JP3158786B2 - Method for producing sulfur-containing electric nickel - Google Patents

Method for producing sulfur-containing electric nickel

Info

Publication number
JP3158786B2
JP3158786B2 JP13653993A JP13653993A JP3158786B2 JP 3158786 B2 JP3158786 B2 JP 3158786B2 JP 13653993 A JP13653993 A JP 13653993A JP 13653993 A JP13653993 A JP 13653993A JP 3158786 B2 JP3158786 B2 JP 3158786B2
Authority
JP
Japan
Prior art keywords
box
cathode
anode
nickel
electric nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13653993A
Other languages
Japanese (ja)
Other versions
JPH06322575A (en
Inventor
和幸 高石
巖 福井
幸男 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP13653993A priority Critical patent/JP3158786B2/en
Publication of JPH06322575A publication Critical patent/JPH06322575A/en
Application granted granted Critical
Publication of JP3158786B2 publication Critical patent/JP3158786B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Metals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は塩化ニッケル電解液を用
いるめっき用硫黄含有電気ニッケルの製造方法に関す
る。
The present invention relates to a method for producing sulfur-containing electric nickel for plating using a nickel chloride electrolyte.

【0002】[0002]

【従来の技術】ニッケルめっきの際に、陽極として用い
られる、例えば50〜250ppmの硫黄を含有する電
気ニッケルはニッケルめっきを行う際に以下のような利
点を有する。
2. Description of the Related Art Electric nickel containing, for example, 50 to 250 ppm of sulfur, which is used as an anode in nickel plating, has the following advantages in nickel plating.

【0003】1)硫黄やカーボンを含有しない通常の電気
ニッケルのように、不働態化により局所的溶解により表
面が海綿状となり、ニッケル粒子が溶解せずに脱落する
ことがない。 2)このため、順調に溶解してチタンバスケット等の陽極
保持具に順次に電気ニッケルを供給できる。 3)溶解初期の電圧が低く、操業電圧も低いのでガスの発
生も少なく、電力が節約できる。 4)種々のめっき浴組成、電流密度を選定しても、陽極と
して活性が高い。 5)溶解残渣が少ない。
[0003] 1) Unlike ordinary electric nickel containing no sulfur or carbon, the surface becomes spongy due to local dissolution due to passivation, and the nickel particles do not fall off without being dissolved. 2) Therefore, electric nickel can be sequentially supplied to the anode holder such as a titanium basket by melting smoothly. 3) Since the voltage at the beginning of melting is low and the operating voltage is low, the generation of gas is small and the power can be saved. 4) High activity as anode even when various plating bath compositions and current densities are selected. 5) Little dissolved residue.

【0004】このような硫黄含有電気ニッケルの製造方
法として、米国特許第2392708号明細書に記載の
方法がある。この方法は、粗ニッケルを陽極とし、アル
カリ金属のチオ硫酸塩を硫黄源とし、該硫黄源を電解液
中に0.05〜0.25g/l添加し、pHを1.5〜6
で電解を行い、硫黄含有電気ニッケルを得るものであ
る。
As a method for producing such sulfur-containing electric nickel, there is a method described in US Pat. No. 2,392,708. In this method, crude nickel is used as an anode, thiosulfate of an alkali metal is used as a sulfur source, and the sulfur source is added to the electrolyte solution at 0.05 to 0.25 g / l to adjust the pH to 1.5 to 6
To obtain sulfur-containing electric nickel.

【0005】この方法では得られる硫黄含有電気ニッケ
ル中の硫黄含有量は0.007〜0.11重量%と幅が広
く、硫黄の電気ニッケル中での分布が不均一である。又
陽極として使用した場合の残渣発生率が高いという問題
がある。
[0005] In this method, the sulfur content of the obtained sulfur-containing electric nickel is as wide as 0.007 to 0.11% by weight, and the distribution of sulfur in the electric nickel is not uniform. Further, there is a problem that the residue generation rate when used as an anode is high.

【0006】この問題を改良する方法として特公昭58
−7715号公報により提案された方法がある。この方
法は電解液中に共存するCl2濃度を0.0002g/l
以下とし、その上でチオ硫酸ナトリウムを0.003〜
0.01g/lの濃度となるように電解液に添加するも
のである。この方法によれば電解液中でのチオ硫酸ナト
リウムの無用な分解を防止でき、硫黄含有量が0.00
5〜0.025重量%の範囲の硫黄分布が比較的均一な
電気ニッケルが得られる。
As a method of improving this problem, Japanese Patent Publication No. Sho 58
There is a method proposed by JP-7715. This method reduces the concentration of Cl 2 coexisting in the electrolyte to 0.0002 g / l.
The following, and then sodium thiosulfate 0.003-
It is added to the electrolyte so as to have a concentration of 0.01 g / l. According to this method, unnecessary decomposition of sodium thiosulfate in the electrolytic solution can be prevented, and the sulfur content is reduced to 0.00.
Electric nickel having a relatively uniform sulfur distribution in the range of 5 to 0.025% by weight is obtained.

【0007】しかし、近年製造費を少なくするために、
ニッケルマットを塩素浸出して電解液とし、電解して電
気ニッケルを得る方法が多く行われている。この電解液
を用い前記の方法を用いても、硫黄含有量が0.005
〜0.025重量%の電気ニッケルは得られない。これ
は電解時に発生するCl2量が極めて多いことによるも
のとされている。
However, in order to reduce manufacturing costs in recent years,
There are many methods in which nickel matte is leached with chlorine to form an electrolytic solution, and electrolysis is performed to obtain electric nickel. Even when the above-mentioned method is used using this electrolytic solution, the sulfur content is 0.005.
~ 0.025% by weight of electric nickel cannot be obtained. This is attributed to the extremely large amount of Cl 2 generated during electrolysis.

