JP2008043321A - Chlorella vulgaris, method of bioremediation by using the same, and also bioreactor and method for removing harmful substance by using the same - Google Patents

Chlorella vulgaris, method of bioremediation by using the same, and also bioreactor and method for removing harmful substance by using the same Download PDF

Info

Publication number
JP2008043321A
JP2008043321A JP2006250005A JP2006250005A JP2008043321A JP 2008043321 A JP2008043321 A JP 2008043321A JP 2006250005 A JP2006250005 A JP 2006250005A JP 2006250005 A JP2006250005 A JP 2006250005A JP 2008043321 A JP2008043321 A JP 2008043321A
Authority
JP
Japan
Prior art keywords
chlorella vulgaris
chlorella
harmful
phenolic hydroxyl
hydroxyl group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006250005A
Other languages
Japanese (ja)
Inventor
Jun Hirose
遵 廣瀬
Haruhiko Yokoi
春比古 横井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIYAZAKI TLO KK
Miyazaki TLO KK
Original Assignee
MIYAZAKI TLO KK
Miyazaki TLO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIYAZAKI TLO KK, Miyazaki TLO KK filed Critical MIYAZAKI TLO KK
Priority to JP2006250005A priority Critical patent/JP2008043321A/en
Publication of JP2008043321A publication Critical patent/JP2008043321A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Processing Of Solid Wastes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for removing harmful compounds by using Chlorella vulgaris bearing an outside disturbance such as heating treated materials to a high temperature, a bioremediation method by using the same, and a bioreactor and a method for removing harmful substances by using the same. <P>SOLUTION: This method for removing the harmful compounds having phenolic hydroxy groups contained in waste water or soil is provided by using the Chlorella vulgaris having a removing capacity of the harmful compounds having the phenolic hydroxy groups and bringing the Chlorella vulgaris cultured at 15 to 42°C temperature range in contact with the waste water or soil containing the harmful compounds having the phenolic hydroxy groups. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、フェノール性水酸基を持つ有害化合物の除去能を有するクロレラ・ブルガリスおよびこれを用いたバイオレメディエーション方法、ならびにバイオリアクタおよびこれを用いた有害物質除去方法に関するものである。  The present invention relates to Chlorella vulgaris having the ability to remove harmful compounds having a phenolic hydroxyl group, a bioremediation method using the same, a bioreactor, and a method for removing harmful substances using the same.

微細藻類を利用してフェノール性水酸基を持つ有害化合物の除去を行った例は、国内外の研究者によって既に報告されている。例えば、非特許文献1及び2には、微細藻類クロレラ・ファスカを利用した2,4−ジクロロフェノール及びビスフェノールAの除去法についてそれぞれ報告がなされている。  Examples of removing harmful compounds having phenolic hydroxyl groups using microalgae have already been reported by domestic and foreign researchers. For example, Non-Patent Documents 1 and 2 report methods for removing 2,4-dichlorophenol and bisphenol A using the microalgae Chlorella fasca, respectively.

また、一般的に微生物をバイオリアクタとして廃液処理などに使用することは、例えば、非特許文献3などで知られている。また、非特許文献4及び5では、固定化した微細藻類でリン酸やアンモニアの除去を行った結果が報告されている。  In general, the use of microorganisms as a bioreactor for waste liquid treatment is known, for example, from Non-Patent Document 3. Non-patent documents 4 and 5 report the results of removing phosphoric acid and ammonia with immobilized microalgae.

N.Tsuji et al.,Photosynthesis−dependent removal of 2,4−dichlorophenol by Chlorella fusca var.vacuolata.Biotechnology Letters,Vol.25,p.241−244.(2003).N. Tsuji et al. , Photosynthesis-dependent removal of 2,4-dichlorophenol by Chlorella fusca var. vacolata. Biotechnology Letters, Vol. 25, p. 241-244. (2003). T.Hirooka et al.,Biodegradation of bisphenol A and disappearance of its estrogenic activity by the green alga Chlorella fusca var.vacuolata.Environmental Toxicology and Chemistry,Vol.24,p.1896−1901.(2005).T.A. Hirooka et al. Biodegradation of bisphenol A and discovery of it's estrogenic activity by the green alga Chlorella fusca var. vacolata. Environmental Toxicology and Chemistry, Vol. 24, p. 1896-1901. (2005). 須藤隆一編,環境微生物実験法, 154〜189頁(講談社刊1988年)。Edited by Ryuichi Sudo, Experimental Method for Environmental Microorganisms, pp. 154 to 189 (published by Kodansha, 1988). N.F.Y.Tam and Y.S.Wong,Effect of immobilized microalgal bead concentrations on wastewater nutrient removal.Environmental Pollution,Vol.107,p.145−151(2000).N. F. Y. Tam and Y.M. S. Wong, Effect of Immobilized Microbead Concentrations on Wastewater Nutrient removal. Environmental Pollution, Vol. 107, p. 145-151 (2000). L.E.de−Bashan et al.,Romoval of ammonium and phosphorus ions from synthetic wastewater by the microalgae Chlorella vulgaris coimmobilized in alginate beads with the microalgae growth−promoting bacterium Azospirellum brasilence.Water Research,Vol.36,p.2941−2948(2002).L. E. de-Bashan et al. , Romaval of ammonium and phosphorous ions, and the bioaspirating algebraic energized belgium in the form of the biomaterials. Water Research, Vol. 36, p. 2941-2948 (2002).

内分泌攪乱作用を示すクロロフェノール等のフェノール性水酸基を持つ有害化合物の除去において、これまで提案されている微生物を用いた場合、外乱により有害化合物を含有する被処理水が40℃近くの高温状態となった際に、微生物は被処理水中でほぼ死滅状態となってしまうので、その後、被処理水が25℃〜35℃の適温状態に下がっても、微生物による有害化合物の除去を行うことができないという問題がある。
そこで、本発明は、有害化合物の除去処理において、被処理物の高温化という外乱に耐えうるクロレラ・ブルガリスおよびこれを用いたバイオレメディエーション方法を提供することを目的とする。
In the removal of harmful compounds having phenolic hydroxyl groups such as chlorophenol, which shows endocrine disrupting effects, when the microorganisms proposed so far are used, the water to be treated containing harmful compounds has a high temperature of about 40 ° C. due to disturbance. Since the microorganisms are almost killed in the treated water, the harmful compounds cannot be removed by the microorganisms even if the treated water is lowered to an appropriate temperature of 25 ° C. to 35 ° C. There is a problem.
Accordingly, an object of the present invention is to provide Chlorella vulgaris that can withstand disturbances such as high temperature of an object to be processed in removing harmful compounds, and a bioremediation method using the same.

本発明者は、上記課題を解決するため鋭意研究を重ねた結果、宮崎県および近隣の県の池、河川、水田、温泉等から採取した試水(すべて淡水)から分離して集積培養した微細藻類株(クロレラ・ブルガリス)の中に、クロロフェノール等のフェノール性水酸基を持つ有害化合物の除去能を有し、42℃でも生育可能な光合成微生物を見出し、本発明に至った。  As a result of intensive research to solve the above-mentioned problems, the present inventor has isolated and cultured cultivated samples separated from sample water (all fresh water) collected from ponds, rivers, paddy fields, hot springs, etc. in Miyazaki Prefecture and neighboring prefectures. In the algae strain (Chlorella vulgaris), a photosynthetic microorganism having the ability to remove harmful compounds having a phenolic hydroxyl group such as chlorophenol and capable of growing at 42 ° C. has been found, and the present invention has been achieved.

すなわち、本発明は、フェノール性水酸基を持つ有害化合物の除去能を有するクロレラ・ブルガリスであって、15〜42℃の温度範囲で生育可能なクロレラ・ブルガリスであることを特徴とする。  That is, the present invention is a chlorella vulgaris having the ability to remove harmful compounds having a phenolic hydroxyl group, and is characterized by being able to grow in a temperature range of 15 to 42 ° C.

