JP3175841B2 - Manufacturing method of permanent magnet - Google Patents

Manufacturing method of permanent magnet

Info

Publication number
JP3175841B2
JP3175841B2 JP07580791A JP7580791A JP3175841B2 JP 3175841 B2 JP3175841 B2 JP 3175841B2 JP 07580791 A JP07580791 A JP 07580791A JP 7580791 A JP7580791 A JP 7580791A JP 3175841 B2 JP3175841 B2 JP 3175841B2
Authority
JP
Japan
Prior art keywords
permanent magnet
powder
magnet
amount
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07580791A
Other languages
Japanese (ja)
Other versions
JPH04287303A (en
Inventor
和生 佐藤
確 竹渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP07580791A priority Critical patent/JP3175841B2/en
Publication of JPH04287303A publication Critical patent/JPH04287303A/en
Application granted granted Critical
Publication of JP3175841B2 publication Critical patent/JP3175841B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、永久磁石に、特にR−
Fe−B系焼結磁石(RはYを含む希土類元素の少なく
とも1種)の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a permanent magnet,
The present invention relates to a method for producing an Fe—B based sintered magnet (R is at least one rare earth element including Y).

【0002】[0002]

【従来の技術】R−Fe−B系焼結磁石は、還元拡散法
によって得られた粉末合金や、溶解法で得られた合金を
粉砕して得られた合金粉末などを、1〜20μm に微粉
砕し、これを磁界中にて配向させながら成型し、次いで
焼結し、これに熱処理を施して得られる。
2. Description of the Related Art R-Fe-B sintered magnets are used to reduce a powder alloy obtained by a reduction diffusion method or an alloy powder obtained by pulverizing an alloy obtained by a melting method to 1 to 20 μm. It is obtained by pulverizing, shaping the product while orienting it in a magnetic field, then sintering, and subjecting it to a heat treatment.

【0003】このようなR−Fe−B系焼結磁石は原料
が安価であることや、磁気特性が従来のSmCo系磁石
に比べて大きいなどの長所がある反面、極めて錆易いと
いう性質をもっている。このため、工程中で微粉となっ
た場合に表面積が大きくなりその微粉は非常に酸化され
やすく取扱いが難しいことになる。
[0003] Such R-Fe-B-based sintered magnets have the advantage that raw materials are inexpensive and their magnetic properties are larger than those of conventional SmCo-based magnets, but they have the property of being extremely rust-resistant. . For this reason, when it becomes fine powder in the process, the surface area becomes large, and the fine powder is very easily oxidized and handling becomes difficult.

【0004】このような点を改善するために、R−Fe
−B系焼結磁石の製造に際しては、N2 等の非酸化性気
体中で取り扱うことが一般的に行なわれている。しか
し、完全に工程の設備を密閉することは、特に大量生産
の場合実現が困難であり、多かれ少なかれ微粉や圧粉体
が空気中の酸素や水分にさらされる機会を生じる。
In order to improve such a point, R-Fe
In preparing the -B based sintered magnet, be handled in a non-oxidizing gas such as N 2 is generally performed. However, the complete sealing of the process equipment is difficult to achieve, especially in the case of mass production, giving more or less opportunities for the fines and compacts to be exposed to oxygen and moisture in the air.

【0005】これまで、空気中の酸素や水分と接するこ
とは、磁石内の酸素量を増加させ、磁気特性を悪化させ
るものであると考えられており、この視点から酸素量を
規制する旨の提案がなされている(特開昭62−625
03号等)。また、空気中の酸素や水分とさらされる度
合により、酸素量がバラつき、磁気特性のみならず、磁
石の寸法や強度さらには耐湿性等の品質がバラつくとも
考えられている。
Until now, it has been considered that contact with oxygen or moisture in the air increases the amount of oxygen in the magnet and deteriorates the magnetic characteristics. From this viewpoint, it is considered that the amount of oxygen is regulated. A proposal has been made (JP-A-62-625).
03). It is also considered that the amount of oxygen varies depending on the degree of exposure to oxygen and moisture in the air, and that not only the magnetic properties but also the dimensions and strength of the magnet and the quality such as moisture resistance vary.