【0008】この問題を解消するため、特公昭59−2
5037号公報に示される方法が提案されている。この
方法は、硫黄源としてCl2に分解されにくいチオシア
ン化カリウム等のチオシアネートを用い、陽極で発生し
たCl2の陰極側への拡散を防止するようにしたもので
ある。この方法はアノードボックス内に不溶性陽極を入
れ、アノードボックス内を負圧としアノードボックス内
液面をカソードボックス内液面よりも高くし、かつアノ
ードボックス内の液を発生する塩素ガスと共に系外に抜
き出し、新たな電解液をカソードボックスに供給するも
のである。この方法では有害なシアン系化合物を用いる
という問題がある。
To solve this problem, Japanese Patent Publication No. Sho 59-2
A method disclosed in Japanese Patent Publication No. 5037 is proposed. In this method, a thiocyanate such as potassium thiocyanate which is hardly decomposed into Cl 2 is used as a sulfur source to prevent diffusion of Cl 2 generated at the anode to the cathode side. In this method, an insoluble anode is placed in the anode box, the inside of the anode box is set at a negative pressure, the liquid level in the anode box is higher than the liquid level in the cathode box, and the liquid in the anode box is discharged out of the system together with the chlorine gas that generates the liquid. It is extracted and a new electrolytic solution is supplied to the cathode box. This method has a problem that a harmful cyan compound is used.

【0009】特公昭60−53116号公報にて提案さ
れた方法は、陰極と陽極とをイオン透過性隔膜でそれぞ
れ隔離し、新たな電解液をカソードボックスに供給し、
陰極室外から電解液を系外に取り出すものであり、カソ
ードボックス内にCl2を混入させないようにしたもの
であるが、高価なイオン透過性隔膜を用いるという点で
経済的でないという問題がある。
In the method proposed in Japanese Patent Publication No. 60-53116, a cathode and an anode are separated from each other by an ion-permeable membrane, and a new electrolyte is supplied to the cathode box.
Although the electrolytic solution is taken out of the cathode chamber out of the system and Cl 2 is not mixed into the cathode box, it is not economical in that an expensive ion-permeable diaphragm is used.

【0010】[0010]

【発明が解決しようとする課題】本発明は、塩化ニッケ
ルを主成分とする電解液を用いて経済的にめっき用硫黄
含有電気ニッケルを製造する方法を提供することを課題
とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for economically producing sulfur-containing electric nickel for plating using an electrolytic solution containing nickel chloride as a main component.

【0011】[0011]

【課題を解決するための手段】本発明による課題を解決
するための手段は、隔膜を施したアノードボックスには
不溶性陽極を、隔膜を施したカソードボックスには陰極
を挿入し、チオ硫酸ナトリウムを含む主として塩化物よ
りなるニッケル電解液をカソードボックスに給液し、カ
ソードボックス内の液面を電解槽内の液面よりも5mm
以上高く保持し、アノードボックスからは該ボックス内
で発生する塩素ガスをアノードボックス内の電解液と共
にアノードボックス外に排出しつつ、アノードボックス
内の液面を電解槽内の液面よりも10mm以上低く保っ
て電解することを特徴とする硫黄含有電気ニッケルの製
造方法にある。
Means for solving the problems according to the present invention are as follows. An insoluble anode is inserted into an anode box provided with a diaphragm, and a cathode is inserted into a cathode box provided with a diaphragm. A nickel electrolyte mainly comprising chloride is supplied to the cathode box, and the liquid level in the cathode box is 5 mm higher than the liquid level in the electrolytic cell.
While keeping the anode box at a high level and discharging chlorine gas generated in the box from the anode box together with the electrolytic solution in the anode box to the outside of the anode box, the liquid level in the anode box is at least 10 mm higher than the liquid level in the electrolytic cell. The present invention relates to a method for producing sulfur-containing electric nickel, characterized in that electrolysis is carried out while keeping the temperature low.

【0012】隔膜は、通水度測定高さ200mmH2
で測定した通水度が0.04〜0.08l/m2/sec
のものを用いるのがよい。隔膜としては耐酸性の合成繊
維の布やフェルト、連通気孔を有するセラミック板を用
いることができる。また電解条件は、温度60〜70
℃、ニッケル濃度40〜80g/l、pH1.0〜2.
5、チオ硫酸ナトリウム濃度0.006〜0.012g/
lの電解液をカソードボックスへ給液しつつ、陰極電流
密度1.0〜2.5A/dm2とするのがよい。
The diaphragm has a water permeability measurement height of 200 mm H 2 O.
Water permeability measured at 0.04 to 0.08 l / m 2 / sec
It is better to use As the diaphragm, a cloth or felt made of acid-resistant synthetic fiber, or a ceramic plate having continuous ventilation holes can be used. The electrolysis conditions are at a temperature of 60 to 70.
° C, nickel concentration 40-80 g / l, pH 1.0-2.0.
5, sodium thiosulfate concentration 0.006 to 0.012 g /
It is preferable to adjust the cathode current density to 1.0 to 2.5 A / dm 2 while supplying 1 electrolyte to the cathode box.

【0013】[0013]

【作用】本発明で、チオ硫酸ナトリウムを含む主として
塩化物よりなるニッケル電解液をカソードボックスに給
液し、カソードボックス内の液面を電解槽内の液面より
も5mm以上高く保持し、アノードボックスからは該ボ
ックス内で発生する塩素ガスをアノードボックス内の電
解液と共にアノードボックス外に排出しつつ、アノード
ボックス内の液面を電解槽内の液面よりも10mm以上
低く保って電解する理由は、不溶性陽極で発生した塩素
ガスをカソードボックス内に移動しないようにするため
である。又これにより、分解し易いが、安価で無害で取
り扱いの容易なチオ硫酸ナトリウムを硫黄源として用い
ることを可能とするものである。
According to the present invention, a nickel electrolytic solution mainly comprising chloride containing sodium thiosulfate is supplied to the cathode box, and the liquid level in the cathode box is maintained at least 5 mm higher than the liquid level in the electrolytic cell. The reason why the chlorine gas generated in the box is discharged from the anode box together with the electrolytic solution in the anode box to the outside of the anode box, and the liquid level in the anode box is kept at least 10 mm lower than the liquid level in the electrolytic cell for electrolysis. Is to prevent chlorine gas generated at the insoluble anode from moving into the cathode box. This also makes it possible to use sodium thiosulfate, which is easily decomposed but is inexpensive, harmless and easy to handle, as a sulfur source.