また、本発明のクロレラ・ブルガリスは、5〜15v/v%CO通気下で生育可能であることを特徴とする。
このクロレラ・ブルガリスを用いれば、有害化合物の除去処理とともにCOの固定も可能であるので、有害化合物の除去処理とCOの削減とを同時に並行して実施することができる。
Further, Chlorella vulgaris of the present invention is characterized in that it is able to grow in 2 under aeration 5~15v / v% CO.
If this Chlorella vulgaris is used, the removal of harmful compounds and the fixation of CO 2 are possible, so the removal of harmful compounds and the reduction of CO 2 can be carried out in parallel.

また、本発明者は、上記分離した微細藻類株について研究を進めた結果、とくに、受託番号FERM P−20906を有するクロレラ・ブルガリス、および受領番号FERM AP−20963を有するクロレラ・ブルガリスが、フェノール性水酸基を有する有害化合物の優れた除去能を有することがわかった。  In addition, as a result of research on the isolated microalgal strain, the present inventor, in particular, Chlorella vulgaris having the accession number FERM P-20906 and Chlorella vulgaris having the reception number FERM AP-20963, It was found that the compound has an excellent ability to remove harmful compounds having a phenolic hydroxyl group.

また、本発明者は、フェノール性水酸基を有する有害化合物を含む水溶液中に、本発明のクロレラ・ブルガリスを添加して撹拌したり、フェノール性水酸基を有する有害化合物を含む土壌に本発明のクロレラ・ブルガリスを添加したりすると、その直後に、フェノール性水酸基を有する有害化合物が速やかに減少することを明らかにした。  In addition, the present inventor added and stirred the chlorella bulgaris of the present invention in an aqueous solution containing a harmful compound having a phenolic hydroxyl group, or the chlorella of the present invention in soil containing a harmful compound having a phenolic hydroxyl group.・ It was clarified that harmful compounds having phenolic hydroxyl groups immediately decrease immediately after the addition of Bulgaris.

すなわち、本発明のバイオレメディエーション方法は、フェノール性水酸基を有する有害化合物を含む廃水に、少なくとも本願の第1から第4のいずれかの発明におけるクロレラ・ブルガリスを接触させる工程を有することを特徴とする。  That is, the bioremediation method of the present invention comprises a step of bringing at least the chlorella vulgaris in any one of the first to fourth inventions of the present application into contact with wastewater containing a harmful compound having a phenolic hydroxyl group. To do.

また、本発明のバイオレメディエーション方法は、フェノール性酸基を有する有害化合物を含む土壌に、少なくとも本願の第1から第4のいずれかの発明に記載のクロレラ・ブルガリスを接触させる工程を有することを特徴とする。  In addition, the bioremediation method of the present invention includes a step of contacting at least the chlorella vulgaris according to any one of the first to fourth inventions of the present application with soil containing a harmful compound having a phenolic acid group. It is characterized by.

また、本発明のバイオリアクタは、酸性多糖類のゲルによって形成され、フェノール性水酸基を持つ有害化合物の除去能を有するクロレラ属の微細藻類を担持したビーズを充填したものであることを特徴とする。特に、クロレラ属の微細藻類を、本願の第1から第4のいずれかの発明に記載のクロレラ・ブルガリスとするとよい。  Also, the bioreactor of the present invention is characterized in that it is filled with beads carrying a microalga of Chlorella sp. Formed by an acidic polysaccharide gel and capable of removing harmful compounds having a phenolic hydroxyl group. . In particular, the microalga of the genus Chlorella is preferably the Chlorella vulgaris described in any one of the first to fourth inventions of the present application.

また、本発明の有害物質除去方法は、前記バイオリアクタを、フェノール性水酸基を有する有害化合物を含む水溶液中に浸漬し、当該水溶液から有害化合物を除去することを特徴とする。  The hazardous substance removal method of the present invention is characterized in that the bioreactor is immersed in an aqueous solution containing a harmful compound having a phenolic hydroxyl group, and the harmful compound is removed from the aqueous solution.

クロレラ属の微細藻類が担持された担持体の形態としては、従来、シート状のもの、あるいはネット状のものなどが知られているが、このような形態の担持体は、長期間にわたって十分な機械的強度を維持することが難しいので、これらの担持体をバイオリアクタとして廃水中に含まれる有害化合物の除去に用いると担持体が崩壊しやすく、長期間にわたって、廃水中に含まれる有害化合物の除去を十分に行うことができないという問題がある。しかしながら、本発明によれば、シート状やネット状のものに担持されたクロレラ属の微細藻類を用いる場合と比べるとビーズ1つ1つの機械的強度が高いので、これらを充填したバイオリアクタを、フェノール性水酸基を有する有害化合物を含む水溶液中に浸漬しても、ビーズが崩壊することなくその形状が維持され、長期間にわたって廃水中に含まれる有害化合物の除去を行うことができる。  Conventionally, as a form of a support on which microalgae belonging to the genus Chlorella are supported, a sheet-like or net-like form is known, but such a form of support is sufficient for a long period of time. Since it is difficult to maintain the mechanical strength, if these carriers are used as a bioreactor for removing harmful compounds contained in wastewater, the carriers are likely to collapse, and over a long period of time There is a problem that the removal cannot be performed sufficiently. However, according to the present invention, the mechanical strength of each bead is higher than when using the microalgae of the genus Chlorella supported on a sheet-like or net-like one. Even when immersed in an aqueous solution containing a harmful compound having a phenolic hydroxyl group, the shape of the beads is maintained without collapsing, and the harmful compounds contained in the wastewater can be removed over a long period of time.

また、クロレラ属の微細藻類を担持したビーズは機械的強度が確保されるため、有害化合物の除去処理に使用した後の回収も容易であり、回収後にさらにこれを使用して繰り返し有害化合物の除去処理を行うこともできる。また、クロレラ属の微細藻類はビーズに担持されているので、除去処理を繰り返し行う際に、クロレラ属の微細藻類の回収に伴う遠心分離操作を必要としないので、作業が容易となる。  In addition, since the beads carrying chlorella microalgae have sufficient mechanical strength, they can be easily recovered after they have been used to remove harmful compounds. Processing can also be performed. In addition, since the microalgae belonging to the genus Chlorella are carried on the beads, the centrifugation operation associated with the collection of the microalgae belonging to the genus Chlorella is not required when the removal treatment is repeated, and thus the operation is facilitated.

なお、シート状やネット状の担持体に十分な強度を持たせるために、廃水中に含まれる有害化合物の除去を行う際に十分な機械的強度を有する基材上に、シート状やネット状の担持体を形成することも考えられるが、そうなると、担持体の形成方法が煩雑である。しかしながら、本発明によれば、クロレラ属の微細藻類が担持されたビーズは、たとえば、クロレラ属の微細藻類を懸濁した酸性多糖類のゲルを所定の溶液中に滴下するだけで得ることができ、製造が容易である。さらに、ビーズ状にすることにより、シート状やネット状とする場合よりも、有害化合物を含む水溶液に接触する表面積を増加させることができ、有害化合物の処理能力の増大を図ることもできる。  In addition, in order to give the sheet-like or net-like carrier sufficient strength, the sheet-like or net-like shape is formed on a substrate having sufficient mechanical strength when removing harmful compounds contained in the wastewater. Although it is conceivable to form a carrier, the method for forming the carrier is complicated. However, according to the present invention, beads carrying chlorella microalgae can be obtained, for example, by dropping an acidic polysaccharide gel in which chlorella microalgae are suspended into a predetermined solution. Easy to manufacture. Further, by forming the beads, the surface area in contact with the aqueous solution containing the harmful compound can be increased as compared with the case of forming a sheet or a net, and the treatment capacity of the harmful compound can be increased.