【0006】[0006]

【発明が解決しようとする課題】しかし、成形後、焼結
前に成形体が空気中の特に水分と接触するときには、得
られる焼結磁石内の酸素量を一定値に保持しても、成形
体の強度や、焼結体の強度が十分でなく、またこれらや
焼結体の寸法がバラついたり、クラックやカケ等の焼結
不良を生じたり、さらには磁石の耐湿性や安定性が低下
したりすることが判明した。
However, when the molded body comes into contact with the air, especially moisture, after molding and before sintering, even if the amount of oxygen in the obtained sintered magnet is kept constant, The strength of the body and the strength of the sintered body are not sufficient, and the dimensions of these and the sintered body vary, sintering defects such as cracks and chips occur, and the moisture resistance and stability of the magnet Or lower.

【0007】本発明の主たる目的は、工程管理が容易で
あり、しかも成形体や焼結体の強度が高く、これらの強
度や焼結体寸法が安定で、クラックやカケ等の焼結不良
を生じず、良好かつ安定な成形ないし焼結性を示し、耐
湿性や安定性が高く、品質の安定したR−Fe−B系焼
結磁石の製造方法を提供することにある。
[0007] The main object of the present invention is to facilitate the process control, to have a high strength of the compact and sintered body, to stabilize the strength and the size of the sintered body, and to prevent sintering defects such as cracks and chips. An object of the present invention is to provide a method for producing an R-Fe-B based sintered magnet which does not occur, exhibits good and stable molding or sinterability, has high moisture resistance and stability, and has stable quality.

【0008】[0008]

【課題を解決するための手段】このような目的は、下記
(1)および(2)の本発明により達成される。 (1) 出発原料の原料粉を得、この原料粉を成形して
成形体を得、この成形体を水分0.005g/リットル
以上の雰囲気に1分以上さらした後、これを焼結して、
R(ただし、RはYを含む希土類元素の少なくとも1
種)、FeおよびBを含む永久磁石を得る永久磁石の製
造方法において、前記出発原料中のRN量を規制して、
出発原料のN含有量を10〜40ppm にして成形体強度
を高めることを特徴とする永久磁石の製造方法。 (2) 永久磁石中のNの含有量が10〜250ppm で
ある上記(1)に記載の永久磁石の製造方法。
This and other objects are achieved by the present invention which is defined below as (1) and (2). (1) A raw material powder as a starting material is obtained, and the raw material powder is molded to obtain a molded body. The molded body is exposed to an atmosphere having a water content of 0.005 g / liter or more for 1 minute or more, and then sintered. ,
R (where R is at least one of the rare earth elements including Y
Seed), a method for producing a permanent magnet containing Fe and B, wherein the amount of RN in the starting material is regulated,
A method for producing a permanent magnet, wherein the N content of a starting material is adjusted to 10 to 40 ppm to enhance the strength of a compact. (2) The method for producing a permanent magnet according to the above (1), wherein the content of N in the permanent magnet is 10 to 250 ppm.

【0009】[0009]

【0010】[0010]

【0011】[0011]

【作用】本発明では、原料となるR−Fe−B系合金の
N量を10〜40ppm に規制する。これは、工程中の粉
の経時変化や磁石素体の耐食性等に対し、原料合金中の
N量が大きな影響を与えるという知見に基づくものであ
る。
According to the present invention, the amount of N in the R-Fe-B alloy as a raw material is restricted to 10 to 40 ppm. This is based on the finding that the amount of N in the raw material alloy has a large effect on the change over time of the powder during the process, the corrosion resistance of the magnet body, and the like.

