JP3170381B2 - Battery life judgment device - Google Patents

Battery life judgment device

Info

Publication number
JP3170381B2
JP3170381B2 JP04610693A JP4610693A JP3170381B2 JP 3170381 B2 JP3170381 B2 JP 3170381B2 JP 04610693 A JP04610693 A JP 04610693A JP 4610693 A JP4610693 A JP 4610693A JP 3170381 B2 JP3170381 B2 JP 3170381B2
Authority
JP
Japan
Prior art keywords
battery
life
determination
power
power failure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04610693A
Other languages
Japanese (ja)
Other versions
JPH06242192A (en
Inventor
雅治 大▲角▼
ゆみ 堤
保文 深尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp filed Critical Omron Corp
Priority to JP04610693A priority Critical patent/JP3170381B2/en
Publication of JPH06242192A publication Critical patent/JPH06242192A/en
Application granted granted Critical
Publication of JP3170381B2 publication Critical patent/JP3170381B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電池の寿命判定装置に
関するもので、より具体的には無停電電源装置等に内蔵
される二次電池の寿命を判定するための装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for determining the life of a battery, and more particularly to an apparatus for determining the life of a secondary battery incorporated in an uninterruptible power supply or the like.

【0002】[0002]

【従来の技術】従来、無停電電源装置(UPS)等のバ
ックアップ用電池を内蔵した装置において、係る内蔵さ
れた電池(例えば鉛蓄電池)の交換時期を知るために、
例えば特開平2−55536号公報に示されるような寿
命判定装置を用い、内蔵された電池に対する寿命判定を
行う。すなわち係る寿命判定装置は、まず平常時(商用
電源から負荷に対して電力供給している時)に電池に対
しても浮動充電等の方法で充電する。そして、疑似停電
を発生させて電池から負荷に電力を供給する。この放電
中の電池の端子電圧を測定し、その電圧が所定の電圧に
降下した時までの出力電流の積分量を求め、その積分量
が所定量に達していたか否かにより寿命か否かの判定を
するようにしている。
2. Description of the Related Art Conventionally, in a device having a built-in backup battery such as an uninterruptible power supply (UPS), it is necessary to know when to replace the built-in battery (for example, a lead storage battery).
For example, the life of a built-in battery is determined using a life determination device as disclosed in Japanese Patent Application Laid-Open No. 2-55536. That is, the life determining device first charges the battery in a normal state (when power is supplied from the commercial power supply to the load) by a method such as floating charging. Then, a pseudo power failure is generated to supply power from the battery to the load. The terminal voltage of the battery during this discharge is measured, the integrated amount of the output current until the voltage drops to a predetermined voltage is determined, and whether or not the life is determined based on whether or not the integrated amount has reached the predetermined amount. The decision is made.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記した寿命
判定装置では、以下に示す種々の問題を有している。す
なわち、浮動充電状態等の電池の内部が不活性の状態か
ら寿命判定のために疑似停電を行い放電させると、その
放電開始後一時的に電池の端子電圧が低下する現象が見
られることがある。そして、かかる現象の発生の有無並
びに程度は電池の状態に起因し、必ずしも一定ではな
い。そこで、上記したように積分量に基づく判断を行う
と、初期条件のばらつきから正確な(均一な)寿命判定
を行うことができない。
However, the above-described life determining apparatus has the following various problems. That is, when a pseudo power failure is performed to determine the life from the inactive state of the battery such as a floating charge state and the battery is discharged, a phenomenon that the terminal voltage of the battery temporarily decreases after the start of the discharge may be observed. . The occurrence and the extent of such a phenomenon are caused by the state of the battery and are not always constant. Therefore, if the determination based on the integral amount is performed as described above, accurate (uniform) life determination cannot be performed due to the variation in the initial condition.

【0004】さらに、従来の装置は、寿命か否かの判定
を所定のしきい値により一義的に判断するようにしてい
るが、電池の放電特性は、供給している負荷電力や温度
により変化し、さらに、係る放電特性は電池のサイズ
や、電極の状態の変化をともない電池の使用期間や来歴
によっても影響を受けるため、正確な判断ができない。
つまり上記のように使用状況に応じて放電特性が変動す
るため、すべての使用条件に適用できるような端子電圧
と放電電力量(電流の積分値)との関係式を求めること
ができず、よって使用状態により負荷電力の異なる実負
荷に対して実際に放電する上記装置ではその都度放電で
きる容量が異なり、判定の基準となる放電電力量を正確
に決定できない。
[0004] Further, in the conventional apparatus, the determination as to whether or not the battery life has expired is made based on a predetermined threshold value. However, the discharge characteristics of the battery vary depending on the supplied load power and temperature. Further, such discharge characteristics are affected by the service period and history of the battery due to changes in the size of the battery and the state of the electrodes, so that accurate determination cannot be made.
That is, since the discharge characteristics fluctuate according to the use condition as described above, a relational expression between the terminal voltage and the discharge power amount (current integral value) that can be applied to all use conditions cannot be obtained. In the above-described apparatus that actually discharges to an actual load having different load power depending on the use state, the dischargeable capacity is different each time, and the discharge power amount serving as a criterion for determination cannot be accurately determined.

【0005】一方、上記問題を解決するために、抵抗器
等の負荷電流が常に一定となる疑似負荷を設け、疑似停
電時にはかかる疑似負荷に対して電流を流すことが考え
られる。しかし、係る場合には、寿命判定のための上記
疑似負荷並びにその疑似負荷で電力供給を可能とするた
めの切り替えるスイッチ、さらには疑似負荷に通電中に
発する発熱を抑える手段等が必要となり、装置の大型・
複雑化を招くばかりでなく、その制御が煩雑となる。し
かも、電池に蓄えられたエネルギーの一部が疑似負荷に
よって無駄に消費されてしまうなどの新たな問題を生じ
る。
On the other hand, in order to solve the above problem, it is conceivable to provide a pseudo load in which a load current of a resistor or the like is always constant, and to supply a current to the pseudo load during a pseudo power failure. However, in such a case, the above-mentioned pseudo load for determining the life and a switch for enabling power supply with the pseudo load, a means for suppressing heat generated during energization of the pseudo load, and the like are required. Large
Not only does the system become complicated, but also the control becomes complicated. In addition, a new problem arises in that part of the energy stored in the battery is wasted by the pseudo load.

