JPH0564577A - Method and device for culturing photosynthetic microorganism - Google Patents

Method and device for culturing photosynthetic microorganism

Info

Publication number
JPH0564577A
JPH0564577A JP25426991A JP25426991A JPH0564577A JP H0564577 A JPH0564577 A JP H0564577A JP 25426991 A JP25426991 A JP 25426991A JP 25426991 A JP25426991 A JP 25426991A JP H0564577 A JPH0564577 A JP H0564577A
Authority
JP
Japan
Prior art keywords
light
adherent
photosynthetic
tank
culturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25426991A
Other languages
Japanese (ja)
Other versions
JPH0789903B2 (en
Inventor
Etsuko Takizawa
悦子 滝沢
Akiko Miya
晶子 宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Research Co Ltd
Original Assignee
Ebara Corp
Ebara Research Co Ltd
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Ebara Research Co Ltd, Ebara Infilco Co Ltd filed Critical Ebara Corp
Priority to JP3254269A priority Critical patent/JPH0789903B2/en
Publication of JPH0564577A publication Critical patent/JPH0564577A/en
Publication of JPH0789903B2 publication Critical patent/JPH0789903B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/06Plates; Walls; Drawers; Multilayer plates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M31/00Means for providing, directing, scattering or concentrating light
    • C12M31/08Means for providing, directing, scattering or concentrating light by conducting or reflecting elements located inside the reactor or in its structure

Abstract

PURPOSE:To enable the massive culture of an adhesive photosynthetic microorganism by a new method using optical fibers and fibrous optical conductors emitting light from their side surfaces, and to realize the saving of energy by the effective utilization of light energy. CONSTITUTION:Solar light and/or artificial light is transmitted to a culture device through an optical fiber 3. Fibrous optical conductors 4 emitting light from their side surfaces are connected to the optical fiber 3, and inserted into a solution in a container to introduce the transmitted solar light and/or artificial light into the culture tank 1. An adhesive photosynthetic microorganism such as adhesive photosynthetic bacterium or adhesive fine alga is adhered to the optical conductors and cultured. The optical conductors include optical fibers having grooves carved on their surfaces and glass fibers containing a light- diffusing material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光合成微生物培養方法
と装置に係り、特に、付着性光合成細菌及び/又は付着
性微細藻類などの付着性の光合成微生物を用いる培養方
法と装置に関する。本発明の培養方法と装置は、有機性
廃水の処理、クリーンエネルギーである水素の生産、各
種の有用な物質を生産する方法及び装置、ならびに地球
の温暖化の一因である大気中の二酸化炭素の固定化等に
用いることができる。本発明は、従来技術とは異なる新
規な付着性光合成細菌及び/又は付着性微細藻類などの
付着性の光合成微生物の培養装置に関するものであり、
同時に地球環境保全にも貢献する革新的な培養技術を提
供するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photosynthetic microorganism culturing method and apparatus, and more particularly to a culturing method and apparatus using adherent photosynthetic microorganisms such as adherent photosynthetic bacteria and / or adherent microalgae. The culturing method and apparatus of the present invention include treatment of organic wastewater, production of hydrogen as clean energy, method and apparatus for producing various useful substances, and carbon dioxide in the atmosphere that contributes to global warming. Can be used for immobilization, etc. The present invention relates to a culture device for adhering photosynthetic microorganisms such as a novel adhering photosynthetic bacterium and / or adhering microalgae different from the prior art,
At the same time, it provides innovative culture technology that also contributes to global environmental conservation.

【0002】[0002]