【0012】R−Fe−B系焼結磁石では、微粉の粒径
が細かいほど、磁石の保磁力や着磁性能が向上するが、
あまり細かくなると、酸化の度合いが増えて保磁力が劣
化するので、両者の兼ね合いで、平均粒径2〜5μm 程
度がよく使用される。しかし、工程中のO2 量の経時変
化を比較した場合、同じ粒径でも組成中のNが大きな影
響を与えることが判明した。R−Fe−B系焼結磁石で
は数1000ppm までの酸素が許容されるため、このよ
うなことは従来見過ごされてきたのであると思われる。
しかし、組成中のNの最も大きな影響は、空気中の水分
によって粉や圧粉体の性状を刻々変化させ、磁石の品質
バラツキを起こさせるのである。
In the R—Fe—B sintered magnet, the finer the particle size of the fine powder, the better the coercive force and magnetizing performance of the magnet.
If the fineness is too small, the degree of oxidation increases and the coercive force deteriorates. Therefore, an average particle size of about 2 to 5 μm is often used in consideration of both. However, when comparing the time-dependent changes in the amount of O 2 during the process, it was found that N in the composition had a great effect even with the same particle size. Since the R-Fe-B based sintered magnet allows oxygen up to several thousand ppm, it seems that such a phenomenon has been overlooked in the past.
However, the greatest influence of N in the composition is that the properties of the powder and the green compact change every moment due to the moisture in the air, causing variations in the quality of the magnet.

【0013】原料合金中のNは、その原料である素メタ
ル、特に希土類メタルによってもたらされる。Nは希土
類の窒化物RNの形で存在すると考えられる。希土類の
窒化物は、高温でも安定であり、溶解工程を経ても残留
する。残留したNを含む合金が粉砕された場合、粉砕は
通常N2 や溶剤の雰囲気で行なわれるので、窒化物は変
化ないし変質しない。
[0013] N in the raw material alloy is provided by the raw material metal, particularly the rare earth metal. It is believed that N exists in the form of rare earth nitride RN. The rare earth nitride is stable even at high temperatures and remains after the melting step. When the alloy containing the remaining N is pulverized, the pulverization is usually performed in an atmosphere of N 2 or a solvent, so that the nitride does not change or deteriorate.

【0014】しかし、粉砕後一旦空気に触れると、窒化
物は下記の反応を起こして気体となって空気中に拡散
し、希土類の水酸化物を経て、希土類酸化物として粉ま
たは圧粉体中に残留すると推定されるに至った。 RN + 3H2 O → NH3 ↑ + R(OH)3
However, once in contact with air after the pulverization, the nitride undergoes the following reaction to become a gas and diffuse into the air, pass through the rare earth hydroxide, and become a rare earth oxide in the powder or green compact. It is estimated that it will remain. RN + 3H 2 O → NH 3 ↑ + R (OH) 3

【0015】この反応は、希土類の化学反応としては知
られているが、数10〜数100ppm の合金中の窒化物
が、成形体の強度や焼結寸法、強度、さらには最終製品
の信頼性にかかわるに至ることは予測できなかったこと
である。
This reaction is known as a chemical reaction of rare earths. However, several tens to several hundreds of ppm of nitride in the alloy cause the strength, sintering size and strength of the compact, and the reliability of the final product. It was unpredictable to get involved.

【0016】さらに、このような問題を混乱させ、今ま
で窒化物の工程中で影響が問題視されていなかった原因
として次のような点が挙げられる。つまり、窒化物の分
析は、不活性気体中でサンプルをくだいた後に空気中に
触れさせないように測定しなければ、ここで論じる微量
のNの定量は困難である。さらに、製造時に多かれ少な
かれ工程中で空気に触れるため、窒化物は減少してい
る。さらに工程中に酸化防止のためN2 気体を使用する
ので、粉への吸着Nがある。これら吸着したN2は窒化
物のNとは異なり、工程や製品に悪影響をおよぼさな
い。さらに微量の窒化物であるため、上記の反応が起き
ても、発生するアンモニアは微量であり、検知しにくい
ことが挙げられる。これらから、製品中のN量は問題と
なっても窒化物のもたらす工程中での悪影響は従来問題
とはされていなかったのであるが、実際、原料中にRN
がある程度存在し、これが空気と接触するときには、ア
ンモニアの発生をアンモニア臭として確認することがで
きるのである。
Further, the following problems can be cited as contributing factors that have confused such a problem and that the influence has not been regarded as a problem during the nitride process. That is, in the analysis of nitrides, it is difficult to quantify the trace amount of N discussed here unless the sample is measured in an inert gas so as not to come into contact with the air. In addition, nitrides are being reduced due to more or less exposure to air during the manufacturing process. Furthermore, since N 2 gas is used during the process to prevent oxidation, there is adsorption N to the powder. These adsorbed N 2, unlike N of the nitride, do not adversely affect the process or the product. Further, since the amount of the nitride is small, even if the above reaction occurs, the amount of generated ammonia is small and it is difficult to detect ammonia. From these facts, although the amount of N in the product was a problem, the adverse effect of the nitride during the process was not considered to be a problem in the past.
Is present to some extent, and when it comes into contact with air, the generation of ammonia can be confirmed as an ammonia odor.