なお、クロレラ属の微細藻類は、培養液から遠心分離により回収し、これをビーズの形状に調製して用いる。クロレラ属の微細藻類の担持方法としては、包括法、物理吸着法、マイクロカプセル法などを用いることができる。包括法を用いる場合、担体としては、アルギン酸カラギーナンなどの多糖類、硬化性樹脂、ポリアクリルアミド等のゲル化剤などを用いることができる。  The microalgae of the genus Chlorella are collected from the culture solution by centrifugation, and are prepared into beads to be used. As a method for supporting microalgae belonging to the genus Chlorella, an entrapment method, a physical adsorption method, a microcapsule method, or the like can be used. When using the inclusion method, as the carrier, a polysaccharide such as carrageenan alginate, a curable resin, a gelling agent such as polyacrylamide, or the like can be used.

なお、酸性多糖類としては、アルギン酸カルシウムを用いる方が望ましい。アルギン酸カルシウムは取り扱いが容易であり、また、ビーズの形成も容易である。  As the acidic polysaccharide, it is preferable to use calcium alginate. Calcium alginate is easy to handle and bead formation is also easy.

上記フェノール性水酸基を有する有害化合物としては、内分泌攪乱作用を示す有害化合物、たとえば、4−クロロフェノール(4CP)のようなクロロフェノール類、ビスフェノールAなどが挙げられる。  Examples of the harmful compound having a phenolic hydroxyl group include harmful compounds exhibiting endocrine disrupting action, for example, chlorophenols such as 4-chlorophenol (4CP), bisphenol A, and the like.

本発明によれば、フェノール性水酸基を持つ有害化合物の除去能を有し、微細藻類の培養や生育において比較的高温域とされる温度領域、すなわち30〜42℃程度の温度でも生育可能なクロレラ・ブルガリスであるので、このクロレラ・ブルガリスを用いれば、被処理物が外乱によって40℃程度の高温となっても、死滅することなく生育することができ、有害化合物の除去処理を行うことができる。また、高温の燃焼ガスに含まれるCOの固定によって派生したクロレラ・ブルガリスを有効利用することができる。また、これを用いることにより、COの固定による排出削減とバイオレメディエーションを並行して実施することができる。According to the present invention, chlorella has the ability to remove harmful compounds having a phenolic hydroxyl group, and can grow even in a temperature range that is relatively high in the culture and growth of microalgae, that is, at a temperature of about 30 to 42 ° C.・ Because it is Bulgaris, if this Chlorella vulgaris is used, even if the object to be treated is heated to a high temperature of about 40 ° C. due to disturbance, it can grow without dying and remove harmful compounds. Can do. In addition, Chlorella vulgaris derived by fixing CO 2 contained in the high-temperature combustion gas can be effectively used. Moreover, by using this, emission reduction by CO 2 fixation and bioremediation can be performed in parallel.

以下、本発明の実施の形態におけるクロレラ・ブルガリスを用いたフェノール性水酸基を有する有害化合物の除去法について詳細に説明する。本発明の実施の形態にかかるフェノール性水酸基を有する有害化合物の除去に用いるクロレラ・ブルガリスは、受託番号FERM P−20906を有するクロレラ・ブルガリス(以下、「クロレラ・ブルガリスMKJ−34」と称す。)、または本出願人が、独立法人産業総合研究所特許生物寄託センターに寄託して、平成18年7月18日に受領された受領番号FERM AP−20963を有するクロレラ・ブルガリス(以下、「クロレラ・ブルガリスC−1」と称す。)である。以下、このクロレラ・ブルガリスMKJ−34及びクロレラ・ブルガリスC−1の単離方法や形態解析の結果について説明する。また、これらを使用したバイオリアクタ、ならびにそれを用いた有害物質の除去方法についても詳細に説明する。  Hereinafter, a method for removing harmful compounds having a phenolic hydroxyl group using Chlorella vulgaris according to an embodiment of the present invention will be described in detail. Chlorella vulgaris used for removing harmful compounds having a phenolic hydroxyl group according to an embodiment of the present invention is chlorella vulgaris having an accession number FERM P-20906 (hereinafter referred to as “Chlorella vulgaris MKJ-34”). Or the Chlorella Bulgaris (hereinafter referred to as the following) having the receipt number FERM AP-20963 received on July 18, 2006, deposited by the National Institute of Advanced Industrial Science and Technology Patent Biological Deposit Center. "Chlorella Bulgaris C-1"). Hereinafter, the isolation method and the result of morphological analysis of Chlorella vulgaris MKJ-34 and Chlorella vulgaris C-1 will be described. Moreover, the bioreactor using these and the removal method of a harmful substance using the same are demonstrated in detail.

(実施例1)クロレラ・ブルガリスMKJ−34の単離方法
1−1:培地
熊本県菊池市の水田から採取した試水に含まれる微細藻類を、MBM培地で集積培養した。MBM培地は、x1 MBMmediumをオートクレーブ滅菌し、濾過滅菌したx100 Fe mixtureとx100 A5 metal mixtureをそれぞれ100分の1量加えて使用した。それぞれの組成を以下に示す。
xl MBM medium:
KNO 25mg,MgSO・7HO 7.5mg,KHPO 7.5mg,KHPO 17.5mg,NaCl 2.5mg,CaCl・2HO 1mg,NaHCO 50mg,Fe mixture 0.1ml,A5 metal mixture 0.1ml,
蒸留水99.8ml,pH6.0
x100 Fe mixture:FeSO・7HO 1g,蒸留水500ml,HSO2滴
x100 A5 metal mixture:HBO 286mg,MnSO・7HO 250mg,ZnSO・7HO 22.2mg,CuSO・HO 7.9mg,NaMoO 2.1mg,蒸留水100ml
(Example 1) Isolation method of Chlorella vulgaris MKJ-34 1-1: Medium Microalgae contained in test water collected from paddy fields in Kikuchi City, Kumamoto Prefecture were accumulated and cultured in MBM medium. As the MBM medium, x1 MBM medium was sterilized by autoclave, and x100 Fe mixture and x100 A5 metal mix sterilized by filtration were each added in an amount of 1/100. Each composition is shown below.
xl MBM medium:
KNO 3 25 mg, MgSO 4 · 7H 2 O 7.5 mg, K 2 HPO 4 7.5 mg, KH 2 PO 4 17.5 mg, NaCl 2.5 mg, CaCl 2 · 2H 2 O 1 mg, NaHCO 3 50 mg, Fe mixture 0 .1 ml, A5 metal mixture 0.1 ml,
Distilled water 99.8 ml, pH 6.0
x100 Fe mixture: 1 g of FeSO 4 · 7H 2 O, 500 ml of distilled water, 2 drops of H 2 SO 4 x100 A5 metal mixture: H 3 BO 3 286 mg, MnSO 4 · 7H 2 O 250 mg, ZnSO 4 · 7H 2 O 22.2 mg , CuSO 4 .H 2 O 7.9 mg, Na 2 MoO 4 2.1 mg, distilled water 100 ml

一方、微細藻類の高密度培養及び長期保存には、YPD培地(グルコース2%、ポリペプトン(和光純薬製)2%、酵母エキス(和光純薬製)2%)を使用して、2日間回転振とう培養を行った。  On the other hand, for high-density culture and long-term storage of microalgae, use YPD medium (glucose 2%, polypeptone (manufactured by Wako Pure Chemical Industries) 2%, yeast extract (manufactured by Wako Pure Chemical Industries) 2%)) for 2 days. Shaking culture was performed.

1−2:単離方法
採取した試水を太陽光(間接光)照射下、40℃で2週間静置集積培養を行った。集積培養液を100培〜1000倍に滅菌水で希釈して終濃度50mg/lのアンピシリン及び2%の寒天を含むMBM平板培地に接種して30℃、光照射下で2週間静置培養を行い、生じた緑色を呈するコロニーから微細藻類の分離を行った。そして、この緑色コロニーを再度MBM平板培地に移し、シングルコロニーアイソレーションを繰り返し、単離微細藻類株とした。
1-2: Isolation method The collected sample water was subjected to static accumulation culture at 40 ° C. for 2 weeks under sunlight (indirect light) irradiation. The enrichment culture solution is diluted 100-1000 times with sterilized water and inoculated into MBM plate medium containing ampicillin with a final concentration of 50 mg / l and 2% agar, and then statically cultured at 30 ° C. under light irradiation for 2 weeks. The microalgae were separated from the resulting green colonies. Then, this green colony was transferred again to the MBM plate medium, and single colony isolation was repeated to obtain an isolated microalgae strain.