【0014】カソードボックス内やアノードボックス内
の液面を上記のように管理するためには、カソードボッ
クス内への給液量、アノードボックス内からの液の排出
量も関係するが、カソードボックスやアノードボックス
に隔膜の通水度も関係する。通水度の測定は、通過部分
の直径が70mmとなるように設けた測定管の一端に被
測定隔膜を取り付け、他端に接続した配管よりヘッド差
が200mmとなるようにして30℃の水を通水し、1
時間当たりに通過する水の量を求めることにより行う。
In order to manage the liquid levels in the cathode box and the anode box as described above, the amount of liquid supplied to the cathode box and the amount of liquid discharged from the anode box are also involved. The water permeability of the diaphragm is also related to the anode box. The water permeability was measured by attaching a diaphragm to be measured to one end of a measuring tube provided so that the diameter of the passing portion was 70 mm, and setting the head difference to 200 mm from the pipe connected to the other end so that water at 30 ° C. Through water, 1
This is done by determining the amount of water passing per hour.

【0015】この隔膜の通水度が0.04l/m2/se
c未満では、その布による電圧降下が増加し、0.08
l/m2/secを超えるようでは、液面差を維持する
ために多量の電解液をカソードボックス内に供給しなけ
ればならなくなるので、現実的でないばかりか、給液し
たとしてもカソードボックス内での電解液の流れに起因
する筋状の縞が電気ニッケルの表面に発生し、製品の外
観を悪くする。
The water permeability of this membrane is 0.04 l / m 2 / sec
Below c, the voltage drop due to the cloth increases to 0.08
If it exceeds 1 / m 2 / sec, a large amount of electrolyte must be supplied into the cathode box in order to maintain the liquid level difference. Streaks are generated on the surface of the nickel electrolysis due to the flow of the electrolytic solution at the surface, and deteriorate the appearance of the product.

【0016】カソードボックス内の液面を上記のように
維持するためには、カソードボックス内に電解液の供給
量に対して、カソードボックスから電解槽へヘッド差に
よる流出を適宜ならしめる必要があるため、上記の通水
度の範囲で通水度が適宜の隔膜を用いる必要があり、一
方アノードボックスでは陽極で発生した塩素ガスを電解
槽やカソードボックスに拡散しないようにするため、上
記の通水度の範囲で通水度の適宜の隔膜を用いる必要が
ある。
In order to maintain the liquid level in the cathode box as described above, it is necessary to appropriately adjust the flow rate of the electrolytic solution into the cathode box due to the head difference from the cathode box to the electrolytic cell. Therefore, it is necessary to use a diaphragm having an appropriate water permeability in the range of the above water permeability.On the other hand, in the anode box, in order to prevent chlorine gas generated at the anode from diffusing into the electrolytic cell and the cathode box, the above-mentioned water permeability is used. It is necessary to use an appropriate diaphragm having a water permeability within the range of the water degree.

【0017】カソードボックス内への給液量は、陰極に
流れる電流量を陰極の両面の面積で除したものを陰極電
流密度A/dm2とし、1個のカソードボックスに1時
間に供給される電解液量ml/Hを陰極に流れる電流量
Aで除した量ml/AHで表して、カソードボックス内
の液面の高さを維持するには、170ml/AH以上の
割合で給液する必要があるが、余り給液量を多くしても
カソードボックスよりオーバーフローし、電解槽より外
に排出される電解液量が多くなり不経済となるので、多
くても400ml/AHとするのがよい。
The amount of the liquid supplied into the cathode box is obtained by dividing the amount of current flowing through the cathode by the area of both surfaces of the cathode to a cathode current density A / dm 2 and supplied to one cathode box in one hour. It is necessary to supply the liquid at a rate of 170 ml / AH or more to maintain the liquid level in the cathode box, expressed as ml / AH, which is obtained by dividing the amount of electrolytic solution ml / H by the amount of current A flowing to the cathode. However, even if the supply amount is too large, it overflows from the cathode box and the amount of the electrolyte discharged from the electrolytic cell increases, which is uneconomical. .

【0018】本発明方法で用いる電解液は、ニッケルマ
ットを塩素浸出して得られる塩化物浴である。通常ニッ
ケルマットの塩素浸出により得られる浸出液は、ニッケ
ル以外の金属を不純物として含むため浄液工程で純化さ
れ、ニッケル濃度を40〜80g/lに調整され、電解
液とされる。これはニッケル濃度が低いと電解時に陰極
表面で濃度分極が発生し、電着不良を起こし、逆に高く
なり過ぎると、電着応力が過大となり、陰極が歪み、カ
ソードボックスの破壊や短絡を発生するからである。
The electrolyte used in the method of the present invention is a chloride bath obtained by leaching a nickel matte with chlorine. The leaching solution usually obtained by leaching chlorine from nickel matte contains metals other than nickel as impurities, so that the leaching solution is purified in a liquid purification process, the nickel concentration is adjusted to 40 to 80 g / l, and used as an electrolyte. If the nickel concentration is low, concentration polarization occurs on the cathode surface during electrolysis, causing electrodeposition failure.On the other hand, if it is too high, the electrodeposition stress will be excessive, the cathode will be distorted, and the cathode box will be broken or short-circuited Because you do.