【従来の技術】従来、光合成微生物を利用した培養技術
は、培養の対象を主として浮遊性光合成微生物とし、装
置はそのほとんどが流動床式で装置の外壁から棒状の蛍
光灯等により光を槽内液に供給するか、あるいは装置内
部の中心に棒状の蛍光燈等を取付け、槽内液に光を供給
するものが主流となっていた。しかしながら、最近では
各種の技術が研究開発され、その代表的な技術として太
陽光及び/または人工光を光ファイバーで伝送し、伝送
された光をさらに特殊な面発光ファイバーによって槽内
液に拡散して、または樹脂性の棒状ロッドに長さ方向に
散乱溝を設け槽内に縦方向に、かつ線状に光を拡散して
光合成微生物を培養する方法及び装置が開発されてい
る。一方付着性の光合成微生物については、板状の付着
担体上に光合成微生物を付着させ、太陽光及び/又は人
工光を外部から照射する多段式あるいは回転円板式など
の培養装置が提案されている。
2. Description of the Related Art Conventionally, in the culturing technology using photosynthetic microorganisms, mainly buoyant photosynthetic microorganisms are cultivated. Most of the equipment is a fluidized bed type and the light is emitted from the outer wall of the equipment by a rod-shaped fluorescent lamp in the tank. The mainstream method is to supply the liquid, or to attach a rod-shaped fluorescent lamp or the like to the center of the inside of the apparatus to supply light to the liquid in the tank. However, recently, various technologies have been researched and developed, and as a typical technology, sunlight and / or artificial light is transmitted through an optical fiber, and the transmitted light is further diffused into a liquid in a tank by a special surface emitting fiber. Alternatively, a method and a device for culturing a photosynthetic microorganism by providing a scattering groove in a longitudinal direction on a resin rod-shaped rod and diffusing light linearly and linearly in a tank have been developed. On the other hand, as for the adhering photosynthetic microorganisms, a multi-stage or rotating disc type culturing device has been proposed in which the photosynthetic microorganisms are adhered to a plate-shaped adherent carrier and sunlight and / or artificial light is irradiated from the outside.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
光合成微生物の培養装置には次に列挙するような技術的
問題点があり、これらの欠陥を改善するために各研究機
関で各種の研究が行われている。 (1)蛍光燈で光エネルギーを供給する培養方法及び装
置は、供給方式が槽外型、槽内型のいずれであっても伝
達できる光エネルギー量が小さく(伝達効率10%程
度)、光合成微生物の大量培養、濃厚培養には適さない (2)浮遊性光合成微生物の培養において、(1)の槽
外型においては培養装置の内壁に、槽内型においては蛍
光燈の表面に光合成微生物が濃厚に付着し、光の槽内液
への拡散が阻害されると共に、付着した光合成微生物は
強光にさらされて死滅するか、あるいは活性が著しく劣
化する。 (3)浮遊性光合成微生物の培養において、槽内に光フ
ァイバーで光エネルギーを伝送する方式は、伝送光エネ
ルギー量が蛍光燈方式よりもはるかに大きいが、極細で
多数の光ファイバーに光合成微生物が多量、濃厚に付着
し、経時的に光の拡散機能を喪失し、さらに光ファイバ
ー相互に閉塞が起こり、槽内液の循環が阻害される。こ
のため頻繁に光ファイバーの洗浄を要し、運転管理も極
めて煩雑である。
However, the conventional photoculturing apparatus for photosynthetic microorganisms has the following technical problems, and various researches are carried out at each research institute in order to improve these defects. It is being appreciated. (1) In the culture method and apparatus for supplying light energy with a fluorescent lamp, the amount of light energy that can be transferred is small (transfer efficiency is about 10%) regardless of whether the supply method is an outside tank type or an inside tank type, and a photosynthetic microorganism. It is not suitable for large-scale culture and concentrated culture of (2) When culturing floating photosynthetic microorganisms, the photosynthetic microorganisms are concentrated on the inner wall of the culture device in (1) the outer tank type and on the surface of the fluorescent lamp in the inner tank type. And the diffusion of light into the liquid in the tank is inhibited, and the attached photosynthetic microorganisms are exposed to strong light and die, or the activity is significantly deteriorated. (3) In the culture of buoyant photosynthetic microorganisms, the method of transmitting light energy through an optical fiber in the tank has a much larger amount of transmitted light energy than the fluorescent lamp method, but the number of photosynthetic microorganisms is very small and numerous in a large number of optical fibers. It adheres densely, loses the light diffusion function over time, and also causes the optical fibers to clog each other, obstructing the circulation of the liquid in the tank. For this reason, it is necessary to frequently clean the optical fiber, and operation management is extremely complicated.

【0004】(4)板状の付着担体上に付着性光合成微
生物を付着させ、太陽光及び/又は人工光を槽外から照
射する多段式あるいは回転円板式などの培養装置におい
ては受光面積が限定されるため光エネルギーを有効に利
用することができず、光合成微生物の大量培養には適当
でない。 (5)極細で多数の光ファイバーに付着性光合成微生物
を多量に付着させると、伝送光エネルギー量が蛍光燈方
式よりもはるかに大きいが、光ファイバー相互に閉塞が
起こり、槽内液の循環が阻害される。このため、頻繁に
光ファイバーの洗浄を要し、運転管理も極めて煩雑であ
る。 (6)特殊な面発光ファイバーに付着性光合成微生物を
付着させる方式は、伝送光エネルギー量が蛍光燈方式よ
りもはるかに大きいが、付着担体表面積が小さいため、
光合成微生物の大量培養には適当でない。 本発明は、従来装置のこれらの欠陥を改善し、従来技術
と比較して格段の大量培養を可能にする、省エネルギー
的で運転操作も著しく容易な新規な光合成微生物の培養
方法及び装置を提供することを課題とするものである。
(4) The light receiving area is limited in a multi-stage type or rotating disk type culturing device in which adherent photosynthetic microorganisms are adhered on a plate-shaped adherent carrier and sunlight and / or artificial light is irradiated from the outside of the tank. Therefore, the light energy cannot be effectively used, and it is not suitable for large-scale culture of photosynthetic microorganisms. (5) When a large amount of adhering photosynthetic microorganisms are attached to a large number of ultra-fine optical fibers, the amount of transmitted light energy is much larger than that of the fluorescent lamp system, but the optical fibers are blocked by each other and the circulation of the liquid in the tank is obstructed. It Therefore, cleaning of the optical fiber is required frequently, and operation management is extremely complicated. (6) The method of adhering the adhering photosynthetic microorganisms to the special surface-emitting fiber has a much larger amount of transmitted light energy than the fluorescent lamp method, but since the surface area of the adhering carrier is small,
Not suitable for large-scale culture of photosynthetic microorganisms. The present invention provides a novel method and apparatus for cultivating a photosynthetic microorganism, which ameliorates these deficiencies of the conventional apparatus and enables markedly large-scale cultivation as compared with the conventional technology, which is energy-saving and is significantly easy to operate. This is an issue.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、付着性光合成細菌、付着性微細藻類な
どの付着性光合成微生物を培養する方法において、光フ
ァイバーによって伝達された太陽光及び/又は人工光
を、槽内液に挿入された側面より光を放出する繊維状の
導光体によって培養槽内に導入すると共に、該繊維状の
導光体の表面に付着性の光合成微生物を付着させて培養
することを特徴とする光合成微生物培養方法としたもの
である。また、本発明では、付着性光合成細菌、付着性
微細藻類などの付着性光合成微生物を培養する装置にお
いて、培養槽と、太陽光及び/又は人工光を伝達させる
光ファイバーと、該光ファイバーに接続し槽内液に挿入
された側面より光を放出する繊維状の導光体とを有し、
かつ該繊維状の導光体には付着性の光合成微生物が付着
して培養されることを特徴とする光合成微生物培養装置
としたものである。
In order to solve the above-mentioned problems, the present invention provides a method for culturing adherent photosynthetic microorganisms such as adherent photosynthetic bacteria and adherent microalgae in which sunlight transmitted by an optical fiber and / Or artificial light is introduced into the culture tank by a fibrous light guide that emits light from the side surface inserted into the liquid in the tank, and a photosynthetic microorganism adherent to the surface of the fibrous light guide is introduced. This is a method for culturing a photosynthetic microorganism, which is characterized in that it is adhered and cultured. Further, in the present invention, in a device for culturing adherent photosynthetic microorganisms such as adherent photosynthetic bacteria and adherent microalgae, a culture tank, an optical fiber for transmitting sunlight and / or artificial light, and a tank connected to the optical fiber It has a fibrous light guide that emits light from the side surface that is inserted into the internal liquid,
In addition, the photosynthetic microorganism culturing apparatus is characterized in that an adhesive photosynthetic microorganism adheres to the fibrous light guide and is cultured.