【0017】ところで、磁石中のNについては、前記公
報のように、製品中のN量を規制する提案もなされてい
る。しかし、これは磁気特性を理由としたものであり、
本発明のように原料中の窒化物としてのNを微量に抑え
ることによって、粉末やそれによって得られる磁石素体
の耐湿性や安定性を改善する試みは従来存在しない。
Incidentally, as for N in the magnet, as described in the above-mentioned publication, a proposal has been made to regulate the amount of N in the product. However, this is due to magnetic properties,
As in the present invention, there has been no attempt to improve the moisture resistance and stability of the powder and the magnet body obtained by suppressing N as a nitride in the raw material to a very small amount.

【0018】[0018]

【具体的構成】本発明の永久磁石は、R、FeおよびB
を含有し、特に重量%でR(RはYを含む希土類元素の
うち少なくとも1種)27〜38、Fe51〜72、B
0.5〜4.5、さらに不可避不純物からなり、窒素の
含有量は10〜250ppm であることが好ましい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The permanent magnet of the present invention comprises R, Fe and B.
R (R is at least one of rare earth elements including Y) 27 to 38, Fe 51 to 72, B
It is preferable that the content of nitrogen is 0.5 to 4.5, furthermore, it is composed of unavoidable impurities and the content of nitrogen is 10 to 250 ppm.

【0019】Rの含有量が減少すると、鉄に富む相が析
出して保磁力が低下してくる。また、R含有量が増大す
ると、残留磁束密度が低下してくる。Bの含有量が減少
すると、保磁力が低下してくる。また、B含有量が増大
すると、残留磁束密度が低下してくる。また、Feの3
0重量%以下はCoで置換してもよい。さらに、Al、
Cr、Mn、Mg、Si、Cu、C、Nb、Sn、W、
V、Zr、Ti、Moなどの添加元素は、少量の添加で
保磁力の改善が得られるが、6重量%より大では残留磁
束密度が低下してくる。
When the R content decreases, an iron-rich phase precipitates and the coercive force decreases. When the R content increases, the residual magnetic flux density decreases. As the B content decreases, the coercive force decreases. When the B content increases, the residual magnetic flux density decreases. In addition, 3 of Fe
0% by weight or less may be replaced by Co. Further, Al,
Cr, Mn, Mg, Si, Cu, C, Nb, Sn, W,
Addition elements such as V, Zr, Ti, and Mo can improve the coercive force by adding a small amount, but if the addition element is more than 6% by weight, the residual magnetic flux density decreases.

【0020】窒素の含有量は、10〜250ppm であれ
ばR−Fe−B系永久磁石の耐湿性の改善、特に磁石素
体自体に起因する耐湿性の改善による発錆を防止するこ
とが出来る。また、酸素の含有量は6000ppm 以下、
特に 2500〜4500ppm であることが好ましい。
本発明における永久磁石は、実質的に正方晶系の結晶構
造の主相を有する。この主相の粒径は、1〜100μm
程度であることが好ましい。そして、通常、体積比で1
〜50%の非磁性相を含むものである。
When the content of nitrogen is 10 to 250 ppm, it is possible to prevent the R-Fe-B permanent magnet from improving the moisture resistance, particularly preventing rusting due to the improvement in the moisture resistance caused by the magnet body itself. . The oxygen content is 6000 ppm or less,
In particular, it is preferably 2500 to 4500 ppm.
The permanent magnet in the present invention has a main phase having a substantially tetragonal crystal structure. The particle size of this main phase is 1 to 100 μm
It is preferred that it is about. And usually, the volume ratio is 1
It contains about 50% of a non-magnetic phase.