【0019】電解温度は、通常の塩化物浴より電気ニッ
ケルを製造する場合に適用される温度よりも若干高めの
60〜70℃とする。これは電解温度が低いとチオ硫酸
ナトリウムの添加効果で電着応力が増加し、歪みが発生
するからであり、高すぎると作業環境を悪くするからで
ある。
The electrolysis temperature is set at 60 to 70 ° C., which is slightly higher than the temperature applied when producing electric nickel from a normal chloride bath. This is because when the electrolysis temperature is low, the electrodeposition stress increases due to the effect of adding sodium thiosulfate, and distortion occurs, and when it is too high, the working environment deteriorates.

【0020】電解液のpHが低いと、電着応力が増加す
ると共に、電着物が脆くなり、陰極に割れが発生する。
一方、pHが高いと、硫黄が異常析出し、陰極表面に粒
状析出物を増加させ、良好な硫黄含有電気ニッケルが得
られない。このため電解液のpHは1.0〜1.5とす
る。このpHの調整は、浄液工程で行うことが操業効率
上望ましいが、給液直前にpH調整槽を設けて行っても
支障はない。調整剤として塩酸を用いることは電解液組
成よりして言うまでもないことである。なお、用いる工
程によっては塩素ガスを吹き込むことによって調整を行
っても支障はない。
When the pH of the electrolyte is low, the electrodeposition stress increases, the electrodeposit becomes brittle, and the cathode cracks.
On the other hand, if the pH is high, sulfur precipitates abnormally, increasing granular precipitates on the cathode surface, and it is not possible to obtain good sulfur-containing electric nickel. For this reason, the pH of the electrolyte is set to 1.0 to 1.5. This pH adjustment is desirably performed in the liquid purification step in terms of operating efficiency, but there is no problem if a pH adjustment tank is provided immediately before the liquid supply. It is needless to say that hydrochloric acid is used as a regulator, based on the composition of the electrolyte. In addition, depending on the process used, there is no problem even if the adjustment is performed by blowing chlorine gas.

【0021】硫黄源としてチオ硫酸ナトリウムを用いる
のは、上記したように安価で無害であり、かつ分解し易
いからである。チオ硫酸ナトリウムは不溶性陽極で発生
する塩素により分解され、電解液中に蓄積される危険が
少なく、蓄積物による障害発生の危険が少ないからであ
る。
The reason why sodium thiosulfate is used as the sulfur source is that it is inexpensive, harmless and easily decomposed as described above. This is because sodium thiosulfate is decomposed by chlorine generated at the insoluble anode, and has little risk of being accumulated in the electrolyte, and there is little risk of occurrence of trouble due to the accumulated matter.

【0022】チオ硫酸ナトリウムは、給液配管中に添加
し、配管中の電解液の移動によって均一に電解液と混合
されるが、給液配管の途中等に添加槽を設け、電解液に
添加しても差し支えない。余りカソードボックスから離
れた位置で添加すると、チオ硫酸ナトリウムが分解し、
硫黄を分離するので好ましくなく、余りカソードボック
スに近い位置で添加すれば電解液に均一に混合されな
い。どの位置で添加するのが好ましいかは、専ら装置条
件に依存するので、用いる装置により最適添加位置を求
めるのがよい。
The sodium thiosulfate is added to the supply pipe and is uniformly mixed with the electrolyte by the movement of the electrolyte in the pipe. No problem. If added too far from the cathode box, sodium thiosulfate will decompose,
Since sulfur is separated, it is not preferable. If it is added at a position too close to the cathode box, it will not be uniformly mixed with the electrolytic solution. Since the position at which the addition is preferable is exclusively dependent on the equipment conditions, it is preferable to determine the optimum addition position depending on the equipment used.

【0023】チオ硫酸ナトリウムの添加濃度を0.00
6〜0.012g/lとするのは、この範囲を外れる
と、得られる硫黄含有電気ニッケル中の硫黄含有率が
0.016〜0.022重量%とならず、めっき用として
良好な製品とならないからである。硫黄含有率が低い
と、めっきの際に陽極として用いたときに均一溶解性が
悪く、硫黄含有率が高いと、スライム率が増加し、かつ
均一溶解性も悪化する。
The concentration of sodium thiosulfate is 0.00
If the content is out of this range, the sulfur content in the obtained sulfur-containing electric nickel does not become 0.016 to 0.022% by weight. Because it does not become. If the sulfur content is low, the uniform solubility is poor when used as an anode during plating, and if the sulfur content is high, the slime ratio increases and the uniform solubility deteriorates.

【0024】本発明方法においては、陰極電流密度を
1.0〜2.5A/dm2とするのがよい。1.0A/dm
2より小さいと、生産性が低くなり経済的でなく、2.5
A/dm2を超えると電着ニッケルの硬度が上昇し、得
られた電気ニッケルを製品としてチップ状に切断するこ
とが困難となり、電着応力が上昇して電気ニッケルが歪
み、カソードボックスを破壊したり、短絡を生じたりす
るからである。又、硫黄の異常析出が起こり電気ニッケ
ルの表面に粒子が発生したり、均一に溶解しないもの
や、スライム率が高くなるからである。
In the method of the present invention, the cathode current density is preferably set to 1.0 to 2.5 A / dm 2 . 1.0A / dm
If it is smaller than 2 , productivity becomes low and it is not economical.
If it exceeds A / dm 2 , the hardness of the electrodeposited nickel increases, making it difficult to cut the resulting electric nickel into chips as a product, increasing the electrodeposition stress, distorting the electric nickel, and destroying the cathode box. Or a short circuit may occur. Also, abnormal precipitation of sulfur occurs, particles are generated on the surface of electric nickel, the particles are not uniformly dissolved, and the slime ratio is increased.