【0006】上記培養装置において、繊維状の導光体は
二酸化炭素及び酸素の透過膜の表面に被覆されて一体に
形成することができ、この場合繊維状の導光体は網状に
織られており、また、二酸化炭素及び酸素の透過膜は中
空糸状であるのがよい。この中空糸状の透過膜の表面を
繊維状の導光体で被覆して一体として繊維状の構造とす
ることができる。また、導光体の表面に付着して成育し
た菌体または藻体は剪断流等を与えて定期的に剥離させ
るのがよい。
In the above culture device, the fibrous light guide can be integrally formed by coating the surface of the carbon dioxide and oxygen permeable membrane. In this case, the fibrous light guide is woven in a net shape. The carbon dioxide and oxygen permeable membrane is preferably hollow fiber. The surface of the hollow fiber-shaped permeable membrane can be covered with a fibrous light guide to be integrated into a fibrous structure. In addition, it is preferable that the fungus body or alga body adhered to the surface of the light guide body and grown is given a shear flow or the like to be regularly peeled off.

【0007】すなわち、本発明は、付着性光合成細菌及
び/又は付着性微細藻類などの付着性の光合成微生物を
培養対象とし、太陽光及び/又は人工光(蛍光燈、ハロ
ゲンランプ、メタルハライドランプ及びキセノンラン
プ)を光ファイバーで培養装置まで伝送し、伝送された
太陽光及び/又は人工光を槽内液に挿入された側面より
光を放出する繊維状の導光体に導入し、この側面より光
を放出する繊維状の導光体の表面に付着性の光合成微生
物を付着させて培養することを特徴とする光合成微生物
培養方法及び装置である。側面より光を放出する繊維状
の導光体としては光を通す性質を持ち、かつ側面より光
を放出する性質を持つものならどのようなものでもよ
く、例えば側面に溝を彫り込んだ光ファイバーあるいは
アクリル繊維、または散光体を含んだガラスあるいはア
クリル繊維などでよい。
That is, the present invention is intended for culturing adherent photosynthetic microorganisms such as adherent photosynthetic bacteria and / or adherent microalgae, and uses sunlight and / or artificial light (fluorescent lamp, halogen lamp, metal halide lamp and xenon). Lamp) is transmitted to the culture device by an optical fiber, and the transmitted sunlight and / or artificial light is introduced into a fibrous light guide that emits light from the side inserted into the bath liquid, and the light is emitted from this side. A method and an apparatus for culturing a photosynthetic microorganism, which comprises adhering an adherent photosynthetic microorganism on the surface of a fibrous light guide to be emitted and culturing. As the fibrous light guide that emits light from the side surface, any fiber can be used as long as it has a property of transmitting light and a property of emitting light from the side surface, for example, an optical fiber or acrylic with a groove engraved on the side surface. It may be a fiber, or glass or acrylic fiber containing a diffuser.

【0008】本発明は、付着性の光合成微生物の中で
も、特に、付着性微細藻類の培養に適し、微生物の固定
化に特別の手段を必要とせず、固液分離手段等付帯施設
を縮少あるいは省略できる。また本発明は、二酸化炭素
(CO2 )及び酸素を透過する膜を通して生育に必要な
これらの気体を供給するため、曝気によって生じる発泡
の問題を回避することができる。さらに本発明は、光合
成微生物の培養において最も問題となっている付着の問
題も同時に解決することができ、意図的な微生物膜の更
新も可能な画期的な光合成微生物培養方法及び装置でも
ある。
The present invention is particularly suitable for culturing adherent microalgae among adhering photosynthetic microorganisms, does not require any special means for immobilizing microorganisms, and reduces ancillary facilities such as solid-liquid separation means. It can be omitted. Further, according to the present invention, since these gases necessary for growth are supplied through a membrane permeable to carbon dioxide (CO 2 ) and oxygen, the problem of foaming caused by aeration can be avoided. Furthermore, the present invention is also an epoch-making method and apparatus for culturing photosynthetic microorganisms that can simultaneously solve the problem of adhesion, which is the most problematic in culturing photosynthetic microorganisms, and can also intentionally renew the microbial membrane.