【0021】磁石中の窒素レベルを制御する方法として
は、窒素含有量の少ない原料を用いる。すなわち、原料
中のN量は10〜40ppm に規制する。
As a method for controlling the nitrogen level in the magnet, a raw material having a low nitrogen content is used. That is, the amount of N in the raw material is restricted to 10 to 40 ppm.

【0022】用いる原料としては、還元拡散法によって
得られた粉末合金であってもよい。このような粉末は1
0〜500μm 程度の粒径をして得られる。
The raw material used may be a powder alloy obtained by a reduction diffusion method. Such powder is 1
It is obtained with a particle size of about 0 to 500 μm.

【0023】また、所望の組成の合金を鋳造し、インゴ
ットを得、得られたインゴットを、スタンプミルや、水
素吸蔵粉砕法等により粒径10〜500μm 程度に粗粉
砕してもよい。
Alternatively, an alloy having a desired composition may be cast to obtain an ingot, and the obtained ingot may be roughly pulverized to a particle size of about 10 to 500 μm by a stamp mill, a hydrogen absorbing pulverization method, or the like.

【0024】これらにおいて、合金ないし粗粉砕粉、あ
るいは後記微粉砕粉のN量を規制するものである。なお
合金中の酸素量は50〜2000ppm 以下、特に50〜
500ppm とすることが好ましい。なお、NやO量の測
定は、不活性ガス中融解−熱伝導度検出法によればよ
い。次いで、これらをジェットミル、ボ−ルミル等によ
り0.5〜5μm 、特に12〜5μm 程度の粒径に微粉
砕する。この際、ジェットミルはN2 雰囲気中で、ま
た、ボ−ルミルはアセトン、アルコ−ル、トルエン等の
溶媒中で行なうことが好ましい。
In these, the amount of N in the alloy, the coarsely pulverized powder, or the finely pulverized powder described later is regulated. The oxygen content in the alloy is 50 to 2000 ppm or less, especially 50 to 2000 ppm.
Preferably, it is 500 ppm. The measurement of the amount of N and O may be performed by a method of melting in an inert gas and detecting the thermal conductivity. Next, these are finely pulverized by a jet mill, a ball mill or the like to a particle size of about 0.5 to 5 μm, especially about 12 to 5 μm. At this time, it is preferable that the jet mill is performed in an N 2 atmosphere, and the ball mill is performed in a solvent such as acetone, alcohol, and toluene.

【0025】得られた粉末を、好ましくは磁場中にて成
形する。この場合、磁場強度は10kOe 以上、成形圧力
は0.5〜3t/cm2 程度であることが好ましい。
The obtained powder is formed preferably in a magnetic field. In this case, the magnetic field strength is preferably 10 kOe or more, and the molding pressure is preferably about 0.5 to 3 t / cm 2 .

【0026】次いで、成形体を、1000〜1200℃
で0.5〜5時間焼結し、急冷する。なお、焼結雰囲気
は、Arガス等の不活性ガス雰囲気あるいは真空中であ
ることが好ましい。そして、この後、好ましくは不活性
ガス雰囲気中あるいは真空中で、500〜900℃にて
1〜5時間時効処理を行なう。
Next, the molded body is heated at 1000 to 1200 ° C.
And quenched for 0.5-5 hours. The sintering atmosphere is preferably an inert gas atmosphere such as Ar gas or a vacuum. After that, aging treatment is preferably performed at 500 to 900 ° C. for 1 to 5 hours in an inert gas atmosphere or vacuum.