【0006】本発明は、上記した背景に鑑みてなされた
もので、その目的とするところは、寿命判定のための特
別な装置(疑似負荷等)を必要とせず、しかも電池から
実負荷に電力供給を行いつつ、その実負荷の電力や周囲
温度等の使用条件や電池の状態等に影響を受けることな
く寿命判定を行うことのできる電池の寿命判定装置を提
供することにある。
The present invention has been made in view of the above background, and has as its object to eliminate the need for a special device (such as a pseudo load) for judging the life, and to further reduce the power from a battery to an actual load. It is an object of the present invention to provide a battery life determining device capable of performing a life determination without being affected by use conditions such as the power of an actual load, an ambient temperature, and the like, the state of the battery, and the like.

【0007】[0007]

【課題を解決するための手段】上記した目的を達成する
ために、本発明に係る電池の寿命判定装置では、電池の
周囲温度並びに電力をそれぞれ測定する手段と、前記周
囲温度並びに電力から寿命判定基準を求める手段と、疑
似停電を発生させて前記電池から負荷へ電力供給させる
手段と、疑似停電中の前記電池の放電特性の特徴量を測
定する手段と、前記特徴量を測定する手段により測定さ
れた特徴量と、前記寿命判定基準に基づいて寿命を判定
する手段とから構成した。
In order to achieve the above object, a battery life judging device according to the present invention comprises means for measuring the ambient temperature and power of a battery, respectively, and a life judging device based on the ambient temperature and power. Means for obtaining a reference; means for generating a pseudo power failure to supply power from the battery to the load; means for measuring a characteristic amount of a discharge characteristic of the battery during the pseudo power failure; and means for measuring the characteristic amount. And a means for determining the life based on the life criterion.

【0008】そして、前記疑似停電が電池の活性化のた
めの疑似停電と、復電後の再度疑似停電の2回に分けて
行われ、かつ、2回目の疑似停電中に寿命判定を行うよ
うにするとよい。
[0008] The pseudo power failure is divided into a pseudo power failure for activating the battery and a pseudo power failure again after the power is restored, and the life is determined during the second pseudo power failure. It is good to

【0009】また、電池が満充電であることを確認する
手段を設け、満充電の時にのみ寿命判定するようにして
もよい。
Further, means for confirming that the battery is fully charged may be provided so that the life is determined only when the battery is fully charged.

【0010】さらにまた、判定基準を複数設けて電池の
劣化の程度を判定できるようにしたり、及びまたは、負
荷変動を検知する手段を設け、寿命判定中に負荷の変動
の有無を監視し変動が生じた場合には判定処理を終了す
るようにするのがより好ましい。
Further, a plurality of determination criteria are provided so that the degree of deterioration of the battery can be determined, and / or a means for detecting a load change is provided. It is more preferable to terminate the determination process when it occurs.

【0011】[0011]

【作用】商用電源等から負荷へ電力が供給されている時
に寿命判定を行う場合には、まず満充電であることを確
認し、その後、疑似停電を発生させ電池から負荷へ電力
供給を行う。この時、電池が不活性であると、出力電圧
の一時的な低下現象の発生のおそれがあるので、短時間
放電したら疑似停電を終了する。その後、再度疑似停電
を行い電池から負荷への本放電を行う。これにより、本
放電を行う際には電池は活性化しており、電池の状態に
関係なく初期条件が等しくなる。そしてその本放電中の
電池の放電特性を示す特徴量を測定し、それを所定の判
定基準と比較して寿命であるか否かを判定する。また、
上記判定基準としては、疑似停電中の電池からの放電時
に測定した周囲温度、電力からファジィ推論などにより
求めることにより、使用状況に合わせた適切な基準が設
定される。
When the life is determined while electric power is being supplied from a commercial power supply or the like to the load, it is first confirmed that the battery is fully charged, and then a pseudo power failure is generated to supply power from the battery to the load. At this time, if the battery is inactive, there is a possibility that a temporary decrease in the output voltage may occur. Thereafter, a pseudo power failure is again performed to perform main discharge from the battery to the load. As a result, when performing the main discharge, the battery is activated, and the initial conditions are equal regardless of the state of the battery. Then, a characteristic amount indicating the discharge characteristic of the battery during the main discharge is measured, and the measured characteristic amount is compared with a predetermined criterion to determine whether or not the battery has reached the end of its life. Also,
As the determination criterion, an appropriate criterion according to the use situation is set by obtaining from the ambient temperature and electric power measured at the time of discharging from the battery during the pseudo power failure by fuzzy inference or the like.

【0012】[0012]

【実施例】以下、本発明に係る電池の寿命判定装置の好
適な実施例を添付図面を参照にして詳述する。図1は本
発明に係る寿命判定装置の一実施例をUPSに実装した
例を示している。同図に示すように、商用電源1の出力
は、切替スイッチ2と充電器3に並列に接続され、平常
時は切替スイッチ2を介して商用電源1の出力がそのま
ま負荷4に供給される。一方、充電器3は商用電源1か
ら出力された交流を直流に変換しつつ電池5に対して浮
動充電を行うようになっている。これにより、たとえ電
池5が自然放電しても常時微弱電流により充電され続
け、電池5は原則として常に満充電の状態となる。そし
て、電池5は、インバータ6を介して上記切替スイッチ
2に接続されており、停電発生時には切替スイッチ2を
切替えることにより、電池5に充電した容量を放電しイ
ンバータ6,切替スイッチ2を介して負荷4に電力を継
続して供給するようになる。なお、かかる構成は従来の
UPSと基本的に同じであるためその詳細な説明を省略
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of a battery life judging apparatus according to the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 shows an example in which an embodiment of a life determining apparatus according to the present invention is mounted on a UPS. As shown in the figure, the output of the commercial power supply 1 is connected in parallel to the changeover switch 2 and the charger 3, and the output of the commercial power supply 1 is supplied to the load 4 via the changeover switch 2 in normal times. On the other hand, the charger 3 performs floating charging on the battery 5 while converting AC output from the commercial power supply 1 into DC. Thereby, even if the battery 5 discharges spontaneously, the battery 5 is always charged with a weak current, and the battery 5 is always in a fully charged state in principle. The battery 5 is connected to the changeover switch 2 via an inverter 6. When a power failure occurs, the changeover switch 2 is switched to discharge the capacity charged in the battery 5, and the battery 5 is discharged via the inverter 6 and the changeover switch 2. Power is continuously supplied to the load 4. Note that such a configuration is basically the same as that of a conventional UPS, and thus a detailed description thereof is omitted.