【0009】[0009]

【作用】本発明の光合成微生物培養装置は太陽光及び/
又は人工光を光ファイバーを伝送媒体として培養槽内に
挿入された側面より光を放出する繊維状の導光体へ導入
し、その表面に付着して生育する付着生の光合成微生物
に光エネルギーを効率良く供給することを最大の特長と
した培養方法及び装置である。付着性光合成細菌及び/
又は付着性微細藻類などの付着性の光合成微生物は固体
表面でマット状に生育する性質を持ち、通常成育に必要
な光を得ることができ、さらに二酸化炭素(CO2 )及
び/又は酸素を充分に得ることができる固液界面及び/
又は充分に水分補給ができる気固界面に付着して生育す
る。
[Function] The photosynthetic microorganism culturing apparatus of the present invention is provided with sunlight and / or
Alternatively, artificial light is introduced into a fibrous light guide that emits light from the side inserted into the culture tank using an optical fiber as a transmission medium, and the light energy is efficiently applied to the adherent photosynthetic microorganisms that grow by adhering to the surface. It is a culture method and device whose main feature is to supply well. Adherent photosynthetic bacteria and /
Or, adhering photosynthetic microorganisms such as adhering microalgae have a property of growing like a mat on a solid surface, can normally obtain light necessary for growth, and further have sufficient carbon dioxide (CO 2 ) and / or oxygen. Solid-liquid interface and / or
Alternatively, it grows by adhering to a gas-solid interface that allows sufficient water supply.

【0010】従来の光合成微生物培養装置は蛍光燈ある
いは光ファイバーを槽内に設置して槽内液に分散させる
ものが主流を占めているが、この種の装置では菌体ある
いは藻体の付着が研究面及び/又は実用面で大きな障害
となっている。これに対して本発明は槽内液への光の供
給源である側面から光を放出する導光体の表面に付着性
の光合成微生物を付着させて培養するため、槽内液中に
は光合成微生物が存在せず、もしくは存在してもそれら
は光の供給を受けられないためほとんど増殖できないの
で非常に低濃度しか存在しないため、培養槽壁面、攪拌
装置および各種センサー類への菌体あるいは藻体の付着
を最小にしてこの問題を解決した、革新的な光合成微生
物培養装置である。また、従来の浮遊性光合成微生物培
養装置は槽内液に光を拡散するため、培養菌体あるいは
藻体が高濃度になると光の到達距離が制限され、光エネ
ルギーの利用効率が低下する。これに対して本発明は槽
内液への光の供給源である側面から光を放出する導光体
の表面に付着性の光合成微生物を付着させて培養するた
め、槽内液に挿入する導光体の表面積を増加させて槽内
菌体濃度を上げることができる革新的な光合成微生物培
養装置である。しかも、この繊維状の導光体が網状に織
られているときには、表面積が非常に大きく、付着性微
生物の担体として優れた機能を発揮する。
Most conventional photosynthetic microorganism culture devices are those in which fluorescent lamps or optical fibers are installed in a tank and dispersed in the liquid in the tank. In this type of device, adhesion of bacterial cells or algae is studied. It is a major obstacle in terms of aspects and / or practical use. On the other hand, in the present invention, since the adherent photosynthetic microorganisms are adhered to the surface of the light guide that emits light from the side that is the light source for the liquid in the tank, the photosynthesis in the liquid in the tank is performed. Microorganisms do not exist, or even if they exist, they cannot be supplied with light and can hardly proliferate.Therefore, there is only a very low concentration. It is an innovative photosynthetic microorganism culture device that solves this problem by minimizing body adhesion. Further, since the conventional floating photosynthetic microorganism culturing device diffuses light into the liquid in the tank, when the culturing cells or algae are at a high concentration, the light reaching distance is limited and the utilization efficiency of light energy is reduced. On the other hand, according to the present invention, since the adherent photosynthetic microorganisms are adhered to the surface of the light guide that emits light from the side surface that is the source of light to the liquid in the tank, the light is inserted into the liquid in the tank. This is an innovative photosynthetic microorganism culture device that can increase the surface area of the photoconductor and increase the bacterial cell concentration in the tank. Moreover, when this fibrous light guide is woven in a net shape, it has a very large surface area and exhibits an excellent function as a carrier for adherent microorganisms.

【0011】導光体の表面に付着して生育した菌体又は
藻体は容易に定期的かつ意図的に剥離させられるため菌
体又は藻体は常に活発に生育する状態に保たれる。さら
に本発明は、従来の光合成微生物培養は生育に必要な二
酸化炭素(CO2 )及び/又は酸素を散気管などのよう
な散気装置から微細気泡として槽内液に拡散し、溶解さ
せるものが主流を占めているが、この種の装置では培養
液の発泡が研究面及び/又は実用面で大きな障害となっ
ている。これに対して本発明は光合成微生物が生育に必
要な二酸化炭素(CO2 )及び/又は酸素は至近距離に
ある二酸化炭素(CO2 )及び酸素を透過する膜5から
拡散して溶解したものを利用することができるため、極
めて効率良く生育し、しかも気泡として槽内液中に放出
されないため、発泡による問題を解決した、革新的な光
合成培養方法及び装置である。
The fungus body or alga body adhered and grown on the surface of the light guide is easily and regularly peeled off, so that the fungus body or alga body is always kept in a vigorously growing state. Further, according to the present invention, in the conventional photosynthetic microorganism culture, carbon dioxide (CO 2 ) and / or oxygen necessary for growth are diffused as fine bubbles from a diffusing device such as a diffusing tube into a liquid in a tank to be dissolved. Although occupying the mainstream, in this type of device, the foaming of the culture solution is a major obstacle in terms of research and / or practical use. On the other hand, in the present invention, carbon dioxide (CO 2 ) and / or oxygen necessary for the growth of the photosynthetic microorganism are diffused and dissolved from the membrane 5 permeable to carbon dioxide (CO 2 ) and oxygen at a close distance. Since it can be utilized, it grows extremely efficiently, and since it is not released as bubbles into the liquid in the tank, it is an innovative photosynthetic culture method and device that solves the problem of foaming.