単離した微細藻類株の18S−rRNA遺伝子の塩基配列を決定し、ホモロジーを検索すると、既知のクロレラ・ブルガリスの18S−rRNA遺伝子と99.9%の相同性を示した。単離微生物は、18S−rRNA遺伝子の塩基配列及び形態的特徴並びにその生理学的性質からクロレラ・ブルガリスの新種と考えられ、この単離微生物をクロレラ・ブルガリスMKJ−34と命名した。  When the base sequence of the 18S-rRNA gene of the isolated microalgae strain was determined and the homology was searched, it showed 99.9% homology with the known Chlorella vulgaris 18S-rRNA gene. The isolated microorganism was considered to be a new species of Chlorella vulgaris from the nucleotide sequence and morphological characteristics of the 18S-rRNA gene and its physiological properties, and this isolated microorganism was named Chlorella vulgaris MKJ-34.

1−3:形態的特徴
単離したクロレラ・ブルガリスMKJ−34株の光学顕微鏡写真を図1に示す。単離微生物を光学顕微鏡で観察すると、図1に示すように、細胞形態は球形で、細胞膜は平滑、大きさは4−6μmであり、自生胞子嚢中に、2−8個の娘細胞が観察され、クロレラ・ブルガリスの特徴を示していた。
1-3: Morphological characteristics FIG. 1 shows an optical micrograph of the isolated Chlorella vulgaris MKJ-34 strain. When the isolated microorganism is observed with an optical microscope, as shown in FIG. 1, the cell morphology is spherical, the cell membrane is smooth, the size is 4-6 μm, and 2-8 daughter cells are found in the spontaneous sporangia. Observed and showed the characteristics of Chlorella vulgaris.

1−4:生理学的特徴
(1)フェノール除去能を持つ
(2)5〜15v/v%CO通気下で生育できる
(3)独立栄養条件下(光照射下)と従属栄養条件下の両方で生育できる
1-4: Physiological characteristics (1) It has the ability to remove phenol (2) It can grow under 5-15 v / v% CO 2 aeration (3) Both autotrophic conditions (under light irradiation) and heterotrophic conditions Can grow in

なお、クロレラ・ブルガリスMKJ−34株の長期保管は、YPDスラント培地上、30℃下で培養し、コロニー形成を肉眼で確認(5−7日)の後、低温(例えば4℃)で保管するのが望ましい。コロニー形成を肉眼確認(約4日)の後、低温(例えば、4℃)で保管し保存菌株とする。この保存菌株は数ヶ月毎、標準的には6か月毎で新しいYPD寒天平板培地に植え替える。  The long-term storage of Chlorella vulgaris strain MKJ-34 is cultured at 30 ° C on a YPD slant medium, and colony formation is confirmed with the naked eye (5-7 days), and then stored at a low temperature (eg, 4 ° C). It is desirable to do. Colony formation is visually confirmed (about 4 days), and then stored at a low temperature (for example, 4 ° C.) to obtain a preserved strain. This stock is replanted on a new YPD agar plate every few months, typically every 6 months.

(実施例2)クロレラ・ブルガリスC−1の単離方法
実施例1と同様の手順で、鹿児島県曽於郡大崎町の池から採取した試水から、上述したクロレラ・ブルガリスMKJ−34とは別の微細藻類株を単離した。
(Example 2) Isolation method of Chlorella vulgaris C-1 In the same procedure as in Example 1, from the test water collected from the pond of Osaki-cho, Kagoshima Prefecture, the above-mentioned Chlorella vulgaris MKJ-34 and Isolated another microalgal strain.

2−1:単離方法
より詳細には、まず、試水をMBM培地に接種して太陽光(間接光)照射下、25℃で2週間、藻類の集積培養を行った。集積培養液は2500倍〜10000倍に希釈して再度25℃で2週間集積培養を繰り返した。次に集積培養液を終濃度50mg/lのアンピシリン及び2%の寒天を含むMBM平板培地に接種して30℃、光照射下で2週間静置培養を行い、生じた緑色を呈するコロニーから微細藻類の分離を行った。この緑色コロニーを再度MBM平板培地に移し、シングルコロニーアイソレーションを繰り返し、単離微細藻類株とした。
2-1: Isolation method More specifically, the test water was first inoculated into the MBM medium, and algae were accumulated and cultured at 25 ° C. for 2 weeks under sunlight (indirect light) irradiation. The enrichment culture solution was diluted 2500 times to 10,000 times, and the enrichment culture was repeated again at 25 ° C. for 2 weeks. Next, the enriched culture solution was inoculated into an MBM plate medium containing ampicillin having a final concentration of 50 mg / l and 2% agar, followed by stationary culture under light irradiation at 30 ° C. for 2 weeks. From the resulting colonies showing green color, Algae separation was performed. This green colony was again transferred to the MBM plate medium, and single colony isolation was repeated to obtain an isolated microalgae strain.

単離した微細藻類株の18S−rRNA遺伝子の塩基配列を決定し、ホモロジーを検索すると、既知のクロレラ・ブルガリスの18S−rRNA遺伝子と99%の相同性を示した。単離微生物は、18S−rRNA遺伝子の塩基配列及び形態的特徴並びに生理学的性質からクロレラ・ブルガリスの新種と考えられ、この単離微生物をクロレラ・ブルガリスC−1と命名した。  When the nucleotide sequence of the 18S-rRNA gene of the isolated microalgae strain was determined and the homology was searched, it showed 99% homology with the known 18S-rRNA gene of Chlorella vulgaris. The isolated microorganism was considered to be a new species of Chlorella vulgaris from the base sequence and morphological characteristics and physiological properties of the 18S-rRNA gene, and this isolated microorganism was named Chlorella vulgaris C-1.

2−2:形態的特徴
単離したクロレラ・ブルガリスC−1株の光学顕微鏡写真を図2に示す。単離微生物を光学顕微鏡で観察すると、図2に示すように、細胞形態は球形で、細胞膜は平滑、大きさは6−9μmで、葉緑体は腕状であり、クロレラ・ブルガリスの特徴を示していた。
2-2: Morphological characteristics FIG. 2 shows an optical micrograph of the isolated Chlorella vulgaris C-1 strain. When the isolated microorganism is observed with an optical microscope, as shown in FIG. 2, the cell morphology is spherical, the cell membrane is smooth, the size is 6-9 μm, the chloroplast is arm-shaped, and the characteristics of Chlorella vulgaris Was showing.

2−3:生理学的特徴
(1)フェノール除去能を持つ
(2)5〜15v/v%CO通気下で生育できる
(3)独立栄養条件下(光照射下)と従属栄養条件下の両方で生育できる
2-3: Physiological characteristics (1) It has the ability to remove phenol (2) It can grow under 5-15 v / v% CO 2 aeration (3) Both autotrophic conditions (under light irradiation) and heterotrophic conditions Can grow in

なお、クロレラ・ブルガリスC−1の長期保管は、実施例1の場合と同様に、YPDスラント培地上、30℃下で培養した藻体を15〜20℃で保存するのが望ましい。なお、クロレラ・ブルガリスC−1は、4℃で2ヶ月以上放置すると増殖できなくなることがわかった。  For long-term storage of Chlorella vulgaris C-1, as in Example 1, it is desirable to store algal cells cultured at 30 ° C. on a YPD slant medium at 15 to 20 ° C. Chlorella vulgaris C-1 was found to be unable to grow when left at 4 ° C. for 2 months or longer.