【0027】このような場合において、成形体は、焼結
前、0.005g/リットル以上、通常0.007g/
リットル〜0.02g/リットルの水分を含む雰囲気に
1分以上、通常3分〜5時間程度さらされる。成形前に
おいては、N2、Ar等の不活性ガス雰囲気中で各工程を
行なうことが好ましく、またそのようにすることは工程
管理上さほど労力は要しない。これに対し、成形後焼結
前、完全に不活性ガス雰囲気中に成形体を保管すること
は、大量生産においては商品保管システム上等実現不可
能に近く、上記の水分雰囲気に成形体をさらしてもよい
とする点には、量産上極めて大きなメリットがある。
In such a case, before sintering, the compact is 0.005 g / liter or more, usually 0.007 g / liter.
It is exposed to an atmosphere containing 1 to 0.02 g / liter of water for 1 minute or more, usually about 3 minutes to 5 hours. Prior to molding, it is preferable to perform each step in an atmosphere of an inert gas such as N 2 or Ar, and doing so does not require much labor in the step management. On the other hand, storing the compact completely in an inert gas atmosphere after molding and before sintering is almost impossible to implement on a merchandise storage system in mass production, and the compact is exposed to the above moisture atmosphere. There is an extremely large advantage in mass production in that it is acceptable.

【0028】そして、本発明では、上記のとおり原料粉
中のN量を10〜40ppm に規制するので、RN化合物
と水との反応が無視できるようになり、上記の成形ない
し焼結性やその安定性、あるいは磁石の耐食性や安定性
が向上するものである。
In the present invention, since the amount of N in the raw material powder is regulated to 10 to 40 ppm as described above, the reaction between the RN compound and water can be neglected, and the above-mentioned molding or sintering properties and the like can be reduced. It improves the stability or the corrosion resistance and stability of the magnet.

【0029】[0029]

【実施例】以下、実施例により、本発明を説明する。 実施例1 重量%にて、30Nd3Dy65.8Fe1.2Bの組
成の合金インゴットをArガス雰囲気中で溶解法により
作製した。出発原料をかえてインゴットのN含有量を下
記表1のように変化させた。これらのインゴットを用い
て、破砕、粗粉砕、微粉砕、磁場中成型、焼結、熱処理
の通常の焼結法による工程を経て磁石化した。
The present invention will be described below with reference to examples. Example 1 An alloy ingot having a composition of 30Nd3Dy65.8Fe1.2B at a weight percentage of 30 Nd3Dy65.8Fe1.2B was produced by a melting method in an Ar gas atmosphere. The N content of the ingot was changed as shown in Table 1 below by changing the starting materials. Using these ingots, magnetization was carried out through ordinary sintering processes of crushing, coarse grinding, fine grinding, molding in a magnetic field, sintering, and heat treatment.

【0030】この場合、粗粉砕は水素吸蔵法により、粗
粉砕粉は平均粒径30μm とした。また、微粉砕はN2
気流中のジェットミルにより微粉砕粉の平均粒径は3μ
m とした。この粉を10kOe の磁場中にて1.5トン/cm
2 の圧力で加圧して磁場中成形した。破砕〜成形までの
工程では空気との接触を遮断し、成形後、成形体を25
℃、水分0.01g/リットルの雰囲気(20℃、相対
湿度60%)に、3分間接触させた。
In this case, the coarse pulverization was performed by a hydrogen storage method, and the coarse pulverized powder had an average particle diameter of 30 μm. In addition, fine pulverization is performed using N 2
Average particle size of finely pulverized powder is 3μ by jet mill in air stream
m. This powder is 1.5 ton / cm in a magnetic field of 10 kOe.
Pressing at a pressure of 2 and molding in a magnetic field. In the process from crushing to molding, contact with air is blocked, and after molding,
C. and an atmosphere of 0.01 g / liter of water (20.degree. C., relative humidity 60%) for 3 minutes.

【0031】この後、成形体をAr雰囲気中で1100
℃にて3時間焼結し、これを急冷後Ar雰囲気中で60
0℃にて3時間時効処理を行ない、11mm径×4mmの磁
石を得た。
Thereafter, the molded body is placed in an Ar atmosphere at 1100.
Sintering at 300 ° C. for 3 hours, and after quenching, it is
Aging treatment was performed at 0 ° C. for 3 hours to obtain a magnet having a diameter of 11 mm × 4 mm.