【0012】[0012]

【実施例】以下、本発明を図面を用いて具体的に説明す
るが、本発明はこれらの実施例に限定されるものではな
い。 実施例1 図1に本発明の培養装置の概略説明図を示す。図1は、
二酸化炭素(CO2)及び酸素を透過する膜の表面を繊
維状の導光体が被覆し、一体となって槽内液に挿入され
ている光合成微生物培養装置に関する。図1において、
太陽光及び/又は人工光2から光ファイバー3で伝送さ
れた光は、側面より光を放出する繊維状の導光体4に導
入される。導光体4は繊維状のものが網状に織られてお
り、表面積が非常に大きく、付着性微生物の担体として
優れた機能を発揮する。一方、培養に必要な空気、二酸
化炭素(CO2 )富化空気及び/又は二酸化炭素(CO
2 )8は二酸化炭素(CO2 )及び酸素を透過する膜5
に供給される。光合成微生物は繊維状の導光体4の表面
に付着して、充分な光の供給を受けることができ、また
生育に必要な二酸化炭素(CO2 )及び/又は酸素は至
近距離にある二酸化炭素(CO2 )及び酸素を透過する
膜5から受けることができるため、極めて効率良く生育
する。槽内液は通常培養槽1の底部にある攪拌装置6に
よって緩やかに攪拌され、付着菌体又は藻体と接触す
る。槽内液は定期的に培養槽1の底部にある攪拌装置6
によって急速に攪拌され、導光体の表面に付着して生育
した菌体又は藻体を剪断流を与えて意図的に剥離させ
る。
The present invention will be specifically described below with reference to the drawings, but the present invention is not limited to these embodiments. Example 1 FIG. 1 shows a schematic explanatory view of a culture device of the present invention. Figure 1
The present invention relates to a photosynthetic microorganism culturing device in which a surface of a membrane permeable to carbon dioxide (CO 2 ) and oxygen is covered with a fibrous light guide and is integrally inserted into a liquid in a tank. In FIG.
The light transmitted from the sunlight and / or the artificial light 2 through the optical fiber 3 is introduced into the fibrous light guide 4 which emits light from the side surface. The light guide 4 is made of a fibrous material woven in a net shape, has a very large surface area, and exhibits an excellent function as a carrier for adherent microorganisms. On the other hand, air, carbon dioxide (CO 2 ) -enriched air and / or carbon dioxide (CO
2 ) 8 is a membrane 5 permeable to carbon dioxide (CO 2 ) and oxygen
Is supplied to. The photosynthetic microorganisms adhere to the surface of the fibrous light guide 4 and can receive sufficient light, and carbon dioxide (CO 2 ) and / or oxygen required for growth are carbon dioxide in a short distance. Since it can be received from the (CO 2 ) and oxygen permeable membrane 5, it grows extremely efficiently. The in-tank solution is gently agitated by an agitator 6 usually located at the bottom of the culture tank 1 and comes into contact with adherent bacterial cells or algal cells. The tank liquid is regularly stirred by a stirring device 6 at the bottom of the culture tank 1.
The cells or algae that are rapidly stirred and adhered to and grow on the surface of the light guide are intentionally separated by applying a shear flow.

【0013】剥離の方法については、これらに限定され
ず、強光、発熱その他の方法を用いてもよい。剥離した
菌体又は藻体は沈降後、槽の底部から引き抜き余剰菌体
又は藻体として回収される。図2は、中空糸状の二酸化
炭素(CO2)及び酸素を透過する膜5の表面を繊維状
の導光体4で被覆して一体として繊維状の構造となった
担体繊維に関する横断面図である。この担体繊維を網状
に織り、図1の4,5と代替とすることができる。
The peeling method is not limited to these, and strong light, heat generation and other methods may be used. The separated bacterial cells or algal cells are settled and then withdrawn from the bottom of the tank to be collected as surplus bacterial cells or algal cells. FIG. 2 is a cross-sectional view of a carrier fiber in which a hollow fiber-shaped carbon dioxide (CO 2 ) and oxygen-permeable membrane 5 is coated with a fibrous light guide 4 on the surface thereof to form a fibrous structure. is there. This carrier fiber can be woven in a mesh form and can replace the 4,5 of FIG.