(実施例3)クロレラ・ブルガリスMKJ−34のフェノール性水酸基を持つ有害化合物除去能の評価(Example 3) Evaluation of the ability to remove harmful compounds having a phenolic hydroxyl group of Chlorella vulgaris MKJ-34

3−1:フェノール類の定量方法
まず、反応液中の各種フェノール類の定量方法について以下に示す。
被試験液1mlに試薬A(0.32%4−アミノアンチピリン水溶液、0.32Nアンモニアを有する有害化合物の水溶液、蒸留水を1:3.28:6.33の比率で混合した水溶液)を764μl、および試薬B(0.32%ヘキサシアノ鉄(III)酸カリウム(フェリシアン化カリウム)水溶液)を236μl加え、室温下で5分間放置した後に490nmにおける吸光度を測定した。なお、クロレラ・ブルガリスを含まない緩衝液に有害化合物を添加したものを発色させて比較対照とし、これより有害化合物の消失率を算出した。本比色法で得られた結果は、高速液体クロマトグラフィーを用いた定量法によって得られた結果とよく相関していた。
3-1: Method for quantifying phenols First, a method for quantifying various phenols in a reaction solution will be described below.
764 μl of Reagent A (0.32% 4-aminoantipyrine aqueous solution, aqueous solution of harmful compound having 0.32N ammonia, distilled water mixed in a ratio of 1: 3.28: 6.33) in 1 ml of the test solution , And Reagent B (0.32% potassium hexacyanoferrate (III) aqueous solution (potassium ferricyanide)) was added in an amount of 236 μl and allowed to stand at room temperature for 5 minutes, and then the absorbance at 490 nm was measured. In addition, the thing which added the harmful compound to the buffer solution which does not contain Chlorella vulgaris was made to color, and it was set as the comparison control, and the disappearance rate of the harmful compound was computed from this. The results obtained by this colorimetric method correlated well with the results obtained by the quantitative method using high performance liquid chromatography.

3−2:クロレラ・ブルガリスMKJ−34の除去能の評価
実施例1で保管した保存菌株から白金耳を用いてコロニーをかきとり、YPD液体培地に移植し、好ましくは30℃で3日間振盪培養した。これを前培養藻体として、これを別のYPD培地に移植し、同様の培養条件で振盪培養した。この培養液を8000rpm、10分間の遠心分離によって分離し、回収した藻体をフェノール性水酸基を持つ有害化合物除去に使用した。本実施例では、フェノール性水酸基を有する有害化合物の一つである4−クロロフェノール(4CP)を含む水溶液を用い、クロレラ・ブルガリスMKJ−34の4CPの除去能を測定した。
3-2: Evaluation of removal ability of Chlorella vulgaris MKJ-34 Colonies were scraped from the stock strain stored in Example 1 using a platinum loop, transplanted to a YPD liquid medium, and preferably cultured at 30 ° C. for 3 days. did. This was used as a precultured alga body, which was transplanted to another YPD medium, and cultured under shaking under the same culture conditions. This culture solution was separated by centrifugation at 8000 rpm for 10 minutes, and the collected alga bodies were used for removing harmful compounds having phenolic hydroxyl groups. In this example, the removal ability of 4CP of Chlorella vulgaris MKJ-34 was measured using an aqueous solution containing 4-chlorophenol (4CP) which is one of harmful compounds having a phenolic hydroxyl group.

3−2で示した方法で予め調製したクロレラ・ブルガリスMKJ−34の藻体を用いて、4CPを含む水溶液から、4CPの除去を試みた。評価に使用した水溶液中の4CP濃度を、3−1に示す方法に従って4−アミノアンチピリンによる発色後、比色定量法にて測定した。異なる量の藻体を3mlの50mMリン酸緩衝液(pH7.0)中に懸濁し、これに、4CPを0.1mM(13ppm)の終濃度になるように添加して、160rpm、30℃下で24時間撹拌した。図3に示すように、4CPの消失は藻体の濃度に依存しており、溶液中の藻体の含有量が4.0mg乾燥重/ml程度では、4CPの消失率は最大で20%以下と低い値であったが、藻体の濃度を高くすることによって消失率を53%にまで上げることができた。  Removal of 4CP was attempted from an aqueous solution containing 4CP by using algal cells of Chlorella vulgaris MKJ-34 prepared in advance by the method shown in 3-2. The 4CP concentration in the aqueous solution used for the evaluation was measured by colorimetric determination after coloring with 4-aminoantipyrine according to the method shown in 3-1. Different amounts of algal cells were suspended in 3 ml of 50 mM phosphate buffer (pH 7.0), and 4CP was added to a final concentration of 0.1 mM (13 ppm) at 160 rpm at 30 ° C. For 24 hours. As shown in FIG. 3, the disappearance of 4CP depends on the concentration of alga bodies. When the algal body content in the solution is about 4.0 mg dry weight / ml, the disappearance rate of 4CP is 20% or less at the maximum. However, the disappearance rate could be increased to 53% by increasing the concentration of algal cells.

藻体を4CPと24時間インキュベートした後に藻体を回収して、繰り返し4CPとインキュベートを行ったところ少なくとも7回までは除去率が著しく低下することなく、4CPを除去することができた。  After incubation of algal bodies with 4CP for 24 hours, the algal bodies were collected and repeatedly incubated with 4CP. As a result, at least 7 times, 4CP could be removed without significantly reducing the removal rate.

(実施例4)クロレラ・ブルガリスC−1のフェノール性水酸基を持つ有害化合物除去能の評価
クロレラ・ブルガリスMKJ−34と同様の方法で、クロレラ・ブルガリスC−1の藻体を調製して4CPの除去について調べた。図4に示すように、藻体の濃度を高くすることによって16時間後に0.1mM(13ppm)の4CPを最高76%消失させることができた。また、クロレラ・ブルガリスC−1を用いた場合、MKJ−34株よりも低い藻体濃度、すなわち15mg−dry cells/ml以下の藻体濃度で効率的に4CPを消失させることが可能であることがわかった。
(Example 4) Evaluation of the ability to remove harmful compounds having a phenolic hydroxyl group of Chlorella vulgaris C-1 By the same method as Chlorella vulgaris MKJ-34, an algal body of Chlorella vulgaris C-1 was prepared. The removal of 4CP was examined. As shown in FIG. 4, 0.1 mM (13 ppm) of 4CP could be lost up to 76% after 16 hours by increasing the concentration of algal cells. In addition, when Chlorella vulgaris C-1 is used, 4CP can be efficiently eliminated at a lower algal body concentration than that of MKJ-34 strain, that is, an algal body concentration of 15 mg-dry cells / ml or less. I understood it.

(実施例5)比較例
クロレラ・ブルガリスMKJ−34とクロレラ・ブルガリスC−1以外の公知のクロレラ属の微細藻類についても、実施例3または実施例4と同様の手順で4CP除去能を試験した。公知のクロレラ属の微細藻類は、東京大学分子細胞生物学研究所IAMカルチャーコレクションのタイプカルチャーから、以下の6藻類株をランダムに選択した。
(Example 5) Comparative Example For known microalgae of the genus Chlorella other than Chlorella vulgaris MKJ-34 and Chlorella vulgaris C-1, 4CP removal ability was also obtained by the same procedure as in Example 3 or Example 4. Tested. As the known microalgae of the genus Chlorella, the following 6 algae strains were randomly selected from the type culture of IAM Culture Collection, Institute for Molecular Cell Biology, University of Tokyo.