【0025】カソードボックスに給液された電解液は、
カソードボックスの隔膜を介して電解槽に移行し、一部
はアノードボックスに入り、その後電解排液として系外
に払い出され、一部は電解槽から電解排液として系外に
払い出される。このようにして系外に払い出された電解
排液には少なからずCl2が存在する。このため、組成
調整した後に脱Cl2するか、脱Cl2した後に組成調整
して電解液とし、チオ硫酸ナトリウムを添加してカソー
ドボックスに供給する。
The electrolytic solution supplied to the cathode box is
After passing through the diaphragm of the cathode box to the electrolytic cell, a part enters the anode box and is then discharged outside the system as an electrolytic drain, and a part is discharged out of the system as an electrolytic drain from the electrolytic tank. In this way, not a small amount of Cl 2 is present in the electrolytic effluent discharged out of the system. Therefore, either de Cl 2 to after adjusting composition and the composition adjusted after removing Cl 2 as the electrolytic solution is supplied to the cathode box with the addition of sodium thiosulfate.

【0026】電解排液より脱Cl2する方法としては、
例えば真空脱ガス法、脱気塔等を用いて大部分のCl2
を除去し、その後残存するCl2を活性炭等により吸着
除去する一般的方法により行う。この方法により容易に
Cl2濃度0.005g/l以下の電解液をうることがで
きる。Cl2濃度を0.005g/l以下とするのは、特
公昭58−7715号公報に記載されているように、こ
れよりCl2濃度が高いとチオ硫酸ナトリウムを分解
し、硫黄含有量が0.005〜0.025重量%の電気ニ
ッケルをうることができなくなるからである。
As a method for removing Cl 2 from the electrolytic waste water,
For example, most of the Cl 2 is
Is removed, and then the remaining Cl 2 is adsorbed and removed with activated carbon or the like. According to this method, an electrolyte having a Cl 2 concentration of 0.005 g / l or less can be easily obtained. As described in JP-B-58-7715, when the Cl 2 concentration is lower than 0.005 g / l, when the Cl 2 concentration is higher than this, sodium thiosulfate is decomposed and the sulfur content is reduced to 0. This is because 0.005 to 0.025% by weight of electric nickel cannot be obtained.

【0027】[0027]

【実施例】【Example】

実施例1 容量1.4m3の電解槽内に8枚の不溶性陽極と、7枚の
陰極とをそれぞれカソードボックスとアノードボックス
に入れて配置した。アノードボックスの隔膜として、通
水度0.8l/m2/secの合成繊維織物の濾布を用
い、カソードボックスの隔膜として、同様の通水度0.
6l/m2/secの濾布を用いた。陰極は800×1
000mm、厚さ1mmの電気ニッケル板を用い、陽極
としてはTi網の表面に酸化ルテニウムを被覆した74
0×770mmの不溶性電極を用いた。
Example 1 Eight insoluble anodes and seven cathodes were placed in a cathode box and an anode box, respectively, in an electrolytic cell having a capacity of 1.4 m 3 . As the diaphragm of the anode box, a filter cloth of synthetic fiber woven fabric having a water permeability of 0.8 l / m 2 / sec was used, and as the diaphragm of the cathode box, the same water permeability of 0.8 l / m 2 / sec.
A filter cloth of 6 l / m 2 / sec was used. 800 × 1 cathode
An electric nickel plate having a thickness of 000 mm and a thickness of 1 mm was used, and the surface of a Ti net was coated with ruthenium oxide as an anode.
A 0x770 mm insoluble electrode was used.

【0028】Ni濃度50〜70g/l、Co、Cu、
Feがそれぞれ0.001g/l以下、塩素イオンが7
2〜90g/l、Cl2が0.0002g/l、pH1.
08〜1.45の64℃の溶液にチオ硫酸ナトリウムを
0.012g/lとなるように添加して電解液とし、2
00ml/AHの割合いで各カソードボックスに均等に
給液(0.6l/min・カソードボックス)した。電
解液がアノードボックスの排液管に達したとき陰極電流
密度が1.15A/dm2となるように通電し、排液管よ
り真空吸引により発生した塩素と電解液を系外に排出し
た。
Ni concentration 50-70 g / l, Co, Cu,
Fe is 0.001 g / l or less and chlorine ion is 7
2~90g / l, Cl 2 is 0.0002g / l, pH1.
Sodium thiosulfate was added to a solution of 08 to 1.45 at 64 ° C. to a concentration of 0.012 g / l to form an electrolyte.
Liquid was supplied evenly to each cathode box at a rate of 00 ml / AH (0.6 l / min · cathode box). When the electrolytic solution reached the drain pipe of the anode box, current was supplied so that the cathode current density became 1.15 A / dm 2, and chlorine generated by vacuum suction and the electrolytic solution were discharged from the drain pipe to the outside of the system.

【0029】この状態で8日間の試験操業を行い、めっ
き用硫黄含有電気ニッケルを得た。尚、試験操業期間
中、カソードボックス内の液面は電解槽の液面より5〜
20mm高く、アノードボックス内の液面は電解槽の液
面より10〜15mm低く保持され、アノードボックス
内の液面はカソードボックス内の液面より15〜35m
m低く維持された。
In this state, a test operation was performed for 8 days to obtain sulfur-containing electric nickel for plating. During the test operation, the liquid level in the cathode box was 5 to 5 times higher than the liquid level in the electrolytic cell.
20 mm higher, the liquid level in the anode box is kept 10-15 mm lower than the liquid level in the electrolytic cell, and the liquid level in the anode box is 15-35 m higher than the liquid level in the cathode box.
m low.

【0030】得られた硫黄含有電気ニッケルは平滑で歪
みはなかった。この電気ニッケルの各1枚につき9点を
均等に分布するように選択し、ドリルを用いてサンプリ
ングし、分析して硫黄含有率を求めたところ、すべて
0.014〜0.020重量%の範囲内であった。次い
で、各電気ニッケルより任意の位置で50×100mm
の大きさに各電気ニッケルより2個づつ切り出した試験
片14個を用いて溶解テストを行った。
The resulting sulfur-containing electric nickel was smooth and free of distortion. Nine points were selected to be evenly distributed for each sheet of this electric nickel, sampled using a drill, and analyzed to determine the sulfur content, all of which were in the range of 0.014 to 0.020% by weight. Was within. Then, 50 × 100 mm at any position from each electric nickel
A dissolution test was performed using 14 test pieces cut out of each of the electric nickels into two pieces each having a size of.

【0031】溶解テストは、Ni濃度81.8g/l、
pH4.0、硼酸濃度30g/lのスルファミン酸浴を
用い、上記試験片をそれぞれ陽極とし、ステンレス板を
陰極とし、陽極電流密度2A/dm2、電解液温度50
〜55℃、通電時間96時間で電解を行い、陽極の電流
効率、陽極スライム発生率を求め、陽極溶解後の表面状
態を観察して製品としての適否を判定した。得られた結
果は、陽極電流効率は何れも100%、スライム発生率
は0.1重量%以下で、溶解表面状態は何れも良好で、
めっき用硫黄含有電気ニッケルとして最適であることが
判った。
In the dissolution test, the Ni concentration was 81.8 g / l,
Using a sulfamic acid bath having a pH of 4.0 and boric acid concentration of 30 g / l, each of the above-mentioned test pieces was used as an anode, a stainless steel plate was used as a cathode, an anode current density was 2 A / dm 2 , and an electrolyte temperature was 50.
Electrolysis was performed at ~ 55 ° C for 96 hours, and the current efficiency of the anode and the anode slime generation rate were determined. The surface state after dissolution of the anode was observed to determine the suitability of the product. The obtained results show that the anodic current efficiency is 100%, the slime generation rate is 0.1% by weight or less, and the dissolution surface conditions are all good.
It was found to be optimal as sulfur-containing electric nickel for plating.

【0032】実施例2 電解液温度を55、57、60、63、68℃とし、チ
オ硫酸ナトリウムの濃度を0.009g/lとした以外
は実施例1と同様にして試験操業を行った。電解液温度
55、57℃で得た電気ニッケルにはクラックが発生
し、60℃で得た電気ニッケルの表面には、その一部に
小さな粒状析出が見られ、63℃で得た電気ニッケルの
表面にはわずかに小さな粒状物やピンホールが見られ、
68℃で得た電気ニッケルの表面状態は全く良好であっ
た。これらの内製品となり得ないものは、55、57℃
で得た電気ニッケルのみであり、60、63℃で得たも
のは多少の難はあるものの十分製品となり得るものであ
り、68℃で得たものは問題なく製品とし得るものであ
った。
Example 2 A test operation was carried out in the same manner as in Example 1 except that the temperature of the electrolyte was 55, 57, 60, 63 and 68 ° C., and the concentration of sodium thiosulfate was 0.009 g / l. Cracks occur in the electric nickel obtained at the electrolyte temperature of 55 and 57 ° C., and small granular precipitation is observed on a part of the surface of the electric nickel obtained at 60 ° C., and the electric nickel obtained at 63 ° C. There are slightly small particles and pinholes on the surface,
The surface condition of the electric nickel obtained at 68 ° C. was quite good. 55, 57 ℃
The product obtained at 60 and 63 ° C. could be a sufficient product with some difficulty, and the product obtained at 68 ° C. could be used as a product without any problem.

【0033】比較例1 アノードボックス内の液面を電解槽の液面よりも4〜8
mm低くした以外は実施例1と同様にして電気ニッケル
を得た。得られた電気ニッケル中の硫黄含有率は0.0
10〜0.014重量%で、本発明の対象としている0.
016〜0.022重量%の範囲内に入らなかった。得
られた電気ニッケルを実施例1と同様にして溶解テスト
を行ったところ、スライム発生率は0.75〜2.61重
量%で、溶解表面も簾状となり、製品として適しないも
のであることが判った。これは陽極で発生したCl2
陰極側に逆流し、電解液中のチオ硫酸ナトリウムがカソ
ードボックス内で分解してしまったことによると考えら
れる。
Comparative Example 1 The liquid level in the anode box was 4 to 8 times higher than the liquid level in the electrolytic cell.
Electric nickel was obtained in the same manner as in Example 1 except that the thickness was reduced by mm. The sulfur content in the obtained electric nickel is 0.0.
10 to 0.014% by weight, which is the object of the present invention.
It did not fall within the range of 016 to 0.022% by weight. When a dissolution test was performed on the obtained electric nickel in the same manner as in Example 1, the slime generation rate was 0.75 to 2.61% by weight, and the dissolution surface was in the shape of a cord, which was not suitable as a product. I understood. This is presumably because Cl 2 generated at the anode flowed back to the cathode side, and sodium thiosulfate in the electrolytic solution was decomposed in the cathode box.

【0034】比較例2 チオ硫酸ナトリウムの濃度を0.004g/lとなるよ
うにした以外は実施例1と同様にして試験操業を行っ
た。得られた電気ニッケル中の硫黄含有率は0.008
〜0.012重量%で、本発明で対象としている0.01
6〜0.022重量%の範囲には入らなかった。得られ
た電気ニッケルを実施例1と同様にして溶解テストを行
ったところ、スライム発生率は1.20〜2.42重量%
で、溶解表面も簾状となり製品として適しないものであ
ることが判った。これは、電解液中のチオ硫酸ナトリウ
ムの濃度が低すぎたことによるものと思われる。
Comparative Example 2 A test operation was carried out in the same manner as in Example 1 except that the concentration of sodium thiosulfate was adjusted to 0.004 g / l. The sulfur content in the obtained electric nickel was 0.008.
〜0.012% by weight, which is the object of the present invention.
It did not fall in the range of 6 to 0.022% by weight. When a dissolution test was performed on the obtained electric nickel in the same manner as in Example 1, the slime generation rate was 1.20 to 2.42% by weight.
As a result, it was found that the dissolving surface also became a mat-like shape and was not suitable as a product. This is probably because the concentration of sodium thiosulfate in the electrolyte was too low.

【0035】比較例3 チオ硫酸ナトリウムの濃度を0.25g/lとなるよう
にした以外は実施例1と同様にして試験操業を行った。
得られた電気ニッケル中の硫黄含有率は0.028〜0.
034重量%で、本発明の対象である0.016〜0.0
22重量%の範囲内に入らなかった。表面状態も粒や割
れが発生しているものが多く、製品として適しないもの
であった。念のため、得られた電気ニッケルを実施例1
と同様にして溶解テストを行ったところ、スライム発生
率は0.35〜0.52重量%と高く、溶解表面も黒ず
み、簾状となった。これは電解液中のチオ硫酸ナトリウ
ムの濃度が高すぎたことによるものと思われる。
Comparative Example 3 A test operation was carried out in the same manner as in Example 1 except that the concentration of sodium thiosulfate was adjusted to 0.25 g / l.
The sulfur content in the obtained electric nickel is 0.028 to 0.2.
034% by weight, which is the object of the present invention, 0.016 to 0.0.
It did not fall within the range of 22% by weight. In many cases, the surface state had grains or cracks, and was not suitable as a product. As a precaution, the obtained electric nickel was used in Example 1
When a dissolution test was carried out in the same manner as described above, the slime generation rate was as high as 0.35 to 0.52% by weight, and the dissolution surface was darkened and became a blind. This is probably because the concentration of sodium thiosulfate in the electrolyte was too high.

【0036】比較例4 電解液中のニッケル濃度を30g/lとした以外は実施
例1と同様にして試験操業を行った。試験操業中陰極表
面を観察したところ電着不良を生じており、最終的にも
良好な電気ニッケルは得られなかった。
Comparative Example 4 A test operation was performed in the same manner as in Example 1 except that the nickel concentration in the electrolyte was changed to 30 g / l. Observation of the surface of the cathode during the test operation revealed that electrodeposition was poor, and good electric nickel was not finally obtained.

【0037】比較例5 電解液中のニッケル濃度を90g/lとした以外は実施
例1と同様にして試験操業を行った。得られた電気ニッ
ケルは歪み、電解途中においても短絡が発生し、カソー
ドボックスが破損し、良好な電気ニッケルは得られなか
った。
Comparative Example 5 A test operation was carried out in the same manner as in Example 1 except that the nickel concentration in the electrolytic solution was 90 g / l. The obtained electric nickel was distorted, a short circuit occurred even during electrolysis, the cathode box was damaged, and good electric nickel was not obtained.

【0038】比較例6 電解液のpHを0.6とした以外は実施例1と同様にし
て試験操業を行った。得られた電気ニッケルは何れも割
れが発生しており、製品とはなり得なかった。これは電
着により発生した内部応力の高さが原因と思われる。
Comparative Example 6 A test operation was performed in the same manner as in Example 1 except that the pH of the electrolytic solution was changed to 0.6. All of the obtained electric nickel had cracks and could not be used as products. This seems to be due to the high internal stress generated by electrodeposition.

【0039】比較例7 電解液のpHを1.7とした以外は実施例1と同様にし
て試験操業を行った。得られた電気ニッケルは何れも表
面に粒子が多発しており、製品とはなり得ないものであ
った。
Comparative Example 7 A test operation was performed in the same manner as in Example 1 except that the pH of the electrolytic solution was changed to 1.7. All of the obtained electric nickel had many particles on the surface and could not be a product.

【0040】[0040]

【発明の効果】本発明方法によれば、安価で無害、かつ
取り扱い容易なチオ硫酸ナトリウムを硫黄源とし、塩化
物浴よりめっきに最適な硫黄含有電気ニッケルを容易に
得ることができる。
According to the method of the present invention, sodium nickel thiosulfate, which is inexpensive, harmless and easy to handle, is used as a sulfur source, and a sulfur-containing electric nickel optimum for plating can be easily obtained from a chloride bath.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−31876(JP,A) 特開 昭56−93886(JP,A) 特開 昭55−28319(JP,A) 特開 昭54−31025(JP,A) 特開 昭53−5019(JP,A) 特開 昭52−91725(JP,A) 特開 昭56−62980(JP,A) 特開 昭51−50808(JP,A) (58)調査した分野(Int.Cl.7,DB名) C25C 1/00 - 7/08 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-59-31876 (JP, A) JP-A-56-93886 (JP, A) JP-A-55-28319 (JP, A) JP-A-54-1983 31025 (JP, A) JP-A-53-5019 (JP, A) JP-A-52-91725 (JP, A) JP-A-56-62980 (JP, A) JP-A-51-50808 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) C25C 1/00-7/08

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 隔膜を施したアノードボックスには不溶
性陽極を、隔膜を施したカソードボックスには陰極を挿
入し、チオ硫酸ナトリウムを含む主として塩化物よりな
るニッケル電解液をカソードボックスに給液し、カソー
ドボックス内の液面を電解槽内の液面よりも5mm以上
高く保持し、アノードボックスからは該ボックス内で発
生する塩素ガスをアノードボックス内の電解液と共にア
ノードボックス外に排出しつつ、アノードボックス内の
液面を電解槽内の液面よりも10mm以上低く保って電
解することを特徴とする硫黄含有電気ニッケルの製造方
法。
An insoluble anode is inserted into an anode box provided with a diaphragm, and a cathode is inserted into a cathode box provided with a diaphragm. A nickel electrolytic solution mainly containing chloride containing sodium thiosulfate is supplied to the cathode box. While maintaining the liquid level in the cathode box higher than the liquid level in the electrolytic cell by 5 mm or more, while discharging chlorine gas generated in the box from the anode box together with the electrolytic solution in the anode box to the outside of the anode box, A method for producing sulfur-containing electric nickel, characterized in that electrolysis is performed while maintaining the liquid level in the anode box at least 10 mm lower than the liquid level in the electrolytic cell.
【請求項2】 隔膜として通水度測定高さ200mmH
2Oで測定した通水度が0.04〜0.08l/m2/se
cの合成繊維の布を用いる請求項1に記載の硫黄含有電
気ニッケルの製造方法。
2. A water permeability measurement height of 200 mmH as a diaphragm.
The water permeability measured with 2 O is 0.04 to 0.08 l / m 2 / se
The method for producing sulfur-containing electric nickel according to claim 1, wherein a cloth made of the synthetic fiber of c is used.
【請求項3】 温度60〜70℃、ニッケル濃度40〜
80g/l、pH1.0〜2.5、チオ硫酸ナトリウム濃
度0.006〜0.012g/lの電解液をカソードボッ
クスへ給液しつつ、陰極電流密度1.0〜2.5A/dm
2で電解を行う請求項1又は2に記載の硫黄含有電気ニ
ッケルの製造方法。
3. A temperature of 60 to 70 ° C. and a nickel concentration of 40 to 70 ° C.
A cathode current density of 1.0 to 2.5 A / dm was supplied to the cathode box while supplying an electrolyte of 80 g / l, pH 1.0 to 2.5, and sodium thiosulfate concentration of 0.006 to 0.012 g / l to the cathode box.
The method for producing sulfur-containing electric nickel according to claim 1 or 2 , wherein the electrolysis is performed in (2).
JP13653993A 1993-05-14 1993-05-14 Method for producing sulfur-containing electric nickel Expired - Lifetime JP3158786B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13653993A JP3158786B2 (en) 1993-05-14 1993-05-14 Method for producing sulfur-containing electric nickel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13653993A JP3158786B2 (en) 1993-05-14 1993-05-14 Method for producing sulfur-containing electric nickel

Publications (2)

Publication Number Publication Date
JPH06322575A JPH06322575A (en) 1994-11-22
JP3158786B2 true JP3158786B2 (en) 2001-04-23

Family

ID=15177561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13653993A Expired - Lifetime JP3158786B2 (en) 1993-05-14 1993-05-14 Method for producing sulfur-containing electric nickel

Country Status (1)

Country Link
JP (1) JP3158786B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101585527B1 (en) 2013-11-06 2016-01-21 완주군 Bread or cookie containing taro and manufacturing method of the same
KR102649037B1 (en) 2023-09-13 2024-03-20 김영옥 Method for manufacturing breads using taro and breads by the mehtod

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009203487A (en) * 2008-02-26 2009-09-10 Nippon Mining & Metals Co Ltd Metal electrowinning method by diaphragm electrolysis
JP5817403B2 (en) * 2011-09-30 2015-11-18 住友金属鉱山株式会社 Anode material for plating, manufacturing method of anode material for plating
CN104213150A (en) * 2014-07-04 2014-12-17 襄阳化通化工有限责任公司 Sulfur-containing active nickel briquette produced through electrolytic process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101585527B1 (en) 2013-11-06 2016-01-21 완주군 Bread or cookie containing taro and manufacturing method of the same
KR102649037B1 (en) 2023-09-13 2024-03-20 김영옥 Method for manufacturing breads using taro and breads by the mehtod

Also Published As

Publication number Publication date
JPH06322575A (en) 1994-11-22

Similar Documents

Publication Publication Date Title
JP4076751B2 (en) Electro-copper plating method, phosphor-containing copper anode for electrolytic copper plating, and semiconductor wafer plated with these and having less particle adhesion
JPS59166689A (en) Cathode for electrolytic production of hydrogen
KR100733838B1 (en) Recovering method for gold derived from non-cyanide based waste aqueous solution and apparatus thereof
JP3158786B2 (en) Method for producing sulfur-containing electric nickel
Moskalyk et al. Anode effects in electrowinning
US4250004A (en) Process for the preparation of low overvoltage electrodes
JP2009097072A (en) Electrolytic refining method for bismuth
JP4501726B2 (en) Electrowinning of iron from acidic chloride aqueous solution
JP2009203487A (en) Metal electrowinning method by diaphragm electrolysis
JPH11229172A (en) Method and apparatus for producing high-purity copper
JPS587715B2 (en) Method for producing sulfur-containing electrolytic nickel
US2347451A (en) Electrolytic deposition of manganese
JPS59205490A (en) Manufacture of anode and method of lowering hydrogen overvoltage in chloroalkali electrolytic cell
JP2570076B2 (en) Manufacturing method of high purity nickel
JP3163612B2 (en) Copper removal electrolysis from chloride bath
DE2232903B2 (en) METHOD FOR ELECTROLYTIC REFINING OF COPPER USING TITANIUM ELECTRODES
JP2011042820A (en) Method for producing sulfur-containing electrolytic nickel
JP2019178353A (en) Copper removal electrolytic treatment method, copper removal electrolytic treatment device
CN114517309B (en) Nickel supplementing and decoppering method in nickel electrolysis production system
JP2010196124A (en) Method for manufacturing sulfur-containing electrolytic nickel
EP0043871A1 (en) Method for removing chlorate from caustic solutions with electrolytically deposited iron and process for recovering said iron from said purified solutions
JP3063636B2 (en) Copper electrolytic refining method
JPH01139789A (en) Production of high purity electrolytic copper having low silver content
JPS6126795A (en) Electrolysis method using fluidized bed and electrolytic cell
JP3083079B2 (en) Copper electrorefining method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090216

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090216

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140216

Year of fee payment: 13

EXPY Cancellation because of completion of term