【0014】実施例2 本発明である導光体繊維の網と中空糸状ガス透過膜のユ
ニット(10cm×10cm)8ユニットを有効容積1.8
リットルの培養槽に挿入し、MKM培地を用いてpH
8.0、温度20℃でフォルミジウム(Phormidium)を
培養した。MKM培地の組成を以下に示す。 KNO 3750mg MgSO4 ・7H2 O 20mg KH2 PO4 25mg クエン酸鉄 2.5mg 海水 500ml 蒸留水 500ml 図1の装置を用いて、導光体繊維4の端部に300W人
工光源2からの光を導入し、ガス透過膜5には空気に二
酸化炭素を5%混入したものを圧力2kgf /cm2 で供給
した。槽内は通常緩やかに攪拌を行い、24時間毎に強
力攪拌を行って藻体を剥離させた後、1時間静置し、沈
澱した藻体を引き抜き、同容の新鮮培地7を添加した。
Example 2 Eight units (10 cm × 10 cm) of the light guide fiber net and hollow fiber gas permeable membrane of the present invention were used to obtain an effective volume of 1.8.
Insert into a 1-liter fermentor and use MKM medium to pH
Phormidium was cultured at 8.0 at a temperature of 20 ° C. The composition of the MKM medium is shown below. KNO 3750 mg MgSO 4 .7H 2 O 20 mg KH 2 PO 4 25 mg Iron citrate 2.5 mg Seawater 500 ml Distilled water 500 ml Using the device of FIG. 1, the light from the 300 W artificial light source 2 is applied to the end of the light guide fiber 4. The gas permeable membrane 5 was supplied with air containing 5% of carbon dioxide at a pressure of 2 kgf / cm 2 . The inside of the tank was usually gently stirred, and vigorous stirring was performed every 24 hours to peel off the algal cells, and then allowed to stand for 1 hour, the precipitated algal cells were extracted, and the same volume of fresh medium 7 was added.

【0015】比較例1 比較として図3に示すように、導光体繊維に光を導入せ
ず、培養槽外の300W人工光源2で直接培養槽を照射
したものを用いた。培養槽側面での照度を5000ルク
スとし、他の条件は実施例2と同様に行った。結果を表
1に示す。
Comparative Example 1 As a comparison, as shown in FIG. 3, a light was introduced into the light guiding fibers by directly illuminating the culture tank with a 300 W artificial light source 2 outside the culture tank. The illuminance on the side of the culture tank was set to 5000 lux, and other conditions were the same as in Example 2. The results are shown in Table 1.

【表1】 [Table 1]

【0016】[0016]

【発明の効果】本発明によれば、詳述したように、次の
様な作用効果を奏する。 (1)光ファイバーによって伝送された太陽光及び/又
は人工光を、培養槽内に挿入された側面より光を放出す
る繊維状の導光体へ導入し、その表面に付着性の光合成
微生物を付着させて培養するため、槽内液中には光合成
微生物が存在せず、もしくは存在してもそれらは光の供
給を受けられないためほとんど増殖できないので非常に
低濃度しか存在しないため、培養槽壁面、攪拌装置およ
び各種センサー類への菌体あるいは藻体の付着を最小に
できる。 (2)蛍光燈による光の拡散方式に対して極めて省エネ
ルギー的で培養槽に大量の光エネルギーを供給すること
ができるだけでなく、光ファイバーによって伝送された
太陽光及び/又は人工光を面あるいは棒状の発光体から
槽内液に拡散する方式に比較しても極めて効率的に光エ
ネルギーを利用することができる。
According to the present invention, as described in detail, the following operational effects are exhibited. (1) The sunlight and / or artificial light transmitted by an optical fiber is introduced into a fibrous light guide that emits light from the side surface inserted into the culture tank, and adherent photosynthetic microorganisms are attached to the surface. Since the culture is performed by allowing it to cultivate, the photosynthetic microorganisms do not exist in the liquid in the tank, or even if they do exist, they cannot grow because they cannot receive the light supply. It is possible to minimize the adherence of bacterial cells or algae to the stirring device and various sensors. (2) It is extremely energy-saving compared to the method of diffusing light by a fluorescent lamp and can not only supply a large amount of light energy to the culture tank, but also can convert the sunlight and / or artificial light transmitted by an optical fiber into a surface or a rod. Light energy can be used extremely efficiently as compared with the method of diffusing from the light emitting body to the liquid in the tank.

【0017】(3)繊維状の導光体が網状に織られると
きは、表面積が非常に大きく、付着性微生物の担体とし
て格段に優れた機能を発揮する。 (4)導光体の表面に付着して生育した菌体又は藻体は
容易に定期的にかつ意図的に剥離されて、菌体又は藻体
が常に活発に生育する状態に保たれるため、効率的な培
養が行える。 (5)生育に必要な二酸化炭素(CO2 )及び/又は酸
素は光合成微生物の至近距離にある二酸化炭素(C
2 )及び酸素を透過する膜から拡散して溶解するた
め、気泡として槽内液中に放出されず、発泡による問題
を生じない。
(3) When the fibrous light guide is woven in a net shape, it has a very large surface area and exhibits a remarkably excellent function as a carrier for adherent microorganisms. (4) The fungus body or alga body that adheres to the surface of the light guide and grows is easily and regularly peeled off, so that the fungus body or alga body is always kept actively growing. , Efficient culture can be performed. (5) Carbon dioxide (CO 2 ) and / or oxygen required for growth are carbon dioxide (C 2 ) in the close range of photosynthetic microorganisms.
Since it diffuses and dissolves from the O 2 ) and oxygen permeable membrane, it is not released as bubbles in the liquid in the tank, and no problems due to foaming occur.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の培養装置の概略説明図である。FIG. 1 is a schematic explanatory view of a culture device of the present invention.

【図2】導光体4の横断面図である。FIG. 2 is a cross-sectional view of a light guide 4.

【図3】比較例に用いた培養装置の概略説明図である。FIG. 3 is a schematic explanatory view of a culture device used in a comparative example.