【0013】ここで本実施例における寿命判定装置は、
まず電池5に近接してセンサ10を設置している。この
センサ10は、電池5の周囲温度、並びに電池の放電電
力を求めるための電池5の端子電圧並びに出力電流をそ
れぞれ測定するセンサ部から構成される。すなわち、こ
のセンサ10が電池の周囲温度,電力をそれぞれ測定す
る手段を構成し、しかも、端子電圧が放電特性を示す特
徴量の1つであるため、特徴量を測定する手段も兼ねて
いる。
Here, the life determining device in the present embodiment
First, the sensor 10 is installed near the battery 5. The sensor 10 includes a sensor unit that measures an ambient temperature of the battery 5 and a terminal voltage and an output current of the battery 5 for obtaining a discharge power of the battery. That is, the sensor 10 constitutes a means for measuring the ambient temperature and the electric power of the battery, respectively, and since the terminal voltage is one of the characteristic quantities indicating the discharge characteristics, it also serves as a means for measuring the characteristic quantity.

【0014】そして、各センサ部で検出された測定デー
タが処理部11に送られ、そこにおいて寿命がきたか否
かを判定し、その結果をLED,LCD等からなる表示
部12を介して出力するようになっている。さらに、こ
の処理部11では、疑似停電を発生させたり、それを停
止して正常動作に戻したりするための切替スイッチ2へ
の開閉制御信号を出力するようになっている。
Then, the measurement data detected by each sensor section is sent to the processing section 11, where it is determined whether or not the life has expired, and the result is output via a display section 12 comprising LEDs, LCDs and the like. It is supposed to. Further, the processing unit 11 outputs an open / close control signal to the changeover switch 2 for generating a pseudo power failure or stopping the pseudo power failure and returning to a normal operation.

【0015】ここで処理部11について詳述すると、同
図(B)に示すように、まず、センサ10で測定された
周囲温度並びに負荷電力、すなわち電池5の放電電力
(電圧×電流)が判定電圧・時間決定部11aに入力さ
れ、そこにおいてファジィ推論を行い寿命判定を行うた
めの判定時間とその判定時間経過後の判定基準値となる
電圧降下量を求めるようになっている。そして、本例で
は結論部がシングルトンの簡略化ファジィ推論装置を用
いており、具体的にはその一例として、図2に示すよう
なメンバシップ関数並びに図3に示すルールを用いて推
論処理をし、各基準値を求めるようになる。
The processing unit 11 will now be described in detail. First, as shown in FIG. 1B, the ambient temperature and the load power measured by the sensor 10, that is, the discharge power (voltage × current) of the battery 5 are determined. The voltage is input to the voltage / time determination unit 11a, where a determination time for performing fuzzy inference and performing a life determination and a voltage drop amount serving as a determination reference value after the lapse of the determination time are obtained. In this example, a simplified fuzzy inference device whose conclusion part is a singleton is used. Specifically, as an example, inference processing is performed using a membership function as shown in FIG. 2 and a rule as shown in FIG. , Each reference value is obtained.

【0016】ここで本例では、電池の劣化状況を2段階
に分けて判断し、完全に寿命が来て電池の交換の必要な
末期判定基準と、そろそろ寿命に近付いてきたと判定で
きる間近判定基準の2つを設け、間近判定基準をもクリ
アする電池は寿命がきていないと判定するようになって
いる。すなわち、電池の標準的な放電特性が図4中に実
線で示すようになっているとすると、図中一点鎖線で示
すように放電開始後比較的短時間で第1の基準である末
期判定基準電圧以下になるとすぐに交換必要な寿命に来
ていると判断され、図中二点鎖線で示すように係る末期
判定基準はクリア(基準電圧以上)しているが、間近判
定時間に達するまえに間近判定基準電圧以下になるよう
な場合には、寿命が近付いていると判断する。なお、本
例では、正規化を図るために放電開始時の電圧値からの
電圧降下量で比較・判定するようにしているため、上記
寿命と判断する基準電圧以下とは、それぞれ電圧降下量
が所定値以上になることを意味する。
Here, in this example, the deterioration state of the battery is determined in two stages, and an end-of-life determination criterion in which the life is completely reached and the battery needs to be replaced, and a near-end determination criterion in which it can be determined that the life is approaching soon. Are provided, and it is determined that a battery that also satisfies the nearness criterion has not reached the end of its life. That is, assuming that the standard discharge characteristic of the battery is as shown by a solid line in FIG. 4, as shown by a dashed line in FIG. As soon as the voltage falls below the voltage, it is determined that the life of the battery needs to be replaced, and the terminal criterion is cleared (above the reference voltage) as indicated by the two-dot chain line in the figure. When the voltage becomes equal to or lower than the nearness determination reference voltage, it is determined that the life is approaching. In this example, for normalization, comparison and determination are made based on the voltage drop from the voltage value at the start of discharge. It means that it becomes more than a predetermined value.

【0017】そして、上記のようにして求めた算出結果
(各判定基準)を次段の寿命判定部11bに設定する。
この寿命判定部11bは、タイマーを内蔵しており、切
替スイッチ2に対して疑似停電信号(開閉制御信号)を
出力するようになっている。また、センサ10から電池
5の端子電圧を受け、その端子電圧と内蔵するタイマー
から得られる放電開始からの経過時間とから電池の寿命
を判定し、その判定結果を表示部12に出力するように
なっている。
Then, the calculation result (each determination criterion) obtained as described above is set in the life determining unit 11b at the next stage.
The life determining unit 11 b has a built-in timer and outputs a pseudo power failure signal (opening / closing control signal) to the changeover switch 2. Further, the terminal voltage of the battery 5 is received from the sensor 10, the battery life is determined from the terminal voltage and the elapsed time from the start of discharge obtained from the built-in timer, and the determination result is output to the display unit 12. Has become.