クロレラ・ソロキニアナ IAM C−212 (Chlorella sorokiniana IAM C−212)
クロレラ・ケスレリ IAM C−531 (C.kessleri IAM C−531)
クロレラ・ブルガリス IAM C−536 (C.vulgaris IAM C−536)
クロレラ・ブルガリス IAM C−547 (C.vulgaris IAM C−547)
クロレラ・エスピー IAM C−628 (Chlorella sp. IAM C−628)
クロレラ・ブルガリス IAM C−629 (C.vulgaris IAM C−629)
試験の結果、上記6種類の藻類株は顕著な4CP除去能を示さないことがわかった。
Chlorella sorokiniana IAM C-212 (Chlorella sorokiniana IAM C-212)
Chlorella kesleri IAM C-531 (C. kessleri IAM C-531)
Chlorella vulgaris IAM C-536 (C. vulgaris IAM C-536)
Chlorella vulgaris IAM C-547 (C. vulgaris IAM C-547)
Chlorella sp. IAM C-628 (Chlorella sp. IAM C-628)
Chlorella vulgaris IAM C-629 (C. vulgaris IAM C-629)
As a result of the test, it was found that the above 6 types of algal strains did not show significant 4CP removal ability.

(実施例6)クロレラ・ブルガリスMKJ−34及びクロレラ・ブルガリスC−1の高温下での生育特性
クロレラ・ブルガリスMKJ−34及びクロレラ・ブルガリスC−1の生育に対する30〜45℃の範囲の温度の影響を調べた。なお、両藻類株をL字型試験管内に調製した20mlのMBM液体培地中、蛍光灯での光照射下(5000lux、12時間暗、12時間明のくり返し)で4日間振盪培養を行い、濁度(OD660)を測定することによって生育した藻体量を測定した。両藻類株は、少なくとも30〜42℃の範囲で生育可能であることが確認できた。30〜45℃の範囲での生育を図5に示す。
(Example 6) Growth characteristics of Chlorella vulgaris MKJ-34 and Chlorella vulgaris C-1 under high temperature 30-45 ° C relative to the growth of Chlorella vulgaris MKJ-34 and Chlorella vulgaris C-1 The effect of temperature in the range was investigated. Both algae strains were shaken and cultured for 4 days in a 20 ml MBM liquid medium prepared in an L-shaped test tube under light irradiation with a fluorescent lamp (5000 lux, 12 hours dark, 12 hours light repeat). The amount of algal bodies grown was measured by measuring the degree (OD 660 ). Both algae strains were confirmed to be able to grow at least in the range of 30 to 42 ° C. Growth in the range of 30 to 45 ° C. is shown in FIG.

(実施例7)クロレラ・ブルガリスMKJ−34及びクロレラ・ブルガリスC−1の高CO濃度下での生育特性
クロレラ・ブルガリスMKJ−34及びクロレラ・ブルガリスC−1について、COを高濃度に含むガス通気下での生育について調べた。両藻類株を300ml三角フラスコ内に調製した280mlのMBM液体培地(NaHCO無添加)中で、蛍光灯での光照射(5000lux、12時間暗、12時間明のくり返し)、35℃下の条件下で100v/v%COと空気(0.038v/v%CO)の混合ガスを通気しながら5日間培養を行い、濁度(OD660)を測定することによって生育した藻体量を測定した。図6に示すように、空気のみを通気した場合の両藻類株の生育は僅かであったが、5〜10v/v%CO通気下で良好に生育し、15v/v%のCOの通気下でも生育が可能であることが確認された。
(Example 7) Growth characteristics of Chlorella vulgaris MKJ-34 and Chlorella vulgaris C-1 under high CO 2 concentration About Chlorella vulgaris MKJ-34 and Chlorella vulgaris C-1, CO 2 The growth under aeration with high concentration gas was examined. Light irradiation with a fluorescent lamp (5000 lux, 12 hours dark, 12 hours light repeat), conditions under 35 ° C. in 280 ml MBM liquid medium (without NaHCO 3 ) prepared in 300 ml Erlenmeyer flasks The amount of grown alga bodies was measured by culturing for 5 days while aerated with a mixed gas of 100 v / v% CO 2 and air (0.038 v / v% CO 2 ) and measuring turbidity (OD 660 ). It was measured. As shown in FIG. 6, the growth of both algae strains was slight when aerated with only air, but grew well under aeration of 5-10 v / v% CO 2 , with 15 v / v% CO 2 . It was confirmed that growth was possible even under aeration.

(実施例8)バイオレメディエーション方法
バイオレメディエーション方法としては、上記クロレラ・ブルガリスを、フェノール性水酸基を有する有害化合物を含む廃水、もしくは土壌に接触させることが挙げられるが、廃水に接触させる方法としては、包括法により、アルギン酸カルシウムのような酸性多糖類の塩に担持させて藻体ビーズとし、この藻体ビーズを充填したバイオリアクタを廃水中に浸漬する方が望ましい。以下に、本実施例におけるバイオリアクタならびに藻体ビーズの調製方法について説明する。
(Example 8) Bioremediation method As a bioremediation method, the above chlorella vulgaris may be brought into contact with waste water containing a harmful compound having a phenolic hydroxyl group, or soil. It is preferable to immerse a bioreactor filled with algal body beads in waste water by supporting them in a salt of an acidic polysaccharide such as calcium alginate by the inclusion method. Below, the bioreactor and the preparation method of alga body beads in a present Example are demonstrated.

図7に示すように、バイオリアクタは、フェノール性水酸基を持つ有害化合物の除去能を有するクロレラ属の微細藻類を酸性多糖類の1つであるアルギン酸カルシウムゲルに担持させ、これを藻体ビーズ1として円筒型のカラム2に充填したものである。  As shown in FIG. 7, the bioreactor supports chlorella microalgae having the ability to remove harmful compounds having phenolic hydroxyl groups on a calcium alginate gel, which is one of acidic polysaccharides, and this is loaded with alga beads 1 Are packed in a cylindrical column 2.

円筒形のカラム2は、大きさが、直径3.8cm、内径1.8cm、高さ32cmであり、上部に、有害化合物を含む溶液(被処理水)を注入する注入口を、下部に、被処理水が排出される排出口を備えている。本実施例では、バイオリアクタに注入される被処理水を、温度を30℃に保った状態で被分解基質である有害化合物の終濃度が0.1mM(13ppm)になるように調製し、流速約0.1ml/minで流し込むことにより、連続的に処理を行うことができる。なお、カラム2としては円筒形のものに限るものではなく、藻体ビーズ1を充填させることが可能なものであればどのような容器であってもよい。  The cylindrical column 2 has a diameter of 3.8 cm, an inner diameter of 1.8 cm, and a height of 32 cm, and an upper part is provided with an inlet for injecting a solution containing toxic compounds (treated water), and a lower part is provided with an inlet. It has a discharge port through which treated water is discharged. In this example, the water to be treated injected into the bioreactor is prepared so that the final concentration of the harmful compound as the decomposition substrate is 0.1 mM (13 ppm) while maintaining the temperature at 30 ° C. By pouring at about 0.1 ml / min, the treatment can be performed continuously. The column 2 is not limited to a cylindrical one, and may be any container that can be filled with the algal beads 1.

微生物の担持法としては、包括法、物理吸着法、マイクロカプセル法などが知られているが、本実施例では、包括法で微細藻類の担持を行う。また、包括法の担体としては、アルギン酸カルシウムのような酸性多糖類の塩を用いる。酸性多糖類の塩を用いることにより、ビーズ状の形態を容易に付与することが出来る。  Known methods for supporting microorganisms include the entrapment method, the physical adsorption method, the microcapsule method, and the like. In this embodiment, microalgae are supported by the entrapment method. In addition, as a carrier for the inclusion method, a salt of an acidic polysaccharide such as calcium alginate is used. By using an acidic polysaccharide salt, a bead-like form can be easily imparted.

アルギン酸カルシウムを担体として用いる場合は、藻体ビーズ1を以下のような手順で調製することが出来る。例えば、本実施例では、2%アルギン酸ナトリウム溶液中に所定の濃度のクロレラ・ブルガリスMKJ−34を懸濁した液体を5%塩化カルシウム水溶液中に攪拌しながら滴下した。すると、球状の固形ゲルが得られ、これを蒸留水で洗浄することにより、藻体ビーズ1を得ることが出来た。  When using calcium alginate as a carrier, the algal beads 1 can be prepared by the following procedure. For example, in this example, a liquid obtained by suspending a predetermined concentration of Chlorella vulgaris MKJ-34 in a 2% sodium alginate solution was dropped into a 5% calcium chloride aqueous solution while stirring. Then, a spherical solid gel was obtained, and the algal body beads 1 could be obtained by washing this with distilled water.