【符号の説明】[Explanation of symbols]

1:培養槽、2:光源、3:光ファイバー、4:側面発
光導光体繊維、5:二酸化炭素及び酸素透過膜、6:攪
拌装置、7:培地、8:空気及び/又は二酸化炭素富化
空気、9:排液、10:排ガス、11:余剰菌体又は藻
1: Culture tank, 2: Light source, 3: Optical fiber, 4: Side-emission light guide fiber, 5: Carbon dioxide and oxygen permeable membrane, 6: Stirrer, 7: Medium, 8: Air and / or carbon dioxide enrichment Air, 9: drainage, 10: exhaust gas, 11: surplus bacterial cells or algae

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮 晶子 神奈川県藤沢市本藤沢4丁目2番1号 株 式会社荏原総合研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akiko Miya, 4-2-1 Motofujisawa, Fujisawa-shi, Kanagawa Stock company EBARA Research Institute

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 付着性光合成細菌、付着性微細藻類など
の付着性光合成微生物を培養する方法において、光ファ
イバーによって伝達された太陽光及び/又は人工光を、
槽内液に挿入された側面より光を放出する繊維状の導光
体によって培養槽内に導入すると共に、該繊維状の導光
体の表面に付着性の光合成微生物を付着させて培養する
ことを特徴とする光合成微生物培養方法。
1. A method for culturing an adherent photosynthetic microorganism such as an adherent photosynthetic bacterium or an adherent microalga, wherein the sunlight and / or artificial light transmitted by an optical fiber is
Introducing into the culture tank by means of a fibrous light guide that emits light from the side surface inserted into the liquid in the tank, and culturing by adhering an adherent photosynthetic microorganism to the surface of the fibrous light guide. A method for culturing a photosynthetic microorganism, which comprises:
【請求項2】 付着性光合成細菌、付着性微細藻類など
の付着性光合成微生物を培養する装置において、培養槽
と、太陽光及び/又は人工光を伝達させる光ファイバー
と、該光ファイバーに接続し槽内液に挿入された側面よ
り光を放出する繊維状の導光体とを有し、かつ該繊維状
の導光体には付着性の光合成微生物が付着して培養され
ることを特徴とする光合成微生物培養装置。
2. In a device for culturing adherent photosynthetic microorganisms such as adherent photosynthetic bacteria and adherent microalgae, a culture tank, an optical fiber for transmitting sunlight and / or artificial light, and an inside of the tank connected to the optical fiber. Photosynthesis, characterized in that it has a fibrous light guide that emits light from the side surface inserted into the liquid, and that adherent photosynthetic microorganisms adhere to the fibrous light guide and are cultured. Microbial culture device.
【請求項3】 前記繊維状の導光体が、二酸化炭素及び
酸素の透過膜の表面に被覆されて一体に形成されている
ことを特徴とする請求項2記載の光合成微生物培養装
置。
3. The photosynthetic microorganism culturing device according to claim 2, wherein the fibrous light guide is integrally formed by coating the surface of a carbon dioxide and oxygen permeable membrane.
JP3254269A 1991-09-06 1991-09-06 Photosynthetic microorganism culture method and device Expired - Lifetime JPH0789903B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3254269A JPH0789903B2 (en) 1991-09-06 1991-09-06 Photosynthetic microorganism culture method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3254269A JPH0789903B2 (en) 1991-09-06 1991-09-06 Photosynthetic microorganism culture method and device

Publications (2)

Publication Number Publication Date
JPH0564577A true JPH0564577A (en) 1993-03-19
JPH0789903B2 JPH0789903B2 (en) 1995-10-04

Family

ID=17262628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3254269A Expired - Lifetime JPH0789903B2 (en) 1991-09-06 1991-09-06 Photosynthetic microorganism culture method and device

Country Status (1)

Country Link
JP (1) JPH0789903B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003038348A1 (en) * 2001-09-18 2003-05-08 Ut-Battelle, Llc Adaptive, full-spectrum solar energy system
JP2005168360A (en) * 2003-12-09 2005-06-30 Olympus Corp Method for examining biological tissue-supplying material, device, cell culture container and method for examining culturing state
JP2006230211A (en) * 2005-02-22 2006-09-07 Nikken Sohonsha Corp Culturing apparatus and culturing method for filamentous microalga
WO2007134141A3 (en) * 2006-05-10 2008-06-26 Univ Ohio Apparatus and method for growing biological organisms for fuel and other purposes
WO2008135276A2 (en) * 2007-05-07 2008-11-13 Universität Duisburg-Essen Assembly and method for the three-dimensional distribution of light in a liquid medium
US7973235B2 (en) 2001-09-18 2011-07-05 Ut-Batelle, Llc Hybrid solar lighting distribution systems and components
DE102010025366A1 (en) * 2010-06-28 2011-12-29 Umex Gmbh Dresden Photoreactor comprises a number of light emitting radiation sources arranged in a reaction vessel, in which a number of rod-shaped radiation sources and a number of rod-shaped carrier are arranged with a photoactive material
KR101335389B1 (en) * 2011-08-25 2013-12-03 한국에너지기술연구원 Photobioreactor with apparatus for inducing mixing of carbon dioxide and method for cultivation of microalgae using the same
WO2014018376A1 (en) * 2012-07-21 2014-01-30 Grow Energy, Inc. Systems and methods for bio-mass energy generation
US8727311B2 (en) 2008-09-05 2014-05-20 Vat Holding Ag Vacuum valve with gas-tight shaft penetration
DE102013208227A1 (en) * 2013-05-06 2014-11-06 Siemens Aktiengesellschaft Photobioreactor for immobilized microorganisms
WO2015039643A1 (en) * 2013-09-18 2015-03-26 Airbus Defence and Space GmbH Photobioreactor with laterally light-emitting light conductor mats

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105371053B (en) * 2015-12-10 2017-09-15 重庆山岱科技有限责任公司 Caravan sewer purification mechanism