【0018】さらに、図4に示すように、浮動充電状態
から放電を行うと、上記したごとく電池の内部が不活性
であるため放電開始後一時的に電池の端子電圧が低下し
(活性化されている電池の放電開始時のピーク電圧に比
し数10mV程度低い)、その後放電に伴う電圧降下と
活性化に伴う端子電圧の上昇とが相殺され一定期間(数
10秒〜1分程度)端子電圧が上昇する現象が見られる
ことがある。そして、かかる現象の発生の有無並びに程
度は電池の状態に起因する。よって、判定時の初期条件
を一定にするため、短時間の初期放電を行って活性化さ
せた後に一定時間待ち、その後寿命判定用の本放電を行
うようにしている。そして、係る初期放電並びに本放電
のための切替スイッチ2の切り替え制御も、寿命判定部
11bが行うようにしている。なお、本例では初期放電
は、「放電時間×負荷電力=一定」の条件を満たす所定
時間だけ放電させるもので、各判定基準を求める時に使
用した負荷電力に基づいて初期放電の時間を求め、その
時間を寿命判定部11bにセットし、寿命判定部11b
では内蔵するタイマーにて上記の所定の時間が経過する
まで電池から電力供給を行うべく所定のタイミングで疑
似停電信号(開閉制御信号)を発生して切替スイッチ2
を適宜切替えるようになる。
Further, as shown in FIG. 4, when the battery is discharged from the floating charge state, the terminal voltage of the battery temporarily drops after the start of the discharge because the inside of the battery is inactive as described above (the battery is activated). (A few tens mV lower than the peak voltage of the battery at the start of discharging), and the voltage drop due to the discharge and the rise in the terminal voltage due to the activation are offset each other for a certain period (about several tens of seconds to one minute). A phenomenon in which the voltage increases may be observed. The occurrence and the extent of such a phenomenon depend on the state of the battery. Therefore, in order to make the initial conditions at the time of determination constant, a short period of initial discharge is performed to activate the battery, wait for a certain period of time, and then perform the main discharge for life determination. The switching of the changeover switch 2 for the initial discharge and the main discharge is also performed by the life determining unit 11b. In this example, the initial discharge is to discharge for a predetermined time that satisfies the condition of “discharge time × load power = constant”, and the time of the initial discharge is obtained based on the load power used when obtaining each criterion. The time is set in the life determining unit 11b, and the life determining unit 11b
Then, a built-in timer generates a pseudo power failure signal (opening / closing control signal) at a predetermined timing so as to supply power from the battery until the predetermined time elapses, and the changeover switch 2
Is switched as appropriate.

【0019】さらに、本例では、負荷変動検知部11c
を設け、寿命判定中に電力の変動があるか否かを検出
し、電力変動があった場合には正確な寿命判定ができな
いために、今回の判定作業を終了すべく所定の制御信号
を寿命判定部11bに送り処理を中止する。また、必要
に応じて表示部12を介して判定処理を中止したことを
使用者に知らせるようになっている。そして、具体的な
処理としては、放電開始時の負荷電力を記憶保持し、判
定処理中に常時入力される負荷電力と上記記憶した放電
開始時の負荷電力とを比較し、両者が異なった場合に中
止信号を発するようになっている。
Further, in the present embodiment, the load fluctuation detecting section 11c
Is provided to detect whether there is a power fluctuation during the life determination, and if there is a power fluctuation, an accurate life determination cannot be performed. The sending process is stopped to the determination unit 11b. In addition, the user is notified via the display unit 12 that the determination process has been stopped, if necessary. As a specific process, the load power at the start of discharge is stored and held, and the load power that is constantly input during the determination process is compared with the stored load power at the start of discharge. A stop signal is issued.

【0020】さらにまた、本例では寿命判定を行う前
に、電池5が満充電状態にあるか否かを検出するように
している。すなわち、常に満充電の状態の電池5に対し
て寿命判定を行うことにより初期条件の統一を図るよう
にしている。そして、具体的な判断としては、充電開始
(例えばUPSの電源ON)から一定の時間が経過され
ているか否かを判定することにより行われ、係る判断
は、寿命判定部11b内に内蔵されるタイマーを用い、
その寿命判定部11bが判断する。すなわち、本例で
は、係る寿命判定部11bが、電池が満充電であること
を確認する手段を兼ねている。そして、寿命判定部11
b内に内蔵されたタイマーは、各処理に同期して適宜リ
セット・再スタートされて、寿命判定に必要な各時間
(初期放電時間,初期放電終了後の待ち時間,本放電開
始後の経過時間,充電開始からの経過時間…)を測定す
るが、係るタイマーの制御も寿命判定部11bが内部の
処理状況或いは外部からの信号に基づいて行う。
Further, in this embodiment, before the life judgment is performed, it is detected whether or not the battery 5 is in a fully charged state. In other words, the initial conditions are unified by performing the life determination on the battery 5 that is always fully charged. The specific determination is made by determining whether or not a predetermined time has elapsed since the start of charging (for example, turning on the power of the UPS), and the determination is built in the life determination unit 11b. Using a timer,
The life determining unit 11b makes the determination. That is, in this example, the life determining unit 11b also serves as a unit for confirming that the battery is fully charged. Then, the life determining unit 11
The timer built in b is reset and restarted as needed in synchronization with each process, and each time required for life determination (initial discharge time, wait time after completion of initial discharge, time elapsed after the start of main discharge) , Elapsed time from the start of charging...), And the control of the timer is also performed by the life determining unit 11b based on an internal processing state or an external signal.

【0021】なお、寿命判定の起動は、装置に設置され
た起動スイッチの押下、通信機能による寿命判定コマン
ドの入力等に基づいて行われ、さらには、24時間連続
運転しているような場合には、内蔵するタイマー或いは
時計等を用いて一定の期間毎(例えば1〜2カ月毎)に
自動的に起動するようにしても良い。そして、係る起動
信号が、寿命判定部11bに与えられ、満充電か否かの
判断後、疑似停電信号を発生して初期放電を行うととも
に、センサから得られる電池の使用状態から判定電圧・
時間決定部1aにて各判定基準等を求め、次いで所定時
間経過後再度疑似停電を発生して本放電を行い寿命判定
を行う。そして、具体的な手順は、以下のようになって
いる。
The activation of the life judgment is performed based on the depression of a start switch installed in the apparatus, the input of a life judgment command by a communication function, and the like. May be automatically activated at regular intervals (for example, every one to two months) using a built-in timer or clock. Then, the start signal is given to the life determination unit 11b, and after determining whether or not the battery is fully charged, a pseudo power failure signal is generated to perform initial discharge, and the determination voltage / voltage is determined based on the usage state of the battery obtained from the sensor.
The time determination unit 1a obtains each criterion and the like, and after a predetermined time has elapsed, a pseudo power failure is again generated to perform a main discharge to determine a life. The specific procedure is as follows.