上記方法で得られた藻体ビーズ3gを、0.1mMのフェノール類をpH7.0のリン酸緩衝液またはMOPS緩衝液に懸濁した被分解基質(フェノール性水酸基を持つ有害化合物)含有水3mlと共に温度30℃の試験管内に入れ、往復振とうによる攪拌を加えると、藻体ビーズ1に担持されたクロレラ・ブルガリスMKJ−34が有害化合物を除去することができた。  3 g of the algal body beads obtained by the above method, 3 ml of water containing a substrate to be decomposed (hazardous compound having a phenolic hydroxyl group) in which 0.1 mM phenols are suspended in a phosphate buffer or MOPS buffer of pH 7.0. In addition, when placed in a test tube at a temperature of 30 ° C. and agitated by reciprocal shaking, Chlorella vulgaris MKJ-34 supported on alga body beads 1 was able to remove harmful compounds.

なお、藻体ビーズ1を4CP含有水3mlと共に24時間振とうした後、ビーズの回収を繰り返し、その回数により4CP消失能力がどのように変化するかを調べた。図8に示すように、少なくとも7回までは除去率が著しく低下することなく、4CPを除去することができた。この結果からも明らかなように、バイオリアクタに充填された藻体ビーズ1は、繰り返し使用することが可能である。なお、藻体ビーズ1を長期間使用すると、藻体ビーズ1と被処理水との平衡状態が崩れて膨潤する場合があるので、この場合、被処理水には、カルシウム塩等、藻体ビーズ1と被処理水との平衡状態を維持するための塩を適量混合させて用いる方がよい。これにより、藻体ビーズ1を長期間使用することが可能となる。  After shaking the algal beads 1 with 3 ml of 4CP-containing water for 24 hours, the recovery of the beads was repeated, and how the 4CP disappearance ability changed depending on the number of times was examined. As shown in FIG. 8, 4CP could be removed at least seven times without a significant decrease in the removal rate. As is clear from this result, the algal beads 1 filled in the bioreactor can be used repeatedly. If the algal beads 1 are used for a long period of time, the equilibrium between the algal beads 1 and the water to be treated may collapse and swell, and in this case, the water to be treated may contain calcium salts or other algal beads. It is better to use a suitable amount of salt for maintaining an equilibrium state between 1 and the water to be treated. Thereby, the algal beads 1 can be used for a long time.

藻体ビーズ1を、円筒型のカラム2に充填してバイオリアクタとし、これを、4CPを含有する被処理水に浸漬したところ、図9に示すように、700mlの被処理水に含まれる4CPを、40〜80%の消失率で3日間連続的に除去することができた。  When the algal beads 1 are filled into a cylindrical column 2 to form a bioreactor, and this is immersed in water to be treated containing 4CP, 4CP contained in 700 ml of water to be treated as shown in FIG. Could be removed continuously for 3 days with a disappearance rate of 40-80%.

本発明は、フェノール性水酸基を持つ有害化合物に対する優れた除去能を有し、30〜42℃程度の温度でも生育可能であるので、被処理物の高温化という外乱に耐えうるクロレラ・ブルガリスとして用いることができる。また、このクロレラ・ブルガリスを例えばバイオリアクタに組み込むことで、パルプ工場、合成有機化学工場などから排出される廃液に含まれる有害化合物含有水の処理のような閉鎖系でのバイオレメディエーションや有害化合物を含有する土壌の浄化などの屋外で実施する開放系のバイオレメディエーションに利用可能である。  Since the present invention has an excellent ability to remove harmful compounds having a phenolic hydroxyl group and can grow even at a temperature of about 30 to 42 ° C., it can be used as a chlorella bulgaris that can withstand the disturbance of high temperature of the object to be treated. Can be used. In addition, by incorporating this Chlorella vulgaris into, for example, a bioreactor, bioremediation or harmful compounds in a closed system such as treatment of harmful compound-containing water contained in waste liquid discharged from pulp factories, synthetic organic chemical factories, etc. It can be used for open-type bioremediation that is performed outdoors, such as for the purification of soil containing sucrose.

単離したクロレラ・ブルガリスMKJ−34の光学顕微鏡写真である。It is an optical microscope photograph of isolated Chlorella vulgaris MKJ-34. 単離したクロレラ・ブルガリスC−1の光学顕微鏡写真である。It is an optical microscope photograph of isolated Chlorella vulgaris C-1. 異なる濃度のクロレラ・ブルガリスMKJ−34を添加した被処理水中の13ppmのフェノール性水酸基を有する有害化合物の消失率(%)を示す図である。It is a figure which shows the loss | disappearance rate (%) of the harmful compound which has 13 ppm phenolic hydroxyl group in the to-be-processed water which added Chlorella vulgaris MKJ-34 of different density | concentration. 異なる濃度のクロレラ・ブルガリスC−1を添加した被処理水中の13ppmのフェノール性水酸基を有する有害化合物の消失率(%)を示す図である。It is a figure which shows the loss | disappearance rate (%) of the harmful compound which has 13 ppm phenolic hydroxyl group in the to-be-processed water which added chlorella vulgaris C-1 of different density | concentration. クロレラ・ブルガリスMKJ−34及びクロレラ・ブルガリスC−1の30〜45℃の範囲の温度下での生育状況を示す図である。It is a figure which shows the growth condition under the temperature of the range of 30-45 degreeC of Chlorella vulgaris MKJ-34 and Chlorella vulgaris C-1. クロレラ・ブルガリスMKJ−34及びクロレラ・ブルガリスC−1のCOを高濃度に含むガス通気下での生育状況を示す図である。Chlorella vulgaris MKJ-34 and Chlorella vulgaris C-1 of CO 2 is a diagram showing a state of growth under gas vent containing a high concentration. 本発明の実施の形態におけるバイオリアクタの正面図である。It is a front view of the bioreactor in the embodiment of the present invention. 藻体ビーズによる4CPの繰り返し除去の過程を示した図である。It is the figure which showed the process of repeated removal of 4CP by the alga body bead. 藻体ビーズを充填したバイオリアクタによる4CPの連続的除去の結果を示した図である。It is the figure which showed the result of the continuous removal of 4CP by the bioreactor filled with the alga body bead.

符号の説明Explanation of symbols

1 藻体ビーズ
2 カラム
1 Algae beads 2 columns

Claims (11)