【0032】水分接触後の成形体強度と焼結体の強度
(サンプル5個の平均値)を表1に示す。この場合、成
形体の強度の測定は、N2 中で行なった。また、表1に
は焼結体中のN量およびO量をガス分析により測定した
結果が示される。ガス分析は、不活性ガス中融解−熱伝
導度検出法によった。なお、表1には水分雰囲気を0.
003g/リットル(20℃、相対湿度17%)にかえ
た場合の成形体強度が併記される。
Table 1 shows the strength of the compact after moisture contact and the strength of the sintered compact (average value of five samples). In this case, the measurement of the strength of the molded body was performed in N 2 . Table 1 shows the results of measuring the amounts of N and O in the sintered body by gas analysis. Gas analysis was performed by a method of melting in an inert gas and detecting thermal conductivity. Table 1 shows that the moisture atmosphere is 0.
The strength of the molded body when it is changed to 003 g / liter (20 ° C., 17% relative humidity) is also described.

【0033】[0033]

【表1】 [Table 1]

【0034】表1に示される結果から、本発明の効果が
あきらかである。なお、原料中N含有量400ppm 以上
のものでは、水分接触後、アンモニア臭を確認すること
ができた。
From the results shown in Table 1, the effect of the present invention is clear. When the N content in the raw material was 400 ppm or more, the smell of ammonia could be confirmed after contact with water.

【0035】実施例2 重量%にて、31.5Nd1.5Dy65.8Fe1.
2Bの組成の合金粉を還元拡散法により得た。この際、
合金粉の窒素含有量を表2のように変化させた。これを
Ar+N2 ジェット気流粉砕法にて微粉砕し、さらに実
施例1と同様、磁場中成形を行なった。この後、25
℃、0.008g/リットルの水分雰囲気(相対湿度3
5%)に3時間さらしたのち、実施例1と同様、焼結、
熱処理の工程を経て磁石化した。成形体強度を表2に示
す。
Example 2 31.5 Nd1.5 Dy65.8 Fe1.
An alloy powder having a composition of 2B was obtained by a reduction diffusion method. On this occasion,
The nitrogen content of the alloy powder was changed as shown in Table 2. This was finely pulverized by an Ar + N 2 jet airflow pulverization method, and further molded in a magnetic field as in Example 1. After this, 25
° C, moisture atmosphere of 0.008 g / liter (relative humidity 3
5%) for 3 hours, followed by sintering as in Example 1.
It was magnetized through a heat treatment process. Table 2 shows the strength of the compact.

【0036】[0036]

【表2】 表2に示される結果から本発明の効果があきらかであ
る。
[Table 2] From the results shown in Table 2, the effect of the present invention is clear.

【0037】実施例3 実施例1で作製した磁石に電解Niメッキを10μm 施
した。次に85℃、相対湿度85%、500時間の耐湿
試験を行なった結果を表3に示す。
Example 3 The magnet produced in Example 1 was subjected to electrolytic Ni plating at 10 μm. Next, Table 3 shows the results of a humidity resistance test conducted at 85 ° C. and a relative humidity of 85% for 500 hours.

【0038】[0038]

【表3】 表3に示される結果から、本発明の効果があきらかであ
る。
[Table 3] From the results shown in Table 3, the effect of the present invention is clear.

【0039】[0039]