【0022】すなわち上記した実施例の作用について、
図5に示すフローチャートを用いて説明する。すなわ
ち、本システムが起動されたなら、まず寿命判定部11
b内のタイマーにより満充電状態にあるか否かが判断さ
れる(S101)。そして、満充電でなければ処理を中
止し(判定不能)、満充電であれば1回目の放電(初期
放電)を行う。
That is, regarding the operation of the above embodiment,
This will be described with reference to the flowchart shown in FIG. That is, when the system is activated, first, the life determining unit 11
Whether or not the battery is fully charged is determined by the timer in b (S101). If the battery is not fully charged, the process is stopped (the determination is impossible), and if the battery is fully charged, the first discharge (initial discharge) is performed.

【0023】すなわち、寿命判定部11bから切替スイ
ッチ2に対して疑似停電信号を送り、負荷への電力供給
を電圧5側から行う。そして放電開始直後にセンサ10
を用いて電池の電池の出力電流,端子電圧を測定し両者
の積から負荷電力を求める。次いで、その負荷電力並び
にセンサ10により測定した電池の周囲温度が所定の使
用範囲内に入っているか否かの判断が行われる。そし
て、使用範囲内に入っていない場合には正確な寿命判定
が行えないため、判定不能として寿命判定を終了する。
そして、係る判断は、判定電圧・時間決定部11aにて
行われる(S103,S104)。
That is, a pseudo power failure signal is sent from the life determining unit 11b to the changeover switch 2 to supply power to the load from the voltage 5 side. Immediately after the discharge starts, the sensor 10
Is used to measure the output current and terminal voltage of the battery, and the load power is determined from the product of the two. Next, it is determined whether the load power and the ambient temperature of the battery measured by the sensor 10 are within a predetermined usage range. If the life is not within the range of use, accurate life determination cannot be performed.
The determination is performed by the determination voltage / time determination unit 11a (S103, S104).

【0024】さらに、それら与えられた負荷電力と周囲
温度から判定電圧・時間決定部11aにてファジィ推論
を行い、寿命末期判定並びに寿命間近判定に用いる電圧
降下量と判定時間の組を求め、それを寿命判定部11b
にセットする。また、それと同時に、負荷電力から初期
放電を行う時間を求め、かかる時間終了後寿命判定部1
1bから出力される開閉制御信号により切替スイッチ2
を切替えて(疑似停電終了)商用電源からの電力供給に
戻し初期放電を終了する(S105,S106)。
Further, from the given load power and ambient temperature, the determination voltage / time determination unit 11a performs fuzzy inference to determine a set of a voltage drop amount and a determination time used for the end-of-life determination and the near-life determination. To the life determining unit 11b
Set to. At the same time, the time for performing the initial discharge from the load power is obtained, and the life determining unit 1 after the time is over.
Switch 2 according to the open / close control signal output from 1b
Is switched (end of the pseudo power failure) to return to the power supply from the commercial power supply, and the initial discharge ends (S105, S106).

【0025】その後一定時間(例えば2〜3分)待つ。
この待ち時間中に電池は浮動充電され、初期放電によっ
て放電させられたエネルギーを充電して満充電状態に復
帰する。そして、その後、再度切替スイッチ2を切替え
て疑似停電を行い、2回目の放電(本放電)を行う。こ
の時、放電開始直後の電池の端子電圧を測定し、その端
子電圧を電圧降下量測定の基準値(ピーク電圧)として
寿命判定部11b内のバッファメモリに格納する(S1
07)。
After that, it waits for a predetermined time (for example, two to three minutes).
During this waiting time, the battery is charged in a floating manner, and the energy discharged by the initial discharge is charged to return to a fully charged state. Then, after that, the changeover switch 2 is switched again to perform a pseudo power failure, and the second discharge (main discharge) is performed. At this time, the terminal voltage of the battery immediately after the start of the discharge is measured, and the terminal voltage is stored in the buffer memory in the life determining unit 11b as a reference value (peak voltage) of the voltage drop amount measurement (S1).
07).

【0026】またこの疑似停電(寿命判定)中に、電池
からの電力供給を続け、負荷変動検知部11cにより上
記ファジィ推論を行った時の負荷電力が変動したか否か
を判断し、負荷変動した場合には判定不能として寿命判
定を終了する(S108)。
Further, during this pseudo power failure (lifetime judgment), the power supply from the battery is continued, and it is determined by the load fluctuation detecting unit 11c whether or not the load power at the time of performing the fuzzy inference has fluctuated. In this case, it is determined that the determination is impossible, and the life determination is terminated (S108).

【0027】また、負荷変動がないならば寿命判定部1
1bに与えられる端子電圧と、上記ピーク電圧との差
(電圧降下量)を求め、その差が末期判定電圧降下量以
上か否かを判断する。そして、「以上」であれば本放電
開始からそこまでの経過時間(寿命判定部11b内のタ
イマーにより検出される)が末期判定時間以上か否かが
判断され、寿命末期判定時間以下の時には寿命末期と判
定して、寿命判定を終了する(S109〜S111)。
If there is no load change, the life determining unit 1
The difference (voltage drop) between the terminal voltage given to 1b and the above-mentioned peak voltage is obtained, and it is determined whether or not the difference is equal to or greater than the terminal voltage drop. If it is “more than”, it is determined whether or not the elapsed time from the start of the main discharge (detected by the timer in the life determining unit 11 b) is equal to or longer than the terminal determination time. The terminal life is determined, and the life determination is terminated (S109 to S111).