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02308786A (en) * 1989-05-19 1990-12-21 Fujitsu Ltd Fluorescent light irradiating device
JPH03112481A (en) * 1989-09-26 1991-05-14 Hiroyuki Kikuchi Apparatus for culturing algae

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02308786A (en) * 1989-05-19 1990-12-21 Fujitsu Ltd Fluorescent light irradiating device
JPH03112481A (en) * 1989-09-26 1991-05-14 Hiroyuki Kikuchi Apparatus for culturing algae

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003038348A1 (en) * 2001-09-18 2003-05-08 Ut-Battelle, Llc Adaptive, full-spectrum solar energy system
US6603069B1 (en) 2001-09-18 2003-08-05 Ut-Battelle, Llc Adaptive, full-spectrum solar energy system
US7973235B2 (en) 2001-09-18 2011-07-05 Ut-Batelle, Llc Hybrid solar lighting distribution systems and components
US7231128B2 (en) 2001-09-18 2007-06-12 Ut-Battelle, Llc Hybrid solar lighting systems and components
JP2005168360A (en) * 2003-12-09 2005-06-30 Olympus Corp Method for examining biological tissue-supplying material, device, cell culture container and method for examining culturing state
JP4650808B2 (en) * 2005-02-22 2011-03-16 株式会社日健総本社 Apparatus and method for culturing filamentous microalgae
JP2006230211A (en) * 2005-02-22 2006-09-07 Nikken Sohonsha Corp Culturing apparatus and culturing method for filamentous microalga
WO2007134141A3 (en) * 2006-05-10 2008-06-26 Univ Ohio Apparatus and method for growing biological organisms for fuel and other purposes
US8470584B2 (en) 2006-05-10 2013-06-25 Ohio University Apparatus and method for growing biological organisms for fuel and other purposes
WO2008135276A2 (en) * 2007-05-07 2008-11-13 Universität Duisburg-Essen Assembly and method for the three-dimensional distribution of light in a liquid medium
WO2008135276A3 (en) * 2007-05-07 2009-03-26 Univ Duisburg Essen Assembly and method for the three-dimensional distribution of light in a liquid medium
US8727311B2 (en) 2008-09-05 2014-05-20 Vat Holding Ag Vacuum valve with gas-tight shaft penetration
DE102010025366A1 (en) * 2010-06-28 2011-12-29 Umex Gmbh Dresden Photoreactor comprises a number of light emitting radiation sources arranged in a reaction vessel, in which a number of rod-shaped radiation sources and a number of rod-shaped carrier are arranged with a photoactive material
KR101335389B1 (en) * 2011-08-25 2013-12-03 한국에너지기술연구원 Photobioreactor with apparatus for inducing mixing of carbon dioxide and method for cultivation of microalgae using the same
WO2014018376A1 (en) * 2012-07-21 2014-01-30 Grow Energy, Inc. Systems and methods for bio-mass energy generation
DE102013208227A1 (en) * 2013-05-06 2014-11-06 Siemens Aktiengesellschaft Photobioreactor for immobilized microorganisms
WO2015039643A1 (en) * 2013-09-18 2015-03-26 Airbus Defence and Space GmbH Photobioreactor with laterally light-emitting light conductor mats

Also Published As

Publication number Publication date
JPH0789903B2 (en) 1995-10-04

Similar Documents

Publication Publication Date Title
Praveen et al. Photosynthetic aeration in biological wastewater treatment using immobilized microalgae-bacteria symbiosis
JPH0623389A (en) Adherent photosynthetic bacteria reaction apparatus
JPH0564577A (en) Method and device for culturing photosynthetic microorganism
CN109231467B (en) Method for treating black and odorous water body by adopting gas lift circulation algae biofilm reactor
Rossignol et al. Comparison of two membrane–photobioreactors, with free or immobilized cells, for the production of pigments by a marine diatom
CN207877390U (en) A kind of drum-type bacterium algae rotating biological membrane reactor
CN112830641A (en) High-density microalgae biofilm reactor based on membrane aeration and membrane concentration and algae culture method thereof
CN109456885A (en) A kind of automatically cleaning fluidized bed bioreactor
JPH07176A (en) Culture device for photosynthetic microorganism
JPH07184630A (en) Culture apparatus for photosynthetic organism
Lebeau et al. A new photobioreactor for continuous marennin production with a marine diatom: influence of the light intensity and the immobilised-cell matrix (alginate beads or agar layer)
Mitchell et al. The use of rotifers for the maintenance of monoalgal mass cultures of Spirulina
JP3181237B2 (en) Microalgae chlorella and method for immobilizing CO2 using microalgae chlorella
JP3035153B2 (en) Culture method for photosynthetic organisms
KR101425874B1 (en) Apparatus and method for cultivating micro-algae with nitrite
Plengsakul et al. Plastic media reduced algal wall-growth of Chlorococcum humicola for the cultivation in internal-loop airlift photobioreactor
JPH07155167A (en) Culture device for fine alga
JP3540540B2 (en) Photosynthetic microorganism culture equipment
CN113136342B (en) Photo bioreactor, photosynthetic microorganism culture method and application thereof
CN109179657B (en) Secondary fluidized bed domestic sewage treatment method and device
CN208151054U (en) A kind of conveyor type bacterium algae rotating biological membrane reactor
JPH04126594A (en) Treatment of waste water
JPH10150974A (en) Apparatus for culturing photosynthetic microorganism and culturing method
JPH08322553A (en) Cultivation of fine algae and equipment therefor
JP2001000168A (en) Photosynthesis reactor