【発明の効果】本発明によれば、成形体と水分との接触
が許容されるので、工程管理が容易となる。しかも、空
気中の水分による粉砕粉の経時変化が減少し、安定した
生産ができる。そして、圧粉時の成形体の強度が向上
し、強度の経時劣化もなく、カケやクラックの無い製品
が得られる。そして、磁石素体の耐湿性が改善され、高
信頼性の製品が得られる。
According to the present invention, since the contact between the compact and the moisture is allowed, the process control becomes easy. In addition, the time-dependent change of the pulverized powder due to moisture in the air is reduced, and stable production can be performed. And the strength of the compact at the time of compacting is improved, and there is no deterioration with time of the strength, and a product free from chips and cracks can be obtained. Then, the moisture resistance of the magnet body is improved, and a highly reliable product is obtained.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 出発原料の原料粉を得、この原料粉を成
形して成形体を得、この成形体を水分0.005g/リ
ットル以上の雰囲気に1分以上さらした後、これを焼結
して、R(ただし、RはYを含む希土類元素の少なくと
も1種)、FeおよびBを含む永久磁石を得る永久磁石
の製造方法において、 前記出発原料中のRN量を規制して、出発原料のN含有
量を10〜40ppm にして成形体強度を高めることを特
徴とする永久磁石の製造方法。
1. A raw material powder as a starting material is obtained, the raw material powder is molded to obtain a molded body, and the molded body is exposed to an atmosphere having a water content of 0.005 g / liter or more for 1 minute or more, and then sintered. And R (where R is at least one rare earth element containing Y), a permanent magnet containing Fe and B, wherein the amount of RN in the starting material is regulated, A method for producing a permanent magnet, comprising increasing the strength of a molded body by making the N content of Nb to 10 to 40 ppm.
【請求項2】 永久磁石中のNの含有量が10〜250
ppm である請求項1に記載の永久磁石の製造方法。
2. The N content in a permanent magnet is 10 to 250.
The method for producing a permanent magnet according to claim 1, wherein the amount is ppm.
JP07580791A 1991-03-15 1991-03-15 Manufacturing method of permanent magnet Expired - Lifetime JP3175841B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07580791A JP3175841B2 (en) 1991-03-15 1991-03-15 Manufacturing method of permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07580791A JP3175841B2 (en) 1991-03-15 1991-03-15 Manufacturing method of permanent magnet

Publications (2)

Publication Number Publication Date
JPH04287303A JPH04287303A (en) 1992-10-12
JP3175841B2 true JP3175841B2 (en) 2001-06-11

Family

ID=13586838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07580791A Expired - Lifetime JP3175841B2 (en) 1991-03-15 1991-03-15 Manufacturing method of permanent magnet

Country Status (1)

Country Link
JP (1) JP3175841B2 (en)

Also Published As

Publication number Publication date
JPH04287303A (en) 1992-10-12

Similar Documents

Publication Publication Date Title
RU2377680C2 (en) Rare-earth permanaent magnet
JP4645855B2 (en) R-T-B sintered magnet
JP4831253B2 (en) R-T-Cu-Mn-B sintered magnet
EP1641000B1 (en) R-t-b based rare earth permanent magnet and method for production thereof
US20050268989A1 (en) R-t-b sintered magnet and process for producing the same
US7255751B2 (en) Method for manufacturing R-T-B system rare earth permanent magnet
JP4605013B2 (en) R-T-B system sintered magnet and rare earth alloy
EP1460652B1 (en) R-t-b rare earth permanent magnet
US10242781B2 (en) Method for manufacturing R-T-B based sintered magnet
JPH04184901A (en) Rare earth iron based permanent magnet and its manufacture
JPH01219143A (en) Sintered permanent magnet material and its production
US20180301256A1 (en) R-t-b based sintered magnet
US7208056B2 (en) Rare earth sintered magnet, and method for improving mechanical strength and corrosion resistance thereof
JPH04330702A (en) Rare-earth permanent magnet of excellent corrosion resistance
WO2021193334A1 (en) Anisotropic rare earth sintered magnet and method for producing same
JP3175841B2 (en) Manufacturing method of permanent magnet
JPH1197223A (en) R-fe-b sintered permanent magnet
JP3255344B2 (en) Sintered permanent magnet
JP2720039B2 (en) Rare earth magnet material with excellent corrosion resistance
JPH06124812A (en) Nitride magnet powder and its synthesizing method
EP1494250B1 (en) Rare earth sintered magnet and method for production thereof
McGuiness et al. Magnetic properties and microstructures of Nd-Dy-Fe-Co-B-Ga hot-deformed magnets
JPH0525592A (en) Rare earth magnet material
JPH04287304A (en) Manufacture of permanent magnet
JPH1068052A (en) R-tm-b series sintered magnetic alloy high in corrosion resistance

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080406

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090406

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090406

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 10

EXPY Cancellation because of completion of term