フェノール性水酸基を持つ有害化合物の除去能を有するクロレラ・ブルガリスであって、15〜42℃の温度範囲で生育可能なクロレラ・ブルガリス。  Chlorella vulgaris having the ability to remove harmful compounds having a phenolic hydroxyl group and capable of growing in a temperature range of 15 to 42 ° C. 5〜15v/v%CO通気下で生育可能な請求項1記載のクロレラ・ブルガリス。5~15v / v% CO 2 Chlorella vulgaris viable claim 1 under aeration. 寄託番号FERM P−20906を有する請求項1または2に記載のクロレラ・ブルガリス。  3. Chlorella vulgaris according to claim 1 or 2, having the deposit number FERM P-20906. 受領番号FERM AP−20963を有する請求項1または2に記載のクロレラ・ブルガリス。  3. Chlorella vulgaris according to claim 1 or 2, having the receipt number FERM AP-20963. フェノール性水酸基を有する有害化合物を含む廃水に、少なくとも請求項1から4のいずれかの項に記載のクロレラ・ブルガリスを接触させる工程を有することを特徴とするバイオレメディエーション方法。  A bioremediation method comprising a step of contacting at least chlorella vulgaris according to any one of claims 1 to 4 with wastewater containing a harmful compound having a phenolic hydroxyl group. フェノール性水酸基を有する有害化合物を含む土壌に、少なくとも請求項1から4のいずれかの項に記載のクロレラ・ブルガリスを接触させる工程を有することを特徴とするバイオレメディエーション方法。  A bioremediation method comprising a step of bringing the chlorella vulgaris according to any one of claims 1 to 4 into contact with soil containing a harmful compound having a phenolic hydroxyl group. 酸性多糖類のゲルによって形成され、フェノール性水酸基を持つ有害化合物の除去能を有するクロレラ属の微細藻類を担持したビーズを充填したバイオリアクタ。  A bioreactor filled with beads carrying microalgae of the genus Chlorella that is formed by acidic polysaccharide gel and has the ability to remove harmful compounds with phenolic hydroxyl groups. 前記クロレラ属の微細藻類は、請求項1から4のいずれかの項に記載のクロレラ・ブルガリスである請求項7記載のバイオリアクタ。  The bioreactor according to claim 7, wherein the microalga of the genus Chlorella is the chlorella bulgaris according to any one of claims 1 to 4. 請求項7または8に記載のバイオリアクタを、フェノール性水酸基を有する有害化合物を含む水溶液中に浸漬し、当該水溶液から前記有害化合物を除去する有害物質除去方法。  A method for removing harmful substances, comprising immersing the bioreactor according to claim 7 or 8 in an aqueous solution containing a harmful compound having a phenolic hydroxyl group, and removing the harmful compound from the aqueous solution. 前記酸性多糖類は、アルギン酸カルシウムであることを特徴とする請求項9記載の有害物質除去方法。  The method for removing harmful substances according to claim 9, wherein the acidic polysaccharide is calcium alginate. 前記フェノール性水酸基を有する有害化合物が、内分泌攪乱作用を示す有害化合物であることを特徴とする請求項9または10に記載の有害物質除去方法。  The harmful substance removing method according to claim 9 or 10, wherein the harmful compound having a phenolic hydroxyl group is a harmful compound exhibiting an endocrine disrupting action.
JP2006250005A 2006-08-18 2006-08-18 Chlorella vulgaris, method of bioremediation by using the same, and also bioreactor and method for removing harmful substance by using the same Pending JP2008043321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006250005A JP2008043321A (en) 2006-08-18 2006-08-18 Chlorella vulgaris, method of bioremediation by using the same, and also bioreactor and method for removing harmful substance by using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006250005A JP2008043321A (en) 2006-08-18 2006-08-18 Chlorella vulgaris, method of bioremediation by using the same, and also bioreactor and method for removing harmful substance by using the same

Publications (1)

Publication Number Publication Date
JP2008043321A true JP2008043321A (en) 2008-02-28

Family

ID=39177681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006250005A Pending JP2008043321A (en) 2006-08-18 2006-08-18 Chlorella vulgaris, method of bioremediation by using the same, and also bioreactor and method for removing harmful substance by using the same

Country Status (1)

Country Link
JP (1) JP2008043321A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009000534A1 (en) * 2007-06-26 2008-12-31 Eni S.P.A. Process for the cultivation of micro-algae
CN102633370A (en) * 2012-04-28 2012-08-15 复旦大学 Artificial light source allocating method for purifying cow manure wastewater by using microalgae
CN102642929A (en) * 2012-05-01 2012-08-22 复旦大学 Artificial light source adjusting method utilizing chlorella to purify pig manure waste water
CN104556406A (en) * 2014-12-31 2015-04-29 深圳市鸿鹄科技发展有限公司 Method for efficient in-situ remediation of lake wastewater by utilizing microorganisms and chlorella
CN114394670A (en) * 2021-12-15 2022-04-26 海南大学 Chlorella and application thereof in heavy metal wastewater treatment

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009000534A1 (en) * 2007-06-26 2008-12-31 Eni S.P.A. Process for the cultivation of micro-algae
US7977085B2 (en) 2007-06-26 2011-07-12 Eni S.P.A. Process for the cultivation of micro-algae
CN102633370A (en) * 2012-04-28 2012-08-15 复旦大学 Artificial light source allocating method for purifying cow manure wastewater by using microalgae
CN102642929A (en) * 2012-05-01 2012-08-22 复旦大学 Artificial light source adjusting method utilizing chlorella to purify pig manure waste water
CN104556406A (en) * 2014-12-31 2015-04-29 深圳市鸿鹄科技发展有限公司 Method for efficient in-situ remediation of lake wastewater by utilizing microorganisms and chlorella
CN104556406B (en) * 2014-12-31 2016-11-02 深圳市鸿鹄科技发展有限公司 Utilize the method that microorganism and chlorella carry out efficient in-situ immobilization to lake sewage
CN114394670A (en) * 2021-12-15 2022-04-26 海南大学 Chlorella and application thereof in heavy metal wastewater treatment
CN114394670B (en) * 2021-12-15 2023-05-23 海南大学 Chlorella and application thereof in heavy metal wastewater treatment

Similar Documents

Publication Publication Date Title
Urrutia et al. Nitrate removal from water by Scenedesmus obliquus immobilized in polymeric foams
Kang et al. Removal of nutrients and pharmaceuticals and personal care products from wastewater using periphyton photobioreactors
CN114107092B (en) Endophyte Gordonia L191 for degrading phthalate and application thereof
CN106635909B (en) Crude oil degradation mixed bacteria, microbial inoculum and application thereof
Kaya et al. The viability of Scenedesmus bicellularis cells immobilized on alginate screens following nutrient starvation in air at 100% relative humidity
Zhang et al. Ammonia-nitrogen and orthophosphate removal by immobilized Chlorella sp. isolated from municipal wastewater for potential use in tertiary treatment
Bergero et al. Immobilization of Pseudomonas putida A (ATCC 12633) cells: A promising tool for effective degradation of quaternary ammonium compounds in industrial effluents
CN110283741A (en) One plant of rose bacillus and its application with efficient degradation polycyclic aromatic hydrocarbon function
JP2008043321A (en) Chlorella vulgaris, method of bioremediation by using the same, and also bioreactor and method for removing harmful substance by using the same
Abe et al. Removal of inorganic nitrogen sources from water by the algal biofilm of the aerial microalga Trentepohlia aurea
CN109679871A (en) A kind of method of PAM-SA immobilized microorganism degradation oily waste water
Mulla et al. Enhanced degradation of 3-nitrobenzoate by immobilized cells of Bacillus flexus strain XJU-4
Muter et al. Comparative study on bacteria colonization onto ceramic beads originated from two Devonian clay deposits in Latvia
Shchemelinina et al. The analcime-bearing rock immobilized microalgae: Stress resistance, psychrotolerance, phenol removal
Jeong et al. Mitigation of self-shading effect in embedded optical fiber in Chlorella sorokiniana immobilized polyvinyl alcohol gel beads
Guolan et al. Study on the physiology and degradation of dye with immobilized algae
Robinson et al. Kinetics of phosphorus uptake by immobilized Chlorella
Usha et al. Degradation of h-acid by free and immobilized cells of Alcaligenes latus
JP4707251B2 (en) Activated sludge and wastewater treatment method
CN115433694B (en) Application of radiation-resistant methyl bacillus L321 in degradation of phthalate and growth promotion
Kumar et al. Degradation potential of free and immobilized cells of white rot fungus Phanerochaete chrysosporium on synthetic dyes
Kim et al. Biodegradation of methylene blue using a novel lignin peroxidase enzyme producing bacteria, named Bacillus sp. React3, as a promising candidate for dye-contaminated wastewater treatment
JPH10248553A (en) Microalgal chlorella and fixation of carbon dioxide using microalgal chlorella
CN108102943A (en) A kind of efficient denitrification microorganism and its application
JP2014113083A (en) Method for culturing microalgae on the liquid surface characterized in that microalgae on the liquid surface is collected onto a board to be transferred and cultured in another culture vessel