【0028】また、上記ステップ110にて末期判定電
圧降下量未満と判定されたり、ステップ111にて寿命
末期判定時間より大きいと判断された場合には、次の間
近判定処理に移る。すなわち、上記末期判定と同様にピ
ーク電圧からの端子電圧の電圧降下量を求め、それが寿
命間近判定の電圧降下量を超えたか否かを判断する。そ
して、実際の電圧降下量が判定基準以上の時には寿命間
近と判定し、判定処理を終了する(S112)。また、
実際の電圧降下量が判定基準降下量未満の時には次の間
近判定時間の処理に移り、本放電開始からの経過時間と
寿命間近判定時間とを比較し、判定時間以上経過してい
る時には正常と判定し寿命判定を終了する。また、未だ
寿命間近判定時間未満の時には、その経過時間が所定の
しきい値を超えているか否かを判断し、しきい値を越え
ている時には正常と判断し寿命判定を終了する。また、
しきい値を越えていない時にはステップ109に戻り、
判定処理を継続する(S113,114)。
On the other hand, if it is determined in step 110 that the voltage drop is less than the end-of-life determination voltage drop amount, or if it is determined in step 111 that it is longer than the end-of-life determination time, the process proceeds to the next near-end determination process. That is, the voltage drop amount of the terminal voltage from the peak voltage is obtained in the same manner as in the end-of-life determination, and it is determined whether or not the voltage drop amount exceeds the voltage drop of the near life determination. If the actual voltage drop amount is equal to or greater than the criterion, it is determined that the battery is near the end of its life, and the determination process ends (S112). Also,
When the actual voltage drop amount is less than the determination reference drop amount, the process proceeds to the next near-term determination time, and compares the elapsed time from the start of the main discharge with the near-life determination time. The determination is made and the life determination is completed. If the elapsed time is still less than the near life determination time, it is determined whether or not the elapsed time exceeds a predetermined threshold. If the elapsed time exceeds the threshold, it is determined that the elapsed time is normal and the life determination is terminated. Also,
If the threshold has not been exceeded, return to step 109,
The determination process is continued (S113, 114).

【0029】そして、各判定処理が終了したなら、その
判定結果を表示部12に出力するとともに、切替スイッ
チ2を元に戻して疑似停電を終了し、商用電源1からの
電力供給に戻す。また、ステップ114で、経過時間を
しきい値とを比較したのは、負荷電力が小さい場合には
判定時間が長くなるため、寿命判定をある時間内に抑え
る必要がある場合に、一定の時間がきても電圧降下量が
少ない場合には寿命判定を終了するようにしたためであ
り、係るステップはなくても良い。
When each determination process is completed, the result of the determination is output to the display unit 12, and the changeover switch 2 is returned to the original state to terminate the pseudo power failure and return to the power supply from the commercial power supply 1. The reason why the elapsed time is compared with the threshold value in step 114 is that when the load power is small, the determination time becomes long. This is because the life determination is terminated when the amount of voltage drop is small even after writing, and such a step may be omitted.

【0030】このように、判定時間並びに電圧降下量
は、その時の負荷容量や周囲温度に基づいて適宜設定さ
れるため、実際の使用状況に適したものとなり、判定処
理が正確に行える。しかも、満充電状態の電池に対し
て、2回放電方式を行うため、寿命判定を行う電池の初
期条件の統一化が図れ、より判定精度が向上する。
As described above, since the determination time and the voltage drop amount are appropriately set based on the load capacity and the ambient temperature at that time, the determination time and the voltage drop amount are suitable for the actual use situation, and the determination process can be performed accurately. In addition, since the discharging method is performed twice for a fully charged battery, the initial conditions of the battery for which the life is determined can be unified, and the determination accuracy can be further improved.

【0031】上記した実施例は、本発明の最良な実施例
を示したが、少なくとも初期放電と本放電の2回に分け
て行うものであれば、本放電時に行われる具体的な寿命
判定は上記した実施例のものに限られることはなく、例
えば上記した特開平2−55536号公報に示されたも
のの他、種々のものを適用することができる。また、上
記した実施例では2つの判定基準(末期,間近)を用い
たが、かかる判定基準は寿命であるか否かの1つでも良
く、さらには3つ以上としても良いなど、種々の変更実
施が可能である。また、本発明は、疑似停電の回数を1
回すなわち本放電のみで寿命判定を行うようにしたとし
ても、電池の満充電を確認する手段、或いは、寿命判定
時の周囲温度並びに負荷電力により判定基準を求める手
段の少なくとも一方を設けるようにしたものであればよ
く、係る場合であっても寿命判定の初期条件の統一化が
図られ、従来のものに比し、その判定精度は向上する。
The above-described embodiment shows the best embodiment of the present invention. However, as long as the discharge is performed at least in two parts, the initial discharge and the main discharge, the specific life judgment performed at the time of the main discharge is The present invention is not limited to the above-described embodiment, and various types can be applied, for example, in addition to the one disclosed in Japanese Patent Application Laid-Open No. 2-55536. Further, in the above-described embodiment, two judgment criteria (late, near) are used, but the judgment criteria may be one of whether or not the life is long, and may be three or more. Implementation is possible. In addition, the present invention reduces the number of pseudo power failures by one.
Even if the life is determined only by the number of times of the main discharge, at least one of the means for confirming the full charge of the battery or the means for obtaining the determination criterion based on the ambient temperature and the load power at the time of the life determination is provided. In this case, the initial conditions for the life determination are unified, and the determination accuracy is improved as compared with the conventional one.

【0032】[0032]

【発明の効果】以上のように、本発明に係る電池の寿命
判定装置では、初期放電の後本放電を行うようにしたた
め、電池の放電の初期における一時的な電圧変動に惑わ
されることなく、正確な寿命判定が行われる。また、満
充電であることを確認する手段を設け、満充電の時のみ
電池の寿命判定を行うようにした場合には、初期条件の
統一化が図られ、正確な寿命判定が可能となる。また、
周囲温度,負荷電力から判定電圧,判定時間を求めるよ
うにした場合には、実際の使用状況に応じた寿命判定を
行うことができる。しかも、実負荷を使用して寿命判定
を行うため、構成並びに各種制御が簡略化され、また、
無駄なエネルギー消費が抑制できる。
As described above, in the battery life determining apparatus according to the present invention, the main discharge is performed after the initial discharge, so that the battery is not disturbed by the temporary voltage fluctuation at the beginning of the battery discharge. Accurate life determination is performed. If a means for confirming that the battery is fully charged is provided and the life of the battery is determined only when the battery is fully charged, the initial conditions are unified, and accurate life determination is possible. Also,
When the determination voltage and the determination time are obtained from the ambient temperature and the load power, the life can be determined according to the actual use condition. Moreover, since the life is determined using the actual load, the configuration and various controls are simplified.
Unnecessary energy consumption can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る電池の寿命判定装置の好適な一実
施例を示す図である。
FIG. 1 is a view showing a preferred embodiment of a battery life determining apparatus according to the present invention.

