga Chlorella solorkiniana HAK-2 strain according to claim 1, accumulating the useful substance in a medium, and collecting the useful substance.
【請求項5】 請求項1記載の微細藻クロレラ ソロキ
ニアナHAK−2株を培養して増殖させた該微細藻類を
含んでなる燃料。
5. A fuel comprising the microalgae obtained by culturing and growing the microalga Chlorella solokiniana HAK-2 strain according to claim 1.
JP06346297A 1997-03-17 1997-03-17 Microalgae chlorella and method for immobilizing CO2 using microalgae chlorella Expired - Fee Related JP3181237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06346297A JP3181237B2 (en) 1997-03-17 1997-03-17 Microalgae chlorella and method for immobilizing CO2 using microalgae chlorella

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06346297A JP3181237B2 (en) 1997-03-17 1997-03-17 Microalgae chlorella and method for immobilizing CO2 using microalgae chlorella

Publications (2)

Publication Number Publication Date
JPH10248553A JPH10248553A (en) 1998-09-22
JP3181237B2 true JP3181237B2 (en) 2001-07-03

Family

ID=13229940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06346297A Expired - Fee Related JP3181237B2 (en) 1997-03-17 1997-03-17 Microalgae chlorella and method for immobilizing CO2 using microalgae chlorella

Country Status (1)

Country Link
JP (1) JP3181237B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4598976B2 (en) * 2001-03-15 2010-12-15 三井造船株式会社 Biomass power generation system and biomass power generation method using the same
EP1509076A4 (en) * 2002-05-13 2008-01-16 Greenfuel Technologies Corp Photobioreactor and process for biomass production and mitigation of pollutants in flue gases
US20100227368A1 (en) * 2007-09-19 2010-09-09 Tm Industrial Supply, Inc. Renewable energy system
TWI356705B (en) 2007-10-25 2012-01-21 Internat Chlorella Co Ltd Extracts from chlorella sorokiniana
JP5777025B2 (en) * 2010-08-26 2015-09-09 東京電力株式会社 Green algae squid damo, method for producing lipid having a cultivation process of the green algae squid damo, and dried alga body of the green alga squid damo
JP6235210B2 (en) 2012-12-14 2017-11-22 株式会社デンソー Microalgae culture method
JP2017039078A (en) * 2015-08-19 2017-02-23 太平洋セメント株式会社 Wastewater treatment method
IT202000024127A1 (en) * 2020-10-13 2022-04-13 Univ Degli Studi Di Salerno PLANT FOR THE CAPTURE AND USE OF CO2

Also Published As

Publication number Publication date
JPH10248553A (en) 1998-09-22

Similar Documents

Publication Publication Date Title
Nwoba et al. Growth comparison of microalgae in tubular photobioreactor and open pond for treating anaerobic digestion piggery effluent
Scragg et al. Growth of microalgae with increased calorific values in a tubular bioreactor
CN101767893B (en) Device and method for coupling producing biological oil by utilizing microalgae to deeply treating wastewater
WO2009077087A1 (en) Process for the production of algal biomass with a high lipid content
WO2007129327A1 (en) A photo bio-reactor for cultivating and harvesting a bio-mass and a method thereof
CN112919641B (en) Method and treatment device for denitrification and dephosphorization by utilizing microalgae
CN107287125B (en) Method for culturing chlorella pyrenoidosa
JP2010057485A (en) Method for immobilizing carbon dioxide, and alga-culturing apparatus for immobilizing carbon dioxide
Wang et al. Domesticating Chlorella vulgaris with gradually increased the concentration of digested piggery wastewater to bio-remove ammonia nitrogen
CN109626584A (en) A kind of method of microalgae processing sauce waste water
CN104388315A (en) Scnedesmus quadricauda for efficiently treating typical domestic sewage, and culture method and application thereof
JP3181237B2 (en) Microalgae chlorella and method for immobilizing CO2 using microalgae chlorella
CN113481141A (en) Method for directionally culturing and enriching high-value microalgae biomass by coupling sludge extracting solution with CO2 and device for directionally culturing microalgae
CN113856624A (en) Preparation method of microalgae-biomass charcoal immobilized ligand and method for synchronously purifying biogas slurry and biogas
JPH0564577A (en) Method and device for culturing photosynthetic microorganism
KR20120073432A (en) Apparatus for producing microalgae using wastewater
JP2008043321A (en) Chlorella vulgaris, method of bioremediation by using the same, and also bioreactor and method for removing harmful substance by using the same
Sohail et al. Microalgal treatment of high-nutrient wastewater using twin layer cultivation system
CN112899168B (en) Application of 4R-aminopentanoic acid, 4-aminopentanoic acid and/or 4-aminobutyric acid in increasing chlorophyll content in gymnocyanine
Lee et al. Biomass production potential of Chlorella vulgaris under different CO 2 concentrations and light intensities
RU2797838C1 (en) Method for utilization of carbon dioxide using microalgae chlorella
CN113462577B (en) Mutant chlorella and application thereof in sewage treatment
CN113755336B (en) Chlorella strain resistant to pollution and application thereof in livestock and poultry waste treatment
Liu et al. Study on improvement of continuous hydrogen production by photosynthetic biofilm in interior illuminant reactor
CN216445080U (en) Photobioreactor for treating livestock and poultry manure anaerobic fermentation wastewater

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080420

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080420

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080420

Year of fee payment: 7

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080420

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080420

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090420

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees