JP3158267B2 - Loop type meandering thin tube heat pipe - Google Patents

Loop type meandering thin tube heat pipe

Info

Publication number
JP3158267B2
JP3158267B2 JP16049094A JP16049094A JP3158267B2 JP 3158267 B2 JP3158267 B2 JP 3158267B2 JP 16049094 A JP16049094 A JP 16049094A JP 16049094 A JP16049094 A JP 16049094A JP 3158267 B2 JP3158267 B2 JP 3158267B2
Authority
JP
Japan
Prior art keywords
thin tube
heat pipe
heat
loop
working fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16049094A
Other languages
Japanese (ja)
Other versions
JPH07332881A (en
Inventor
久輝 赤地
Original Assignee
アクトロニクス株式会社
久輝 赤地
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アクトロニクス株式会社, 久輝 赤地 filed Critical アクトロニクス株式会社
Priority to JP16049094A priority Critical patent/JP3158267B2/en
Publication of JPH07332881A publication Critical patent/JPH07332881A/en
Application granted granted Critical
Publication of JP3158267B2 publication Critical patent/JP3158267B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/043Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure forming loops, e.g. capillary pumped loops

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はヒートパイプの構造に関
するもので、特に蛇行細管ヒートパイプの適用範囲の拡
大及び機能の向上に有効な付加手段が設けられてある新
規な構造のループ型蛇行細管ヒートパイプに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat pipe structure, and more particularly to a loop type meandering thin tube having a novel structure provided with additional means effective for expanding the range of application of the meandering heat pipe and improving its function. Related to heat pipes.

【0002】[0002]

【従来の技術】特公平6−3354号(ループ型細管ヒ
ートパイプ)、特開平4−190090号(ループ型細
管ヒートパイプ)、特開平4−251189号(マイク
ロヒートパイプ)、及び特願平5−241918(プレ
ート型ヒートパイプ)の4件の相互に関連する出願中発
明に代表される蛇行細管ヒートパイプの各種応用製品
は、軽量化及び高性能化を可能にすることにより、従来
では果たし得なかった新しい分野の冷却手段としてその
適用範囲を拡大しつつある。
2. Description of the Related Art Japanese Patent Publication No. 6-3354 (loop-type thin-tube heat pipe), Japanese Patent Application Laid-Open No. 4-190090 (loop-type thin-tube heat pipe), Japanese Patent Application Laid-Open No. 4-251189 (micro-heat pipe), and Japanese Patent Application No. Hei 5-5 Various application products of the meandering thin-tube heat pipe represented by four interrelated pending patent applications of 241918 (plate-type heat pipe) can be conventionally achieved by enabling weight reduction and high performance. The scope of its application is expanding as a cooling means in a new field that did not exist.

【0003】上述のループ型蛇行細管ヒートパイプの中
で作動原理として総ての基本となる構造は特開平4−1
90090号に係る構造であって、その構成を図2に示
す。図に於ては図面簡略化のため細管は線図によって示
されてある。図2に於て構成素材である金属細管の内径
は、その中に封入される作動液3が、その表面張力によ
り発生する凝縮力により、封入量が微少量であっても常
に管内を充填閉塞せしめ、細管の保持姿勢の如何に拘ら
ずその状態のままで管内を移動するよう充分に細径化さ
れた内径であって、そのような長尺細管が、所定の位置
に配置されてある加熱手段Hと所定の位置に配置されて
ある冷却手段Cとの間に於て、加熱手段Hにて熱量を吸
収しながら反転して断熱部分Aを経て冷却手段Cに向か
い、冷却手段Cにて熱量を放出しながら反転して断熱部
分Aを経て加熱手段Hに向かい、そのような反転蛇行を
多数回繰り返して、夫々に受熱部1−Hと断熱部1−A
と放熱部1−Cとを有する多数の単位金属細管1−1の
蛇行直列連結体である蛇行細管として形成されてあり、
この蛇行細管の細管の長短末が所定の手段により流通自
在に且つ気密にループ状に連結されてなるループ型蛇行
細管1がヒートパイプ用密閉コンテナとして適用され、
この密閉コンテナ内が高真空に排気された状態で、所定
の二相凝縮性作動液の所定量が封入されてループ型蛇行
細管ヒートパイプとして構成されてある構造。
The basic structure of the above-mentioned loop-type meandering thin tube heat pipe as an operating principle is disclosed in Japanese Patent Application Laid-Open No. 4-1.
No. 90090, the structure of which is shown in FIG. In the figures, the capillaries are shown diagrammatically for simplicity. In FIG. 2, the inner diameter of the metal thin tube, which is a constituent material, is such that the working fluid 3 sealed therein always fills and closes the inside of the tube due to the condensing force generated by the surface tension, even if the sealed amount is very small. In other words, the inner diameter is sufficiently reduced so that the inside of the tube is moved irrespective of the holding posture of the thin tube, and such a long thin tube is disposed at a predetermined position. Between the means H and the cooling means C arranged at a predetermined position, the heating means H absorbs the amount of heat and reverses the heat. The heat is released and the heat is reversed to the heating means H via the heat insulating portion A, and the reversal meandering is repeated many times, so that the heat receiving portion 1-H and the heat insulating portion 1-A are respectively obtained.
And a heat-radiating portion 1-C, which is formed as a meandering thin tube which is a meandering series connection of a number of unit metal thin tubes 1-1,
A loop-shaped meandering thin tube 1 in which the long and short ends of the meandering thin tube are connected in a freely and air-tightly loop-like manner by a predetermined means is applied as a closed container for a heat pipe,
A structure in which a predetermined amount of a predetermined two-phase condensable working fluid is sealed in a state in which the inside of the closed container is evacuated to a high vacuum to form a loop-shaped meandering thin tube heat pipe.

【0004】このように構成されてあるループ型蛇行細
管ヒートパイプは作動が停止し保存状態にある時または
作動状態にある時は図3に示されてあるような状態にな
っている。保存状態とは云え蛇行細管ヒートパイプは周
囲温度により不活発ながら作動を継続し、常に作動液3
の蒸気泡3−1の群を発生し、コンテナ内は蒸気泡3−
1の群と液滴3−2の群により充満されてある。即ちル
ープ型蛇行細管ヒートパイプの多数の受熱部1−H内の
各沸騰で発生した蒸気泡3−1の群は細管内を自ら移動
してループ型蛇行細管1の全コンテナ中に分散され蒸気
泡3−1の群と液滴3−2の群が交互に配置された状態
になる。各蒸気泡3−1は受熱部1−Hの温度に対応し
た飽和蒸気圧を示し、受熱部1−Hで発生する核沸騰の
圧力波に敏感に反応して膨張収縮する状態になってい
る。また蒸気泡3−1は放熱部1−C内に於て次第に凝
縮縮小しながら、順次発生する新規な且つ圧力の高い蒸
気泡3−1により順次推進されて受熱部1−Hから放熱
部1−Cの先端に向かって緩やかに移動する。核蒸気泡
3−1は移動しながら凝縮してその容積が変化し受熱部
1−H内で最大容積であり、放熱部1−Cの最終端で最
小容積となる。従って細管内に於ける作動液3の分布状
態は受熱部1−Hに於て気相リッチであり放熱部1−C
に於て液相リッチになっている。
[0004] The loop-shaped meandering thin-tube heat pipe thus configured is in a state as shown in FIG. 3 when it stops operating and is in a storage state or an operation state. Even though it is in the preservation state, the meandering thin tube heat pipe continues to operate while being inactive due to the ambient temperature, and the working fluid 3
A group of steam bubbles 3-1 is generated, and the inside of the container is steam bubbles 3-
1 and the group of droplets 3-2. That is, a group of the vapor bubbles 3-1 generated by each boiling in the large number of heat receiving portions 1-H of the loop-shaped meandering thin tube heat pipe move by themselves in the narrow tube and are dispersed in all the containers of the loop-shaped meandering thin tube 1 to generate steam. A group of bubbles 3-1 and a group of droplets 3-2 are alternately arranged. Each vapor bubble 3-1 has a saturated vapor pressure corresponding to the temperature of the heat receiving unit 1-H, and is in a state of expanding and contracting in response to the nucleate boiling pressure wave generated in the heat receiving unit 1-H. . Further, the steam bubbles 3-1 are gradually condensed and reduced in the heat radiating section 1-C, and are sequentially propelled by the new and high-pressure steam bubbles 3-1 which are sequentially generated, and are sequentially moved from the heat receiving section 1-H to the heat radiating section 1C. Move slowly toward the tip of -C. The nuclear vapor bubble 3-1 condenses while moving, and its volume changes. The nuclear vapor bubble 3-1 has the maximum volume in the heat receiving unit 1-H, and has the minimum volume at the final end of the heat radiation unit 1-C. Therefore, the distribution state of the working fluid 3 in the thin tube is gas-phase rich in the heat receiving portion 1-H and the heat radiating portion 1-C
At which the liquid phase becomes rich.

【0005】このように構成されてあるループ型蛇行細
管ヒートパイプの単位金属細管1−1の群の所定の部分
の群を受熱部1−Hの群とし、所定の加熱手段Hに依り
熱量を吸収せしめ、残余の部分の群の所定の部分の群を
放熱部1−Cの群とし、冷却手段Cにより熱量を放熱せ
しめれば、蛇行細管ヒートパイプは従来型のヒートパイ
プには類例のない独特の作動状態になる。その作動状態
は以下の如くである。ループ型蛇行細管ヒートパイプを
構成する全ての各単位金属細管1−1に於て、その全て
の受熱部1−Hの群内の作動液3は熱吸収により核沸騰
状態になり断続した高圧蒸気泡3−1の群を順次に発生
する。蒸気泡3−1の断続現象は蒸気泡3−1の急激な
断熱膨張により、受熱部1−H内に瞬時の温度降下を引
き起こすことにより発生する。高圧蒸気泡3−1の発生
の断続は各単位金属細管1−1内の作動液3内に強力な
圧力波を発生せしめる。この圧力波の群は夫々の単位細
管1−1に留まらず細管コンテナの全ループの作動液内
を順逆両方向に向かって伝播して駆けめぐり、全ループ
内で相互に衝突し、相互に助長し合ったり相互に打ち消
しあったりして、全細管コンテナ内の気相作動液(気泡
3−1)に膨張収縮の振動を発生せしめる。この振動は
全細管コンテナ内の気相作動液(気泡3−1)及び液相
作動液(液滴3−2)に烈しい軸方向振動を発生せしめ
る。この振動エネルギーの強さは受熱部1−Hに加わる
エネルギーの強さ及び受熱部1−Hと放熱部1−Cの間
の温度差の大きさに正確に依存する。またループ型蛇行
細管ヒートパイプに於ては、作動中のの保持姿勢、ルー
プ内に於ける受熱部1−Hと放熱部1−Cの距離の遠
近、ループ上に於ける周囲温度の不均衡等によりコンテ
ナ内には内圧の不均衡が発生するので作動液全体として
は、ループ内の抵抗の少ない方向に向かって緩やかに循
環する。
[0005] A group of predetermined portions of the group of unit metal thin tubes 1-1 of the loop-shaped meandering thin-tube heat pipe thus configured is referred to as a group of heat receiving portions 1-H. If a predetermined group of the remaining groups is made into a group of the heat radiating portions 1-C and the heat is radiated by the cooling means C, the meandering thin tube heat pipe is unprecedented to the conventional heat pipe. It becomes a unique operating condition. The operating state is as follows. In all the unit thin metal tubes 1-1 constituting the loop-shaped meandering thin tube heat pipe, the working fluid 3 in all the heat receiving portions 1-H is brought into a nucleate boiling state due to heat absorption and intermittent high-pressure steam Groups of bubbles 3-1 are generated sequentially. The intermittent phenomenon of the steam bubbles 3-1 occurs by causing an instantaneous temperature drop in the heat receiving portion 1-H due to rapid adiabatic expansion of the steam bubbles 3-1. The intermittent generation of the high-pressure steam bubbles 3-1 generates a strong pressure wave in the working fluid 3 in each unit metal thin tube 1-1. This group of pressure waves propagates in the working fluid in all loops of the capillary container in both forward and reverse directions and runs around, not only in each unit capillary tube 1-1, but collides with each other in all loops and promotes each other. The vibrations of expansion and contraction are generated in the gas-phase working fluid (bubbles 3-1) in the full-capillary container by combining or canceling each other. This vibration causes intense axial vibrations in the gas-phase working liquid (bubbles 3-1) and the liquid-phase working liquid (droplets 3-2) in the full capillary container. The intensity of the vibration energy depends exactly on the intensity of the energy applied to the heat receiving portion 1-H and the magnitude of the temperature difference between the heat receiving portion 1-H and the heat radiating portion 1-C. In the meantime, in the loop type meandering thin tube heat pipe, the holding posture during operation, the distance between the heat receiving portion 1-H and the heat radiating portion 1-C in the loop, and the imbalance of the ambient temperature on the loop. As a result, an imbalance in the internal pressure occurs in the container, so that the working fluid as a whole gently circulates in the direction of less resistance in the loop.

【0006】この気相作動液及び液相作動液の軸方向振
動はループ型蛇行細管ヒートパイプに強力な熱輸送機能
を発生せしめ、熱量は受熱部1−Hから放熱部1−Cに
向かって活発に輸送される。この際の熱移動は作動液の
振動及び移動時にループ型蛇行細管コンテナの内壁表面
に自ら形成される作動液3の流れの境界層の仲介に依り
なされる。このように作動液3の軸方向震動が効率良く
熱量を輸送することの基本的な原理の説明はドリームパ
イプと通称されるフロリダ大学の発明、特公平2−35
239号に詳述されてあり、また添付書類にも詳述され
であるので本説明では省略する。
[0006] The axial vibration of the gas-phase working liquid and the liquid-phase working liquid causes a strong heat transport function to be generated in the loop-shaped meandering thin-tube heat pipe, and the amount of heat is transferred from the heat receiving section 1-H to the heat radiating section 1-C. Actively transported. The heat transfer at this time is performed by the vibration of the working fluid and the mediation of the boundary layer of the flow of the working fluid 3 which is formed on the inner wall surface of the loop-shaped meandering thin-tube container by itself. A description of the basic principle that the axial vibration of the hydraulic fluid 3 efficiently transports heat as described above is described in the invention of the University of Florida called the Dream Pipe, Japanese Patent Publication No. 2-35.
No. 239 and detailed description in the attached document, so that the description thereof will be omitted.

【0007】このようなループ型蛇行細管ヒートパイプ
の熱輸送能力は極めて強力であり、また従来のヒートパ
イプの如くその性能が重力に影響されることが少ないの
で従来のヒートパイプに類例の無い優れた各種の機能を
発揮する。特に各種機器用放熱器の分野に於ては、いか
なる適用姿勢でも性能が悪化しない即ちトップヒートモ
ードでも良好な熱輸送性能を発揮する如き蛇行細管ヒー
トパイプ独特の特性、及び従来技術では製作不可能であ
った厚さ2mm以下の如き薄型プレートヒートパイプの
構成を可能にする機能、等は従来のヒートパイプに比較
して機器設計上の自由度を大幅に拡大させるものとして
広く業界の注目を浴びつつある。
The heat transfer capability of such a loop-shaped meandering thin-tube heat pipe is extremely strong, and its performance is hardly affected by gravity unlike a conventional heat pipe. It performs various functions. In particular, in the field of radiators for various equipment, the performance does not deteriorate in any application posture, that is, the unique characteristics of meandering thin tube heat pipes, such as exhibiting good heat transport performance even in top heat mode, and cannot be manufactured with conventional technology The function that enables the construction of a thin plate heat pipe with a thickness of 2 mm or less, etc., has attracted widespread industry attention as greatly expanding the degree of freedom in equipment design compared to conventional heat pipes. It is getting.

【0008】更に外形5mm以下の細管からなるその構
造は自在に屈曲せしめて適用することを可能にするだけ
でなく、細管の優れた強制対流熱伝達率は、フィン群を
装着すること無くそのまま強制対流放熱部を形成するこ
とを可能ならしめ、従来型のヒートパイプを適用した機
器用放熱器に比較して、容積比で1/2、重量比で1/
3の如き小型軽量化された機器用放熱器の構成を可能に
する等の優れた長所も兼ね備えておりその市場が拡大し
つつある。
Furthermore, the structure consisting of a thin tube with an outer diameter of 5 mm or less not only allows the tube to be bent freely and can be applied, but also the excellent forced convection heat transfer coefficient of the thin tube allows the forced convection heat transfer without attaching a fin group. It is possible to form a convection heat radiating part, and it has a volume ratio of 1/2 and a weight ratio of 1/2 compared to a conventional heat radiator to which a heat pipe is applied.
3 has excellent advantages such as enabling the construction of a small and light-weighted device radiator, and the market is expanding.

【0009】然し半導体応用技術の近来の発展は益々目
覚ましく、それに起因する業界の冷却技術に対する要望
も益々厳しくなり、更なる小型軽量化に加えて重なる高
機能化、更なる大容量化が望まれつつある。本発明は前
述4件の出願中特許の応用であって、既に商品化されて
いるそれら出願中特許に係るループ型蛇行細管ヒートパ
イプの機能を更に改善せしめて業界の要望に応えること
を目的としている。
However, the recent development of semiconductor application technology has been remarkable, and the demand for cooling technology in the industry due to it has become more and more severe. Therefore, in addition to further reduction in size and weight, higher functionality and higher capacity are desired. It is getting. The present invention is an application of the above-mentioned four pending patents, and aims to meet the needs of the industry by further improving the function of the loop-type meandering thin-tube heat pipe according to the pending patents already commercialized. I have.

【0010】[0010]

【発明が解決しようとする課題】ループ型蛇行細管ヒー
トパイプはその優れた小型、軽量、高機能にも拘わら
ず、以下の如き問題点が残されていた。 (1)受熱部1−Hと放熱部1−Cの間の距離が数メー
トル以上の如く余りに長大に構成されたループ型蛇行細
管ヒートパイプの場合には細管の管内圧力損失の増加に
起因し、作動液3の軸方向振動の発生源である作動液の
核沸騰の圧力波が減衰し、従って軸方向振動も減衰し、
これに因る熱輸送能力の低下が避けられなかった。
Despite its excellent small size, light weight and high performance, the loop type meandering thin tube heat pipe has the following problems. (1) In the case of a loop-shaped meandering thin-tube heat pipe in which the distance between the heat receiving portion 1-H and the heat radiating portion 1-C is several meters or more, the pressure loss in the thin tube is increased. The pressure wave of the nucleate boiling of the hydraulic fluid, which is the source of the axial vibration of the hydraulic fluid 3, is attenuated, and thus the axial vibration is also attenuated.
This has inevitably reduced the heat transport capacity.

【0011】(2)ヘッド差数メートル以上の如くヘッ
ド差の大きいトップヒートで適用されるループ型蛇行細
管ヒートパイプの場合には管内作動液のヘッド差に依る
重力方向圧力が増加し更に長尺化に依り管内圧力損失が
増加し、これらに起因して熱輸送能力の発生源である作
動液の軸方向振動が困難になり、熱輸送能力が低下する
ことが避けられなかった。
(2) In the case of a loop-shaped meandering thin tube heat pipe used for top heat with a large head difference, such as a head difference of several meters or more, the pressure in the gravitational direction due to the head difference of the working fluid in the tube increases and the length becomes longer. Due to the increase in pressure, the pressure loss in the pipe increases, which makes it difficult to vibrate the working fluid, which is a source of heat transfer capability, in the axial direction, and inevitably lowers the heat transfer capability.

【0012】(3)受熱部1−Hの長さに比較して放熱
部1−Cの長さが余りに長大であったり、放熱部1−C
の冷却用強制対流が余りに低温度であった場合、また受
熱部1−Hの長さが余りに短く、または受熱熱量が余り
に少なく核沸騰による蒸気発生量が不足した場合、等に
於て放熱部1−C内に於ける作動液蒸気泡3−1の大部
分が凝縮し消滅することに因り、放熱部1−C内の作動
液3の殆どが液相となり、放熱部1−C内の作動液3の
圧縮性の多くが失われ、また放熱部1−C内の管内圧力
損失が増加すること等に起因して、熱輸送能力の発生源
である作動液3の軸方向振動が困難になり、熱輸送能力
が低下することがあった。
(3) The length of the heat radiating portion 1-C is too long compared to the length of the heat receiving portion 1-H, or the heat radiating portion 1-C
When the forced convection for cooling is too low, or when the length of the heat receiving portion 1-H is too short, or the amount of heat received is too small and the amount of steam generated by nucleate boiling is insufficient, the radiating portion Since most of the working fluid vapor bubbles 3-1 in 1-C condense and disappear, most of the working fluid 3 in the radiating unit 1-C becomes a liquid phase, and Due to the loss of much of the compressibility of the hydraulic fluid 3 and the increase in pressure loss in the pipe in the heat radiating section 1-C, it is difficult to vibrate the hydraulic fluid 3 which is the source of heat transport capability in the axial direction And the heat transport capacity was sometimes reduced.

【0013】(4)細長いループ型蛇行細管ヒートパイ
プに於て1箇所の放熱部1−Cに対し複数の受熱部1−
Hが夫々の間に断熱部1−Aが介在せしめられて直列に
配置せしめられてある場合、例えば単一の蛇行細管ヒー
トパイプにより同一機器筐体内の複数の発熱素子の冷却
を実施する如き場合、各受熱部1−Hに於ける核沸騰に
より発生した圧力波が相互に干渉し合って異常に熱輸送
性能が低下する場合がある。
(4) In the elongated loop type meandering thin tube heat pipe, a plurality of heat receiving portions 1-C are provided for one heat radiating portion 1-C.
In the case where H is arranged in series with a heat insulating portion 1-A interposed therebetween, for example, when cooling a plurality of heating elements in the same equipment housing by a single meandering thin tube heat pipe In some cases, pressure waves generated by nucleate boiling in each of the heat receiving units 1-H may interfere with each other and abnormally deteriorate heat transfer performance.

【0014】(5)ループ型蛇行細管ヒートパイプの適
用に際して、受熱部1−Hの温度上昇に上限があった
り、温度降下に下限があったりする場合は、熱輸送性能
を自在に制御する機能が必要になる場合がある。然しこ
のような機能を与えることは、ループ型蛇行細管ヒート
パイプに限らず総てのヒートパイプにとって、その作動
原理から基本的に困難なものであり、止むをえない場合
には放熱部1−Cの冷媒流体の強制対流流速を加減して
実施することがある。このような手段に依る熱輸送性能
の制御、即ち受熱部1−Hの温度制御は多段階の伝熱経
路を介した極めて間接的な温度制御となり、応答速度が
極めて遅く実用性に乏しいものであった。
(5) When the loop type meandering thin tube heat pipe is applied, if the temperature rise of the heat receiving portion 1-H has an upper limit or the temperature drop has a lower limit, a function of freely controlling the heat transport performance. May be required. However, providing such a function is basically difficult for not only the loop-shaped meandering thin-tube heat pipe but also all heat pipes from the operating principle. In some cases, the forced convection flow velocity of the refrigerant fluid C is adjusted. The control of the heat transport performance by such means, that is, the temperature control of the heat receiving portion 1-H, is a very indirect temperature control via a multi-stage heat transfer path, and the response speed is extremely slow and is not practical. there were.

【0015】(6)ループ型蛇行細管ヒートパイプは二
相凝縮性作動液3の軸方向振動に依る熱輸送であるか
ら、従来型ヒートパイプの二相凝縮性作動液の相変化の
みに依る熱輸送と比較して作動原理的に熱応答性が若干
低下することは免れない。然し用途に依ってはループ型
細管ヒートパイプの卓越した各種特性と従来型ヒートパ
イプの優れた熱応答性の両特性を兼ね備えた性能を発揮
せしめることが必要になる場合がある。本発明は上述の
如き問題点の全てを解決してループ型蛇行細管ヒートパ
イプに卓越した新規な機能を付与せんとするものであ
る。
(6) Since the loop-type meandering thin-tube heat pipe performs heat transfer by the axial vibration of the two-phase condensable working fluid 3, the heat of the conventional heat pipe depends only on the phase change of the two-phase condensable working fluid. It is inevitable that the thermal responsiveness will be slightly reduced in principle of operation compared to transportation. However, depending on the application, it may be necessary to exhibit a performance combining both the excellent characteristics of the loop-type thin-tube heat pipe and the excellent thermal responsiveness of the conventional heat pipe. The present invention is intended to solve all of the above-mentioned problems and to provide a loop type meandering thin tube heat pipe with an excellent new function.

【0016】[0016]

【課題を解決する為の手段】前述の如く[発明が解決し
ようとする課題]の発生要因の大半は作動液の軸方向振
動の減衰による熱輸送能力の低下である。本発明の[課
題を解決する為の手段]はループ型蛇行細管ヒートパイ
プの細管コンテナ内作動液を強制循環せしめることに依
り、作動液の核沸騰を活発ならしめ、これにより作動液
の軸方向振動を活発ならしめ、同時に作動液の軸方向振
動の実質的な振幅を拡大せしめて、熱輸送能力を大幅に
増大せしめる事にあり、また同時にその熱応答性をも大
幅に改善しようとするものである。
As described above, most of the causes of [problem to be solved by the invention] are a decrease in heat transport ability due to attenuation of the axial vibration of the hydraulic fluid. [Means for solving the problem] of the present invention is to forcibly circulate the hydraulic fluid in the capillary container of the loop-shaped meandering thin-tube heat pipe, thereby increasing the nucleate boiling of the hydraulic fluid, thereby increasing the axial direction of the hydraulic fluid. Vibration is made active, and at the same time, the substantial amplitude of the axial vibration of the hydraulic fluid is enlarged, thereby greatly increasing the heat transport capacity. At the same time, the thermal response is also significantly improved. It is.

【0017】ループ型コンテナ内の作動液を強制循環せ
しめることは大型大容量の所謂分離型ヒートパイプで実
用されている。然しこのような従来の分離型ヒートパイ
プの場合はヒートパイプとしての作動原理がまったく異
なり、従って作動液強制循環の目的及びその作用は全く
異なるものである。図4に例示する如き分離型ヒートパ
イプは、機器装置の構成上蒸気発生器4と凝縮器5を隔
離し分離せざるを得ない場合、蒸気発生器4が余りに大
容量であったり高温高圧であって、蒸気凝縮器5と近接
して配置することが困難な場合等に適用される。分離型
ヒートパイプはループ型蛇行細管ヒートパイプの如く作
動液3が自ら振動を発生して熱量が自ら移動する如き機
能を有しないから、作動液3を強制的に循環せしめる必
要がある。更に蒸気発生器4と蒸気凝縮器5を連結する
作動液供給管7と作動液戻り管8は夫々一本のみである
から、夫々の管で大量の作動液3を循環せしめる必要が
有り、作動液3の循環の為には強力で容量の大きな循環
ポンプ6を使用せざるを得ないものであった。分離型ヒ
ートパイプに於ける作動液3の強制循環は蒸気発生器4
に作動液を送り込むことが主目的であり、本発明に係る
作動液3の強制循環とはその目的も作用効果も全く異な
るものであり、本発明の発送に当たって参考にする点は
無く寄与する所も無い。
Forcibly circulating the working fluid in the loop type container is used in a large-sized, large-capacity so-called separation type heat pipe. However, in the case of such a conventional separation type heat pipe, the operation principle of the heat pipe is completely different, and therefore, the purpose and operation of forced circulation of the working fluid are completely different. In the case of the separation type heat pipe as illustrated in FIG. 4, when the steam generator 4 and the condenser 5 must be separated and separated from each other due to the configuration of the equipment, the steam generator 4 has a too large capacity or a high temperature and high pressure. Therefore, it is applied to a case where it is difficult to dispose it near the steam condenser 5. Since the separation type heat pipe does not have a function such that the working fluid 3 generates vibration by itself and the amount of heat moves by itself, unlike the loop type meandering thin tube heat pipe, it is necessary to forcibly circulate the working fluid 3. Further, since there is only one hydraulic fluid supply pipe 7 and one hydraulic fluid return pipe 8 for connecting the steam generator 4 and the vapor condenser 5, it is necessary to circulate a large amount of hydraulic fluid 3 in each pipe. In order to circulate the liquid 3, a powerful and large-capacity circulating pump 6 had to be used. The forced circulation of the working fluid 3 in the separation type heat pipe is performed by the steam generator 4
The main purpose is to send the hydraulic fluid to the pump, and the purpose and the operation and effect are completely different from the forced circulation of the hydraulic fluid 3 according to the present invention. Not even.

【0018】本発明に於ける作動液3の強制循環は、分
離型ヒートパイプの如く単純な強制循環を意味するもの
ではなく、その目的とする所は各単位金属細管1−1の
受熱部1−Hの内壁表面と作動液3の流れの境界層との
間に於いて、流速に因る圧力降下を発生せしめることに
有る。このような各単位細管1−1の内壁面上の圧力降
下は作動液蒸気泡3−1の急速大量の発生を可能にし、
各単位金属細管1−1の内壁面上の核沸騰の発生を大幅
に活発化せしめる。蛇行細管ヒートパイプに於けるこの
ような各単位金属細管内の各沸騰の活発化は、各単位金
属細管1−1の各受熱部1−Hに於ける熱量吸収を促進
せしめると共に放熱部1−Cの中に送り込まれる蒸気泡
3−1の群の数及び量を増加せしめ、液相リッチになっ
ていた各放熱部作動液3の気相分を大幅に増加せしめ気
相リッチに変化せしめる。このことは放熱部内作動液の
圧縮性及び弾力性を増加せしめ、細管コンテナの全ルー
プ内に於ける気相作動液の軸方向振動と液相作動液の軸
方向振動の活発化を促すもので、作動液3の潜熱熱輸送
と顕熱熱輸送の双方の熱輸送を共に拡大増幅させること
になる。更に作動液3の急速な流れは作動液3の軸方向
振動の実質的な振幅拡大となり、軸方向振動に因る熱伝
達の主要な役目を務める流れの境界層の実質的な表面積
拡大となり軸方向振動に因る熱輸送能力を大幅に増大せ
しめる。
The forced circulation of the working fluid 3 in the present invention does not mean a simple forced circulation as in the case of a separation type heat pipe, but is intended for the heat receiving portion 1 of each unit metal thin tube 1-1. In other words, a pressure drop due to the flow velocity is generated between the inner wall surface of -H and the boundary layer of the flow of the hydraulic fluid 3. Such a pressure drop on the inner wall surface of each unit thin tube 1-1 enables rapid generation of a large amount of working fluid vapor bubbles 3-1.
The generation of nucleate boiling on the inner wall surface of each unit thin metal tube 1-1 is greatly activated. The activation of each boiling in each unit metal thin tube in the meandering thin tube heat pipe promotes the heat absorption in each heat receiving portion 1-H of each unit metal thin tube 1-1 and the heat radiation portion 1-H. The number and the amount of the groups of the vapor bubbles 3-1 fed into C are increased, and the gaseous phase component of each heat radiating section working fluid 3 which has become liquid phase rich is greatly increased to be changed to gas phase rich. This increases the compressibility and elasticity of the hydraulic fluid in the heat radiating section, and promotes the axial vibration of the gas-phase hydraulic fluid and the axial vibration of the liquid-phase hydraulic fluid in the entire loop of the thin tube container. In addition, both the latent heat transfer and the sensible heat transfer of the working fluid 3 are expanded and amplified. Further, the rapid flow of the hydraulic fluid 3 results in a substantial increase in the amplitude of the axial vibration of the hydraulic fluid 3 and a substantial increase in the surface area of the boundary layer of the flow which plays a major role in heat transfer due to the axial vibration. Significantly increases the heat transport capacity due to directional vibration.

【0019】[課題を解決する為の手段]の具体的な且
つ基本的な構成としては図1に例示の如く実施する。図
1は後述の第一実施例の説明図を兼ねている。図に於い
ては[従来の技術]の説明に記載の、また図2、図3に
例示の蛇行細管ヒートパイプの基本構成に於いて、ルー
プ型蛇行細管コンテナを構成する単位金属細管1−1の
群の所定の単位金属細管1−1の断熱部1−Aまたは断
熱部1−Aが延長された部分に、作動液3に所定の方向
の循環流を発生せしめる強制循環流発生手段2−1を設
ける。この場合この強制循環流発生手段2−1は適用す
る作動液3の蒸気の臨界温度前後の飽和蒸気の高圧にも
耐えて、ループ型蛇行細管コンテナの完全気密性を長期
に亙り維持せしめることの可能な構造である必要が有
り、これに依り本発明のループ型蛇行細管ヒートパイプ
の長期寿命が保証される。また強制循環流の流れ方向は
放熱部1−Cから強制循環流発生部2−1を経て受熱部
1−Hに向かう方向である必要が有る。流れ方向が逆方
向の場合は強制循環流発生手段2−1の中に受熱部1−
Hで発生した多量の作動液蒸気3−1が流入して循環効
率が大幅に低下する。
The concrete and basic configuration of [Means for solving the problem] is implemented as illustrated in FIG. FIG. 1 also serves as an explanatory diagram of a first embodiment described later. In the figure, the unit metal thin tube 1-1 constituting the loop type meandering thin tube container is described in the description of [Prior Art] and in the basic structure of the meandering thin tube heat pipe illustrated in FIGS. A forced circulating flow generating means 2-for generating a circulating flow in a predetermined direction in the hydraulic fluid 3 in the heat insulating portion 1-A or a portion where the heat insulating portion 1-A is extended of the predetermined unit metal thin tube 1-1 of the group. 1 is provided. In this case, the forced circulation flow generating means 2-1 withstands the high pressure of the saturated steam around the critical temperature of the steam of the working fluid 3 to be applied, and maintains the complete airtightness of the loop-shaped meandering thin-tube container for a long time. It must have a possible structure, which guarantees the long-term life of the loop-shaped meandering thin-tube heat pipe of the present invention. Also, the flow direction of the forced circulation flow needs to be a direction from the heat radiating section 1-C to the heat receiving section 1-H via the forced circulation flow generating section 2-1. When the flow direction is the reverse direction, the heat receiving section 1- is included in the forced circulation flow generating means 2-1.
A large amount of the working fluid vapor 3-1 generated in H flows in, and the circulation efficiency is greatly reduced.

【0020】通常の強制循環流発生手段2−1はその流
量流速をある程度加減することが出来るものが多く、ル
ープ型蛇行細管ヒートパイプの熱輸送性能を有る程度制
御する事が出来るが、熱輸送性能を大幅かつ精密に制御
する必要有る場合は上述の強制循環流発生手段2−1に
併設して、蛇行細管コンテナの所定の単位金属細管1−
1の断熱部1−Aまたは断熱部1−Aの延長部分に作動
液3の強制循環流の流量調整手段2−2を設ける。
Many of the ordinary forced circulation flow generating means 2-1 can control the flow velocity to some extent, and can control the heat transport performance of the loop-shaped meandering thin tube heat pipe to a certain extent. When it is necessary to control the performance significantly and precisely, a predetermined unit metal thin tube 1-1 of the meandering thin tube container is provided in addition to the forced circulation flow generating means 2-1 described above.
A flow control means 2-2 for the forced circulation flow of the hydraulic fluid 3 is provided in the heat insulating portion 1-A or an extension of the heat insulating portion 1-A.

【0021】[0021]

【作用】上述の如き問題点解決の為の手段を実施するこ
とにより次ぎの如き各種の作用が発揮される。 (1−1)作動液3の強制循環の対流により総ての単位
金属細管1−1の受熱部1−Hに於てその内壁面上の静
圧が降下する。その静圧降下により受熱部1−H内に於
ける核沸騰が大幅に活発化され、蒸気泡3−1の発生が
数的にも量的にも大幅に増加する。また発生した蒸気泡
3−1の群の放熱部1−Cに向う移動も作動液3の強制
循環の対流により容易となる。このことは蒸気泡3−1
の発生を更に活性化せしめ、それらの相乗効果により受
熱部1−H内に於ける核沸騰及び蒸気泡3−1の発生は
更に活発化される。 (1−2)放熱」部1−Cの内部に於ける蒸気泡3−1
の群が著しく増加し、放熱部1−Cの内部の作動液3は
気相リッチになり、その圧縮性及び弾性が著しく改善さ
れる。 (1−3)(1−1)項(1−2)項の相乗効果により
ループ型蛇行細管ヒートパイプの全コンテナ内の総ての
蒸気泡3−1及び液滴3−2の軸方向振動は作動液3が
強制循環せしめられない場合に比較して極めて大幅に活
発かせしめられて、熱量輸送能力は大幅に増強されると
共に熱量輸送感度も大きく改善される。このような作動
駅の軸方向振動による熱輸送はそれのみでも極めて強力
なものに改善されるが、作動液3の循環はその軸方向振
動による熱伝達を増強させるだけでなく、循環対流によ
る作動液と細管内壁の間の対流熱伝達率の増加も付加せ
しめられるので本発明のループ型蛇行細管ヒートパイプ
の熱輸送能力は更に強力なものとなる。
By implementing the means for solving the problems as described above, the following various functions are exhibited. (1-1) The static pressure on the inner wall surface of the heat receiving portion 1-H of all the unit thin metal tubes 1-1 decreases due to the convection of the forced circulation of the hydraulic fluid 3. Due to the static pressure drop, nucleate boiling in the heat receiving portion 1-H is greatly activated, and the generation of the vapor bubbles 3-1 is greatly increased both numerically and quantitatively. The movement is also facilitated by the convection of the forced circulation of the working fluid 3 toward the heat radiating portion 1-C group of vapor bubbles 3-1 generated. This means that steam bubbles 3-1
Nucleate boiling in the heat receiving portion 1-H and the generation of the vapor bubble 3-1 are further activated by the synergistic effect thereof. (1-2) Heat Bubble 3-1 Inside Heat Radiation Section 1-C
The working fluid 3 inside the heat radiating section 1-C becomes rich in gas phase, and its compressibility and elasticity are significantly improved. (1-3) The axial vibration of all the vapor bubbles 3-1 and the droplets 3-2 in all the containers of the loop-shaped meandering thin tube heat pipe due to the synergistic effect of the items (1-1) and (1-2). Is greatly activated compared to the case where the working fluid 3 is not forcedly circulated, so that the heat transfer capacity is greatly enhanced and the heat transfer sensitivity is greatly improved. Although the heat transfer by the axial vibration of such an operating station alone is improved to an extremely strong one, the circulation of the working fluid 3 not only enhances the heat transfer by the axial vibration, but also operates by the circulating convection. The heat transfer capability of the loop-shaped meandering thin-tube heat pipe of the present invention is further enhanced because an increase in the convective heat transfer coefficient between the liquid and the inner wall of the thin tube is also added.

【0022】(2)ループ型蛇行細管ヒートパイプ及び
従来型ヒートパイプの何れもそれらの作動原理から基本
的にそれらの熱輸送能力を自在に制御することは極めて
困難である。本発明の問題点解決の手段を実施すれば、
作動液3の流量流速を制御することにより熱輸送能力の
自在な制御が可能になる。
(2) It is extremely difficult to freely control the heat transfer ability of both the loop-shaped meandering thin-tube heat pipe and the conventional heat pipe based on their operating principles. By implementing the means for solving the problems of the present invention ,
By controlling the flow rate and flow rate of the working fluid 3, the heat transfer capability can be freely controlled.

【0023】(3)特公平6−3354号(ループ型細
管ヒートパイプ)は作動液の振動を逆止弁の作用によっ
て所定の方向のみに制御することにより作動液を所定の
方向に循環せしめるよう構成されであることを特徴とし
ている。このループ型細管ヒートパイプはその作動を液
相作動液の循環推進の面からのみ考えれば、逆止弁と作
動液の沸騰との組み合わせからなる一種の流体ポンプで
あると云える。特公平6−3354号(ループ型細管ヒ
ートパイプ)では配設される逆止弁の数は限定していな
い。ループ型細管ヒートパイプとしてのみの機能を発揮
せしめる為には数個の配設のみで事足りるものではある
が、本発明に係るループ型蛇それ自身を行細管ヒートパ
イプに於いては出来るだけ多くの単位金属細管1−1の
受熱部1−Hの作動液3の流れの上流側の所定の部分
に、または受熱部1−Hを挟みその上流側及び下流側の
両側の所定の部分に逆止弁を配設し、逆止弁の作動液の
流れ方向規制方向は作動液3の強制循環流発生手段2−
1と同一であるように構成することにより、ループ型細
管ヒートパイプそれ自身を強力な流体ポンプとしての機
能を兼ねさせることが出きる。従ってこのように構成す
ることにより本発明に係る作動液3の強制循環流発生手
段を省略または大幅に小容量化せしめることが出きる。
(3) Japanese Patent Publication No. Hei 6-3354 (loop-type thin tube heat pipe) controls the vibration of the working fluid in a predetermined direction only by the action of a check valve, thereby controlling the working fluid in a predetermined direction. In such a way as to circulate in the direction of. Considering the operation of the loop-type thin tube heat pipe only from the viewpoint of the circulation and promotion of the liquid-phase working fluid, it can be said that it is a kind of fluid pump comprising a combination of a check valve and boiling of the working fluid. In Japanese Patent Publication No. 6-3354 (loop-type thin tube heat pipe), the number of check valves provided is not limited. In order to exhibit the function only as a loop-type thin-tube heat pipe, it is sufficient to provide only a few pieces, but the loop-type snake itself according to the present invention is required to have as much as possible in the line-type thin-tube heat pipe. A check is made at a predetermined portion on the upstream side of the flow of the working fluid 3 in the heat receiving portion 1-H of the unit metal thin tube 1-1, or at predetermined portions on both the upstream side and the downstream side of the heat receiving portion 1-H. A valve is disposed, and the flow direction regulating direction of the working fluid of the check valve is set to a forced circulating flow generating means 2 for the working fluid 3.
By making the same as 1, the loop-type thin tube heat pipe itself can also function as a powerful fluid pump. Therefore, with such a configuration, the forced circulating flow generating means for the hydraulic fluid 3 according to the present invention can be omitted or significantly reduced in volume.

【0024】作動液の種類によっては核沸騰により発生
する蒸気圧力が極めて高く、その為に強制循環流発生手
段2−1の循環圧力が蒸気圧力に負けて強制循環流発生
手段2−1が作動不能になることがある。この場合には
上記の逆止弁が数個配設されるのみで作動液は自ら循環
力を発揮して所定の方向に循環する。この循環の理論は
特公平6−3354号(ループ型細管ヒートパイプ)と
全く同様である。この状態では強制循環流発生手段2−
1は蒸気圧力に影響されることが少なく、順調に循環流
を強化せしめることが出来る。
Depending on the type of the working fluid, the steam pressure generated by nucleate boiling is extremely high. Therefore, the circulation pressure of the forced circulation flow generating means 2-1 is less than the steam pressure, and the forced circulation flow generating means 2-1 operates. It may be impossible. In this case, the hydraulic fluid circulates in a predetermined direction by exerting a circulating force by only providing a few check valves. The theory of this circulation is exactly the same as that of Japanese Patent Publication No. 6-3354 (loop-type thin tube heat pipe). In this state, the forced circulation flow generating means 2-
No. 1 is less affected by the steam pressure and can smoothly enhance the circulation flow.

【0025】(4)本発明に係るループ型蛇行細管ヒー
トパイプの作動液3の循環は交互に配置されてある気相
作動液(蒸気泡3−1)と液相作動液(液滴3−2)の
両方の循環である。従ってその気相作動液のみに付いて
考えれば蒸気の加圧循環と云うことになる。本発明の場
合単位金属細管1−1の受熱部1−Hの入り口付近に於
いて細管の内径を急激に絞り極細径化せしめ、その上流
側に於ける強制循環流発生手段2−1の循環圧力を増大
せしめることにより、この絞り部分通過前の蒸気泡は圧
縮縮小され、この蒸気泡は絞り部分通過後は急激な体積
膨張をすることになり、この部分はジュールトムソン効
果により急激大幅に温度が降下する。多数の単位金属細
管1−1につきこのように実施すれば受熱部1−Hの群
は放熱部1−Cの群による空冷放熱に依る温度降下に加
えて更に温度降下せしめることが出来る。この効果の重
要なことは、通常の空冷に於ては空気温度以下に冷却す
ることは不可能であるが、ジュールトムソン効果応用の
場合は、空気温度より低温度に至るまで冷却することが
出来ることである。
(4) The circulation of the working fluid 3 in the loop-shaped meandering thin-tube heat pipe according to the present invention is such that the gas-phase working fluid (steam bubbles 3-1) and the liquid-phase working fluid (droplets 3) are alternately arranged. 2) Both circulations. Therefore, if it considers only the gas-phase working fluid, it is called pressurized circulation of steam. In the case of the present invention, the inside diameter of the thin tube is sharply reduced near the entrance of the heat receiving portion 1-H of the unit metal thin tube 1-1 to make it extremely thin, and the circulation of the forced circulation flow generating means 2-1 upstream thereof is performed. By increasing the pressure, the vapor bubbles before passing through the constricted portion are compressed and reduced, and the vapor bubbles undergo rapid volume expansion after passing through the constricted portion, and this portion rapidly increases in temperature due to the Joule-Thomson effect. Descends. By performing the above-described operation for a large number of unit thin metal tubes 1-1, the group of the heat receiving portions 1-H can further lower the temperature in addition to the temperature drop due to the air cooling and heat radiation by the group of the heat radiating portions 1-C. The important point of this effect is that it is impossible to cool below the air temperature with ordinary air cooling, but it is possible to cool down to a temperature lower than the air temperature in the case of Joule Thomson effect application That is.

【0026】[0026]

【実施例】第一実施例 図1に本発明の第一実施例を示
す。図1は問題点解決の基本的構成を示した説明図であ
るが第一実施例としては強制循環流発生手段2−1とし
て電磁ポンプを適用することが望ましい。電磁ポンプは
循環推進力発生用ポンプとして決して強力なものとは云
えない。然し細間内部に何等機械的作動部分を設けるこ
となく装着することが出来るので、極めて信頼性が高
く、ループ型蛇行細管ヒートパイプの高い信頼性を損ね
ることなく適用することが出来るので本発明の実施に適
した流体ポンプであると云える。電磁ポンプは循環推進
力が大きく出来ないが逆止弁が多数配設されたループ型
蛇行細管ヒートパイプはそれ白身がポンプ作用を有する
から付加的な循環推進力はそれ程大きくなくても良いの
で、この点から本発明に対して適合性が良好であると言
える。電磁ポンプにはダイヤフラムと逆止弁の併用によ
って、強力な推進力を発揮するものがある。この型の場
合はダイヤフラム及び弁体の材質に留意して高い信頼性
を与える必要がある。2−2は流量調整弁で電磁ポンプ
の流量制御範囲を超えて大幅な流量制御が必要な場合に
配設される。
FIG. 1 shows a first embodiment of the present invention. FIG. 1 is an explanatory view showing a basic configuration for solving the problem, but as the first embodiment, it is desirable to apply an electromagnetic pump as the forced circulation flow generating means 2-1. An electromagnetic pump is by no means a powerful pump for generating circulating propulsion. However, since it can be mounted without providing any mechanical working part inside the slot, it is extremely reliable and can be applied without impairing the high reliability of the loop type meandering thin tube heat pipe. It can be said that the fluid pump is suitable for implementation. The electromagnetic pump cannot increase the circulating propulsion force, but the loop-type meandering thin-tube heat pipe provided with a large number of check valves does not need to have so much additional circulating propulsion force because the white body has a pumping action .
From this point, it is said that the suitability for the present invention is good.
I can. Some electromagnetic pumps exert a strong propulsive force by using a diaphragm and a check valve in combination. In the case of this type, it is necessary to give high reliability by paying attention to the materials of the diaphragm and the valve body. 2-2 is a flow regulating valve which is provided when a large flow control is required beyond the flow control range of the electromagnetic pump.

【0027】第二実施例 図5に本発明の第二実施例を
示す。図面簡略化の為に細管は線図で示してある。本実
施例に於いてループ型蛇行細管ヒートパイプは、所定数
の単位金属細管1−1が直列に且つ蛇行して連結されて
一連の単位ユニットとして構成された蛇行細管ヒートパ
イプユニットUの複数ユニットU−1、U−2、U−3
の並列集合体として構成されてあり、各蛇行細管ヒート
パイプユニットUの作動液供給側端末と作動液排出側端
末とは夫々に作動液供給ヘッダ9と作動液排出ヘッダ1
0とに気密に連結されてあり、各々のヘッダ9,10は
各細管ヒートパイプの放熱部Cの放熱手段の作用の妨げ
にならない位置に配設されてあり、夫々のヘッダ、9,
10は連結管11により相互に連結されてあり、この連
結管11は作動液の循環ループの構成要素の一要素とし
て、各蛇行細管ヒートパイプユニットU=!、U−2、
U−3の並列集合体、強制循環流発生手段2−1及び流
量調整手段2−2と共に、作動液の循環流露のループを
形成し、これらは全体としてループ型蛇行細管ヒートパ
イプ1として構成されてある。
Second Embodiment FIG. 5 shows a second embodiment of the present invention. For simplification of the drawing, the capillaries are shown in a diagram. In this embodiment, the loop type meandering thin tube heat pipe is composed of a plurality of units of a meandering thin tube heat pipe unit U in which a predetermined number of unit metal thin tubes 1-1 are connected in series and meandering to form a series of unit units. U-1, U-2, U-3
And a hydraulic fluid supply header 9 and a hydraulic fluid discharge header 1 of each of the meandering thin tube heat pipe units U have a hydraulic fluid supply side terminal and a hydraulic fluid discharge side terminal, respectively.
0, and each header 9, 10 is disposed at a position where it does not hinder the operation of the heat radiating means of the heat radiating portion C of each of the thin tube heat pipes.
10 are connected to each other by a connecting pipe 11, and this connecting pipe 11 is one of the constituent elements of the circulation loop of the hydraulic fluid, and each meandering thin tube heat pipe unit U =! , U-2,
Together with the parallel assembly of U-3, the forced circulation flow generating means 2-1 and the flow rate adjusting means 2-2, a loop of the circulating flow of the working fluid is formed, and these are configured as a loop type meandering thin tube heat pipe 1 as a whole. It is.

【0028】この様に構成されてあるから本実施例のル
ープ型蛇行細管ヒートパイプは如何に大容量化されて単
位金属細管1−1の本数が増加してもその中の作動液の
圧力損失が所定の高さ以上に増加することなく構成する
ことが出きる。またヘッダ9、10の直径は大きくする
ことが出来るから強制循環流発生手段2−1、流量調整
手段2−2の作動液出入口と無理無く接続することが出
来ると共に、それらの機能を無駄無く引き出して活用す
ることを可能にする。
With such a configuration, the pressure loss of the hydraulic fluid in the loop-type meandering thin-tube heat pipe of this embodiment is increased even if the number of the unit metal thin-tubes 1-1 is increased. Can be configured without increasing beyond a predetermined height. Since the diameter of the headers 9 and 10 can be increased, the headers 9 and 10 can be easily connected to the hydraulic fluid inlet and outlet of the forced circulation flow generating means 2-1 and the flow rate adjusting means 2-2, and their functions can be extracted without waste. And utilize it.

【0029】第三実施例 図6に本発明の第三実施例を
示す。図6はループ型細管ヒートパイプの一部の部分拡
大図である。図に於てループ型細管ヒートパイプ1に於
ける作動液循環流路の複数の単位金属細管1−1の受熱
部1−Hに近接した作動液流れの上流側の所定の部分
に、または受熱部1−Hを挟みその上流側及び下流側の
両側の所定の部分に逆止弁12を配設し、逆止弁12は
作動液循環流の流れ方向と同一方向に作動液の流れを規
制するよう配設されてあることを特徴としている。この
様に構成されたループ型細管ヒートパイプ1は作動液の
軸方向振動及び逆止弁12で仕切られて形成される多数
の圧力室の相互作用により、ループ型細管ヒートパイプ
1の全てが小型流体ポンプの直列接続体として作用する
ようになる。この作用の詳細は特公平6−3354号
(ループ型細管ヒートパイプ)の明細書に記載されであ
るので省略する。このポンプ作用は強力ではあるが流量
が少ないので強制循環流発生手段と代替することは出来
ないので小型または容量の小さい強制循環流発生手段2
−1と併用することが望ましい。
Third Embodiment FIG. 6 shows a third embodiment of the present invention. FIG. 6 is a partially enlarged view of a part of the loop-type thin tube heat pipe. In the figure, a predetermined portion on the upstream side of the flow of the working fluid close to the heat receiving portion 1-H of the plurality of unit metal thin tubes 1-1 in the working fluid circulation flow path in the loop-shaped thin tube heat pipe 1 or heat reception. A check valve 12 is provided at a predetermined portion on both the upstream side and the downstream side of the portion 1-H, and the check valve 12 regulates the flow of the hydraulic fluid in the same direction as the flow direction of the hydraulic fluid circulation flow. It is characterized by being arranged to do. In the loop-type thin tube heat pipe 1 thus configured, all of the loop-type thin tube heat pipes 1 are small due to the axial vibration of the working fluid and the interaction of a large number of pressure chambers formed by being partitioned by the check valve 12. It acts as a series connection of fluid pumps. The details of this operation are described in the specification of Japanese Patent Publication No. 6-3354 (loop-type thin-tube heat pipe) , and will not be described. This pumping action is powerful but has a small flow rate and cannot be replaced with the forced circulating flow generating means.
It is desirable to use together with -1.

【0030】第四実施例 図7に本発明の第四実施例の
部分拡大断面図を示す。ループ型細管ヒートパイプ1の
複数の単位金属細管1−1の受熱部1−Hの作動液流入
口に近接する前後何れかの小部分に於て、コンテナの内
径が急激に絞られて極細径化せしめられてあり、単位金
属細管内径に対する絞り内径の縮小比率に逆比的に対応
して作動液三の強制循環流発生手段2−1の循環圧力が
増圧せしめられてあることを特長としている。図に於て
はコンテナの内径の絞りに替えて、微小内径のノズルが
作り込まれてあるチップ14が圧入固定されてある。1
5は圧入チップ14を気密に固定する為の溶接部であ
る。この様に構成されてあるループ型細管ヒートパイプ
1の強制循環流発生手段2−1の加圧力を強化せしめて
作動せしめれぱ、微小内径のノズル13はジュールトム
ソン効果を発揮して、受熱部1−Hの温度を大幅に低下
せしめる。その場合の温度は放熱部1−Cに吹きつけら
れる冷却風の温度より低い温度とすることが出来る。
Fourth Embodiment FIG. 7 is a partially enlarged sectional view of a fourth embodiment of the present invention. The inner diameter of the container is sharply reduced at any one of the small portions before and after the vicinity of the working fluid inlet of the heat receiving portion 1-H of the plurality of unit metal thin tubes 1-1 of the loop-type thin tube heat pipe 1-1. It is characterized in that the circulating pressure of the forced circulating flow generating means 2-1 of the hydraulic fluid 3 is increased in inverse proportion to the reduction ratio of the throttle inner diameter to the unit metal thin tube inner diameter. I have. In the figure, a tip 14 having a nozzle with a small inside diameter is press-fitted and fixed in place of the restriction of the inside diameter of the container. 1
Reference numeral 5 denotes a weld for fixing the press-fitting tip 14 in an airtight manner. When the pressure of the forced circulating flow generating means 2-1 of the loop-shaped thin tube heat pipe 1 having such a configuration is increased and operated, the nozzle 13 having a small inner diameter exerts the Joule-Thomson effect and the heat receiving portion. It significantly lowers the temperature of 1-H. In this case, the temperature can be lower than the temperature of the cooling air blown to the heat radiating section 1-C.

【0031】[0031]

【発明の効果】細管外径2mm、内径1.4mmの連続
する一本の長尺細管を成形してフィン高さ80mm、ピ
ン数105対の1字形状ピン群を有する剣山形状放熱器
を構成した。その放熱熱抵抗値は風速3m/sに於て
0.1℃/Wであった。この放熱器の蛇行細管の単位金
属細管14本を1ユニットとし、15ユニットからなる
構造として、本発明に係る第二実施例の剣山形状放熱器
を構成して熱輸送能力を測定した。その放熱熱抵抗値は
3m/s、循環作動液の流量0.25l/minに於て
0.045℃/Wと改善された。次ぎに循環作動液の流
量のみを増加せしめ0.51/minとした場合の放熱
熱抵抗値は0.025℃/Wと更に改善された。
According to the present invention, a continuous long thin tube having an outer diameter of 2 mm and an inner diameter of 1.4 mm is formed to form a sword-shaped radiator having a fin height of 80 mm and a single-pin group having 105 pairs of pins. did. The heat dissipation heat resistance was 0.1 ° C./W at a wind speed of 3 m / s. A 14-unit metal thin tube of the meandering thin tube of this radiator was regarded as one unit, and a heat sink ability was measured by constructing a sword-shaped radiator of the second embodiment according to the present invention as a structure composed of 15 units. The heat dissipation heat resistance was improved to 3 m / s and 0.045 ° C./W at a flow rate of the circulating hydraulic fluid of 0.25 l / min. Next, when only the flow rate of the circulating hydraulic fluid was increased to 0.51 / min, the heat radiation heat resistance was further improved to 0.025 ° C./W.

【0032】本発明は上述の如く蛇行細管ヒートパイプ
の熱輸送性能を格段に向上せしめることを可能にするも
ので、放熱器を大型化する事無く大容量化を可能にする
と共に下記の如き優れた効果を発揮する。長距離の熱輸
送時、大ヘッド差に於けるトップヒート熱輸送時、放熱
部過冷却条件に於ける熱輸送時、低温度差及び微小熱入
力条件に於ける熱輸送時、に於ける作動を活発確実なら
しめる。更にまた従来のヒートパイプでは不可能であっ
た放熱能力の自在な制御が可能になるのでヒートパイプ
の応用領域が拡大される。更にジュールトムソン効果の
利用が可能になり、空冷放熱であっても空気温度以下の
低温度に被冷却体を冷却することが可能になる。
The present invention makes it possible to remarkably improve the heat transport performance of the meandering thin-tube heat pipe as described above, and it is possible to increase the capacity without increasing the size of the radiator and to obtain the following advantages. It has the effect. Operation during long-distance heat transfer, top-heat heat transfer with large head difference, heat transfer under supercooling condition of radiator, heat transfer under low temperature difference and small heat input condition Active and secure. Furthermore, since the heat radiation capability that is impossible with the conventional heat pipe can be freely controlled, the application area of the heat pipe is expanded. Further, the Joule-Thomson effect can be used, and the object to be cooled can be cooled to a low temperature equal to or lower than the air temperature even with air-cooled heat radiation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の基本構造及び第一実施例を示した説明
図である。
FIG. 1 is an explanatory view showing a basic structure and a first embodiment of the present invention.

【図2】従来型の蛇行細管ヒートパイプを示した説明図
である。
FIG. 2 is an explanatory view showing a conventional meandering thin tube heat pipe.

【図3】従来型の蛇行細管ヒートパイプの作動状態の説
明図である。
FIG. 3 is an explanatory view of an operation state of a conventional meandering thin tube heat pipe.

【図4】従来型の分離型ヒートパイプの構成を示した説
明図である。
FIG. 4 is an explanatory diagram showing a configuration of a conventional separation type heat pipe.

【図5】本発明の第二実施例を示した説明図である。FIG. 5 is an explanatory view showing a second embodiment of the present invention.

【図6】本発明の第三実施例を示した部分拡大説明図で
ある。
FIG. 6 is a partially enlarged explanatory view showing a third embodiment of the present invention.

【図7】本発明の第四実施例を示した部分拡大説明図で
ある。
FIG. 7 is a partially enlarged explanatory view showing a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

A 断熱部分 C 冷却手段 H 過熱手段 1 ループ型細管 1−1 単位金属細管 1−A 断熱部 1−H 受熱部 1−C 放熱部 2−1 強制循環流発生手段 3 作動液 3−1 蒸気泡 3−2 金属平板 3−3 液滴 3−4 金属平板 4 蒸気発生器 5 蒸気凝縮器 6 ポンプ 7 作動液供給管 8 作動液戻り管 9 作動液供給ヘッダ 10 作動液排出ヘッダ 11 連結管 12 逆止弁 13 微小細径ノズル 14 チップ 15 ろう接部 A Heat insulation part C Cooling means H Superheating means 1 Loop type thin tube 1-1 Unit metal thin tube 1-A Heat insulating part 1-H Heat receiving part 1-C Heat radiating part 2-1 Forced circulation flow generating means 3 Working fluid 3-1 Steam bubbles 3-2 Metal flat plate 3-3 Droplet 3-4 Metal flat plate 4 Steam generator 5 Steam condenser 6 Pump 7 Working liquid supply pipe 8 Working liquid return pipe 9 Working liquid supply header 10 Working liquid discharge header 11 Connecting pipe 12 Reverse Stop valve 13 Micro-small diameter nozzle 14 Tip 15 Brazing part

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭48−101640(JP,A) 特開 昭62−252892(JP,A) 特開 平1−111198(JP,A) 特開 平4−251189(JP,A) 特開 昭63−318493(JP,A) 特公 平6−3354(JP,B2) (58)調査した分野(Int.Cl.7,DB名) F28D 15/00 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-48-101640 (JP, A) JP-A-62-252892 (JP, A) JP-A-1-111198 (JP, A) JP-A-4- 251189 (JP, A) JP-A-63-318493 (JP, A) JP-B-6-3354 (JP, B2) (58) Fields investigated (Int. Cl. 7 , DB name) F28D 15/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 蛇行細管ヒートパイプを構成する金属細
管の内径は、その中に封入されてある作動液が、その表
面張力により発生する凝集力により、封入量が微少量で
あっても常に管内を充填閉塞せしめ、細管ヒートパイプ
の保持姿勢の如何に拘わらずその状態のままで管内を移
動するよう充分に細径化された内径であって、そのよう
な長尺細管が、所定の位置に配置されてある加熱手段と
所定の位置に配置されてある冷却手段との間に於て、加
熱手段にて熱量を吸収しつつ反転して断熱部分を経て冷
却手段に向かい、また冷却手段にて熱量を放出しつつ反
転して断熱部分を経て加熱手段に向かい、このような反
転蛇行を多数回繰り返して、夫々に受熱部と断熱部と放
熱部とを有する多数の単位金属細管の直列連結体である
蛇行細管として形成されてあり、この蛇行細管の両端末
が所定の手段により流通自在に且つ気密に連結されてル
ープを形成してなるループ型蛇行細管がヒートパイプ用
コンテナとして適用され、この密閉コンテナ内が高真空
に排気された状態で、所定の二相凝縮性作動液の所定量
が封入されてヒートパイプとして構成されてあるループ
型蛇行細管ヒートパイプに於て、所定数の単位金属細管
が直列に連結されて一連の単位ユニットとされて非ルー
プ型蛇行細管ヒートパイプユニットが構成され、ループ
型蛇行細管ヒートパイプはこの非ループ型蛇行細管ヒー
トパイプユニットの並列集合体として構成されてあり、
各非ループ型蛇行細管ヒートパイプユニットの作動液供
給側端末と作動液排出側端末とは夫々に作動液供給ヘッ
ダと作動液排出ヘッダとに気密に連結管によって連結さ
れてあり、この連結管は作動液の循環ループの構成要素
の一要素として、非ループ型蛇行細管ヒートパイプユニ
ットの並列集合体、強制循環流発生手段及び流量調整手
段等と共に、作動液の循環流路のループを形成し、これ
らは全体としてループ型蛇行細管ヒートパイプとして構
成されることを特徴とするループ型蛇行細管ヒートパイ
プ。
The inner diameter of a metal thin tube that constitutes a meandering thin tube heat pipe is always set in the pipe even if the amount of sealing is very small due to the cohesive force generated by the surface tension of the working fluid sealed therein. Is filled and closed, and the inside diameter is small enough to move inside the tube regardless of the holding posture of the thin tube heat pipe, and such a long thin tube is placed at a predetermined position. Between the arranged heating means and the cooling means arranged at a predetermined position, the heating means absorbs the heat and reverses to the cooling means via the heat insulating part, and the cooling means. Inverts while releasing the heat and goes to the heating means via the heat insulating portion, repeats such inversion meandering many times, and a series connection of a number of unit metal thin tubes each having a heat receiving portion, a heat insulating portion and a heat radiating portion. Formed as meandering tubules A loop-shaped meandering tubing in which both ends of the meandering tubule are circulated and air-tightly connected by a predetermined means to form a loop is applied as a heat pipe container, and the inside of the closed container is a high vacuum. A predetermined number of predetermined two-phase condensable working fluid is sealed, and a predetermined number of unit metal thin tubes are connected in series in a loop-shaped meandering thin tube heat pipe configured as a heat pipe. A non-loop type meandering thin tube heat pipe unit is configured as a series of unit units, and the loop type meandering thin tube heat pipe unit is configured as a parallel assembly of this non-loop type meandering thin tube heat pipe unit,
The working fluid supply side terminal and the working fluid discharge side terminal of each non-loop type meandering thin tube heat pipe unit are air-tightly connected to a working fluid supply header and a working fluid discharge header, respectively, by a connection pipe. As one of the constituent elements of the working fluid circulation loop, together with the parallel assembly of the non-loop type meandering thin tube heat pipe unit, the forced circulation flow generating means and the flow rate adjusting means, etc., form a loop of the working fluid circulation flow path, These are configured as loop-type meandering thin tube heat pipes as a whole.
JP16049094A 1994-06-09 1994-06-09 Loop type meandering thin tube heat pipe Expired - Lifetime JP3158267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16049094A JP3158267B2 (en) 1994-06-09 1994-06-09 Loop type meandering thin tube heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16049094A JP3158267B2 (en) 1994-06-09 1994-06-09 Loop type meandering thin tube heat pipe

Publications (2)

Publication Number Publication Date
JPH07332881A JPH07332881A (en) 1995-12-22
JP3158267B2 true JP3158267B2 (en) 2001-04-23

Family

ID=15716073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16049094A Expired - Lifetime JP3158267B2 (en) 1994-06-09 1994-06-09 Loop type meandering thin tube heat pipe

Country Status (1)

Country Link
JP (1) JP3158267B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101652018B1 (en) * 2016-04-11 2016-08-29 (주)탱크마스타 Washer for Fixing Waterproof Sheet of Concrete Water Tank
US11920868B2 (en) 2019-12-24 2024-03-05 Global Cooling Technology Group, Llc Micro-channel pulsating heat pipe

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU4698299A (en) * 1998-06-30 2000-01-17 Du Pont Pharmaceuticals Company 5-HT7 receptor antagonists
JP2002005394A (en) * 2000-06-19 2002-01-09 Tlv Co Ltd Steam eliminator for steam trap
JP2002345964A (en) * 2001-05-28 2002-12-03 Teijin Ltd Medical pressure variable oxygen condensing device
WO2005028979A2 (en) * 2003-09-18 2005-03-31 Rochester Institute Of Technology Methods for stabilizing flow in channels and systems thereof
JP2005229102A (en) * 2004-01-13 2005-08-25 Fuji Electric Systems Co Ltd Heatsink
CN100349285C (en) * 2004-04-12 2007-11-14 中南大学 Circulation flowing pulsating heat pipe for cooling electronic device
JPWO2006038508A1 (en) * 2004-10-06 2008-05-15 タマティーエルオー株式会社 Solar cell system and thermoelectric combined solar cell system
JP5191645B2 (en) * 2006-10-18 2013-05-08 タマティーエルオー株式会社 Thermoelectric solar cell system
US8020613B2 (en) 2006-10-27 2011-09-20 Canon Kabushiki Kaisha Heat transfer controlling mechanism and fuel cell system having the heat transfer controlling mechanism
CN100447522C (en) * 2007-03-13 2008-12-31 华北电力大学 Solar energy vacuum glass heat accumulating tube utilizing oscillating flow heat tube as heat internal tube
JP2009008318A (en) * 2007-06-27 2009-01-15 Denso Corp Exhaust heat recovery device
CN100445685C (en) * 2007-07-17 2008-12-24 山东省科学院能源研究所 Compound heat-exchanger
WO2009051001A1 (en) * 2007-10-19 2009-04-23 Three Eye Co., Ltd. One-way fluid moving device
US20100242502A1 (en) * 2009-03-31 2010-09-30 General Electric Company Apparatus and method of superconducting magnet cooling
WO2010117092A1 (en) * 2009-04-10 2010-10-14 Three Eye Co., Ltd. Loop heat pipe with nozzle and diffuser
JP2012042747A (en) * 2010-08-19 2012-03-01 Sharp Corp Laser fixing device and image forming apparatus including the same
CN101957152A (en) * 2010-10-15 2011-01-26 浙江大学 Novel pulsation heat pipe for non-inclination starting operation
JPWO2016035436A1 (en) * 2014-09-04 2017-05-25 富士通株式会社 Heat transport device and electronic equipment
CN106440899A (en) * 2016-11-25 2017-02-22 江苏大学 Flexible pulsating heat tube device
JP2021055851A (en) * 2019-09-26 2021-04-08 千代田空調機器株式会社 Heat transport system
CN112050673B (en) * 2020-09-08 2021-09-24 中国矿业大学 Pulsating heat pipe with peer-to-peer flow dividing structure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48101640A (en) * 1972-04-05 1973-12-21
JPH01111198A (en) * 1987-10-26 1989-04-27 Hitachi Ltd Loop type heat pipe
US5269832A (en) * 1992-06-03 1993-12-14 Winfield Industries Method and apparatus for continuously measuring the concentration of chemicals in solutions

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101652018B1 (en) * 2016-04-11 2016-08-29 (주)탱크마스타 Washer for Fixing Waterproof Sheet of Concrete Water Tank
US11920868B2 (en) 2019-12-24 2024-03-05 Global Cooling Technology Group, Llc Micro-channel pulsating heat pipe

Also Published As

Publication number Publication date
JPH07332881A (en) 1995-12-22

Similar Documents

Publication Publication Date Title
JP3158267B2 (en) Loop type meandering thin tube heat pipe
JP2859927B2 (en) Cooling device and temperature control device
Stenger Experimental feasibility study of water-filled capillary-pumped heat-transfer loops
Phelan et al. Current and future miniature refrigeration cooling technologies for high power microelectronics
US6983610B1 (en) Cold inertance tube for multi-stage pulse tube cryocooler
CN100426494C (en) Heat radiator of heat pipe
CN105651090B (en) Novel three-dimensional spiral condensation structure nanometer pulsation thermal superconducting device
US7062921B2 (en) Multi-stage thermoacoustic device
CN105222389B (en) Pulse tube refrigerator
JP3713633B2 (en) Closed temperature control system
JPH0697147B2 (en) Loop type thin tube heat pipe
JPH01127895A (en) Closed loop pipe type heat transfer device
JP2001133075A (en) Heat exchanger in refrigerating circuit
CN219146029U (en) Energy accumulator for realizing circulating heat dissipation
JP2847343B2 (en) Closed system temperature controller
JPH04251189A (en) Micro heat pipe
JP5676205B2 (en) Loop heat pipe and manufacturing method thereof
JP2000074581A (en) Flat heat pipe and manufacture thereof
JP2006084135A (en) Heat radiating system and stirling refrigerator
JP2000205674A (en) Heat exchanger for pulse pipe refrigerating machine
JP3364758B2 (en) Heat sink for flat heating element
Ogushi et al. Heat transport characteristics of flexible looped heat pipe under micro‐gravity condition
Slobodeniuk et al. Experimental Analysis of the Fluid Flow in the Flat Plate Pulsating Heat Pipe Under Microgravity Conditions
US20240191949A1 (en) Heat pipe
US6820683B1 (en) Bubble cycling heat exchanger

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090216

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 10

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 11

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150216

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150216

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150216

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term