【図2】判定基準を求めるためのファジィ知識を示す図
である。
FIG. 2 is a diagram showing fuzzy knowledge for obtaining a criterion.

【図3】判定基準を求めるためのファジィ知識を示す図
である。
FIG. 3 is a diagram showing fuzzy knowledge for obtaining a criterion.

【図4】電池の放電特性並びに本例の寿命判定の原理を
説明する図である。
FIG. 4 is a diagram illustrating the discharge characteristics of a battery and the principle of life determination in this example.

【図5】本実施例の作用を説明するフローチャート図で
ある。
FIG. 5 is a flowchart illustrating the operation of the present embodiment.

【符号の説明】[Explanation of symbols]

1 商用電源 2 切替スイッチ 3 充電器 4 負荷 5 電池 6 インバータ 10 センサ 11 処理部 11a 判定電圧・時間決定部 11b 寿命判定部 11c 負荷変動検知部 DESCRIPTION OF SYMBOLS 1 Commercial power supply 2 Changeover switch 3 Charger 4 Load 5 Battery 6 Inverter 10 Sensor 11 Processing part 11a Determination voltage / time determination part 11b Life determination part 11c Load fluctuation detection part

フロントページの続き (72)発明者 堤 ゆみ 京都府京都市右京区花園土堂町10番地 オムロン株式会社内 (72)発明者 深尾 保文 京都府京都市南区吉祥院西ノ庄猪之馬場 町1番地 日本電池株式会社内 (56)参考文献 特開 平2−206333(JP,A) 特開 昭55−117876(JP,A) 特開 昭49−77138(JP,A) 実開 昭56−10871(JP,U) (58)調査した分野(Int.Cl.7,DB名) G01R 31/36 H02J 7/00 H01M 10/42 - 10/48 Continuing on the front page (72) Inventor Yumi Tsutsumi 10 Hanazono Dodocho, Ukyo-ku, Kyoto-shi, Kyoto Prefecture Within OMRON Corporation (72) Inventor Yasufumi Fukao 1st, Nishinosho-Inomaba-cho, Kichijoin, Minami-ku, Kyoto-shi, Kyoto Prefecture (56) References JP-A-2-206333 (JP, A) JP-A-55-117876 (JP, A) JP-A-49-77138 (JP, A) Jpn. JP, U) (58) Field surveyed (Int. Cl. 7 , DB name) G01R 31/36 H02J 7/00 H01M 10/42-10/48

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電池の周囲温度並びに電力をそれぞれ測
定する手段と、 前記周囲温度並びに電力から寿命判定基準を求める手段
と、 疑似停電を発生させて前記電池から負荷へ電力供給させ
る手段と、 疑似停電中の前記電池の放電特性の特徴量を測定する手
段と、 前記特徴量を測定する手段により測定された特徴量と、
前記寿命判定基準に基づいて寿命を判定する手段とを備
えた電池の寿命判定装置。
1. A means for measuring the ambient temperature and power of a battery, respectively; a means for determining a life criterion from the ambient temperature and power; a means for generating a pseudo power failure to supply power from the battery to a load; Means for measuring a characteristic amount of the discharge characteristic of the battery during a power outage, and a characteristic amount measured by the means for measuring the characteristic amount;
Means for determining the life based on the life criterion.
【請求項2】 前記寿命判定基準を求める手段が、前記
周囲温度並びに電力を入力条件とするファジィ推論によ
り判定電圧並びに判定時間を求めるものである請求項1
に記載の電池の寿命判定装置。
2. The method according to claim 1, wherein the means for determining the life criterion determines a determination voltage and a determination time by fuzzy inference using the ambient temperature and the power as input conditions.
A battery life determining device according to claim 1.
【請求項3】 前記疑似停電が電池の活性化のための疑
似停電と、復電後の再度疑似停電の2回に分けて行わ
れ、かつ、2回目の疑似停電中に寿命判定を行うように
したことを特徴とする請求項1または2に記載の電池の
寿命判定装置。
3. The method according to claim 1, wherein the pseudo power failure is divided into a pseudo power failure for activating a battery and a pseudo power failure again after the power is restored, and the life is determined during the second pseudo power failure. The battery life judging device according to claim 1 or 2, wherein:
【請求項4】 電池が満充電であることを確認する手段
を備え、満充電の時にのみ寿命判定するようにしたこと
を特徴とする請求項1〜3の何れか1項に記載の電池の
寿命判定装置。
4. The battery according to claim 1, further comprising means for confirming that the battery is fully charged, wherein the life is determined only when the battery is fully charged. Life determination device.
【請求項5】 寿命判定を行うための判定基準を複数設
け、電池の劣化の程度を判定可能とした請求項1〜4の
いずれか1項に記載の電池の寿命判定装置。
5. The battery life judging device according to claim 1, wherein a plurality of judgment standards for judging the life are provided, and the degree of deterioration of the battery can be judged.
【請求項6】 前記疑似停電中の負荷変動を検知する手
段をさらに備え、係る手段により負荷変動を検知した際
には寿命判定を終了するようにした請求項1〜5のいず
れか1項に記載の電池の寿命判定装置。
6. The apparatus according to claim 1, further comprising: means for detecting a load change during the pseudo power failure, wherein the life determination is terminated when the load change is detected by the means. The battery life determining device according to the above.
JP04610693A 1993-02-12 1993-02-12 Battery life judgment device Expired - Fee Related JP3170381B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04610693A JP3170381B2 (en) 1993-02-12 1993-02-12 Battery life judgment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04610693A JP3170381B2 (en) 1993-02-12 1993-02-12 Battery life judgment device

Publications (2)

Publication Number Publication Date
JPH06242192A JPH06242192A (en) 1994-09-02
JP3170381B2 true JP3170381B2 (en) 2001-05-28

Family

ID=12737747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04610693A Expired - Fee Related JP3170381B2 (en) 1993-02-12 1993-02-12 Battery life judgment device

Country Status (1)

Country Link
JP (1) JP3170381B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102226834A (en) * 2011-03-31 2011-10-26 杭州高特电子设备有限公司 Method for determining storage battery capacity based on fuzzy classification technology

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0864876A4 (en) * 1994-05-31 2000-05-10 Omron Tateisi Electronics Co Device and method for estimating remaining life of battery
US6317697B1 (en) 1995-11-29 2001-11-13 Omron Corporation Battery life determination apparatus and battery life determination method
US5828567A (en) * 1996-11-07 1998-10-27 Rosemount Inc. Diagnostics for resistance based transmitter
WO1998040951A1 (en) 1997-03-12 1998-09-17 Us Nanocorp. Method for determining state-of-health using an intelligent system
WO2001069273A2 (en) * 2000-03-10 2001-09-20 The Johns Hopkins University Apparatus and method for determining the operational state of a battery
KR100356226B1 (en) * 2000-09-30 2002-10-18 현대자동차주식회사 Method for testing durability of battery
US8073967B2 (en) 2002-04-15 2011-12-06 Fisher-Rosemount Systems, Inc. Web services-based communications for use with process control systems
US6859755B2 (en) 2001-05-14 2005-02-22 Rosemount Inc. Diagnostics for industrial process control and measurement systems
JP2006153627A (en) * 2004-11-29 2006-06-15 Yazaki Corp Approximation line calculation system and battery status detecting device
US9201420B2 (en) 2005-04-08 2015-12-01 Rosemount, Inc. Method and apparatus for performing a function in a process plant using monitoring data with criticality evaluation data
JP5408410B2 (en) * 2005-10-28 2014-02-05 テミツク・オートモテイーベ・エレクトリツク・モータース・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング How to determine the aging status of a battery
US8898036B2 (en) 2007-08-06 2014-11-25 Rosemount Inc. Process variable transmitter with acceleration sensor
US9207670B2 (en) 2011-03-21 2015-12-08 Rosemount Inc. Degrading sensor detection implemented within a transmitter
US9927788B2 (en) 2011-05-19 2018-03-27 Fisher-Rosemount Systems, Inc. Software lockout coordination between a process control system and an asset management system
US9052240B2 (en) 2012-06-29 2015-06-09 Rosemount Inc. Industrial process temperature transmitter with sensor stress diagnostics
US9602122B2 (en) 2012-09-28 2017-03-21 Rosemount Inc. Process variable measurement noise diagnostic
CN106564387A (en) * 2016-10-14 2017-04-19 厦门金龙旅行车有限公司 Active safety control method based on super capacitor monitoring management system
JP7204820B2 (en) * 2017-10-18 2023-01-16 日本たばこ産業株式会社 Suction Component Generating Device, Method and Program for Controlling Suction Component Generating Device
JP6694119B2 (en) 2017-10-18 2020-05-13 日本たばこ産業株式会社 Suction component generation device, method for controlling suction component generation device, and program
JP6891357B2 (en) * 2017-10-18 2021-06-18 日本たばこ産業株式会社 Suction component generator, method of controlling the suction component generator, and program
JP6853377B2 (en) 2017-10-18 2021-03-31 日本たばこ産業株式会社 Suction component generator, method of controlling the suction component generator, and program
KR102467946B1 (en) 2017-10-18 2022-11-17 니뽄 다바코 산교 가부시키가이샤 Suction component generating device, method for controlling suction component generating device, suction component generating system, and program
KR102436285B1 (en) 2017-10-18 2022-08-25 니뽄 다바코 산교 가부시키가이샤 A suction component generating device, a method for controlling the suction component generating device, and a program
JP2020058236A (en) 2018-10-04 2020-04-16 日本たばこ産業株式会社 Inhalation component generating device, control circuit, and control method and control program of inhalation component generating device
JP6557391B1 (en) * 2018-10-11 2019-08-07 日本たばこ産業株式会社 Suction component generation device, control circuit, control method and control program for suction component generation device
JP7363737B2 (en) * 2020-10-14 2023-10-18 トヨタ自動車株式会社 Battery diagnostic device, method, program, and vehicle
JP2021072819A (en) * 2021-01-21 2021-05-13 日本たばこ産業株式会社 Suction ingredient generation device, method for controlling suction ingredient generation device, and program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102226834A (en) * 2011-03-31 2011-10-26 杭州高特电子设备有限公司 Method for determining storage battery capacity based on fuzzy classification technology

Also Published As

Publication number Publication date
JPH06242192A (en) 1994-09-02

Similar Documents

Publication Publication Date Title
JP3170381B2 (en) Battery life judgment device
US7683580B2 (en) Remaining-battery-capacity estimating apparatus, remaining-battery-capacity estimating method, and remaining-battery-capacity estimating computer program
US5955869A (en) Battery pack and a method for monitoring remaining capacity of a battery pack
US5945805A (en) Cell evaluating method and cell evaluating apparatus
US6025695A (en) Battery operating system
US5457377A (en) Method of monitoring the internal impedance of an accumulator battery in an uninterruptible power supply, and an uninterruptible power supply
US5666006A (en) Circuit offering sequential discharge and simultaneous charge for a multiple battery system and method for charging multiple batteries
JPH10290533A (en) Battery charging system
JP2002017045A (en) Secondary battery device
GB2260231A (en) Power management system for battery powered computers
JP2011089938A (en) Power supply system
JP2003132960A (en) Method for detecting charged state of storage battery used for power supply system, and method for deciding degradation of storage battery
JP2000121710A (en) Battery control device for backup power supply and method for diagnosing deterioration of secondary battery
JP5390981B2 (en) Power backup device
JP3571558B2 (en) Backup method and backup device
JP2979938B2 (en) Lead-acid battery life judgment method
JP3464694B2 (en) Charger and charge control circuit
JP3537120B2 (en) Deterioration determination method for secondary battery and circuit thereof
JP3458785B2 (en) Battery life determination apparatus and method
JPH06342045A (en) Battery life measuring apparatus
JP2002199619A (en) Uninterruptible power supply device
JPS59139828A (en) Monitoring system for preliminary power source of terminal device
JP3092394B2 (en) Secondary battery charging method and device
JP3311416B2 (en) Battery retention time prediction device
JP2004208414A (en) Uninterruptible power supply system

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000822

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010306

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080316

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080316

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090316

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees