JPH04251189A - Micro heat pipe - Google Patents

Micro heat pipe

Info

Publication number
JPH04251189A
JPH04251189A JP6138591A JP6138591A JPH04251189A JP H04251189 A JPH04251189 A JP H04251189A JP 6138591 A JP6138591 A JP 6138591A JP 6138591 A JP6138591 A JP 6138591A JP H04251189 A JPH04251189 A JP H04251189A
Authority
JP
Japan
Prior art keywords
heat
container
capillary
heat pipe
working fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6138591A
Other languages
Japanese (ja)
Other versions
JP2714883B2 (en
Inventor
Hisateru Akachi
赤地 久輝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Actronics KK
Original Assignee
Actronics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Actronics KK filed Critical Actronics KK
Priority to JP3061385A priority Critical patent/JP2714883B2/en
Priority to US07/745,555 priority patent/US5219020A/en
Priority to DE4132290A priority patent/DE4132290C2/en
Priority to GB9123131A priority patent/GB2250087B/en
Priority to FR9114014A priority patent/FR2669719B1/en
Publication of JPH04251189A publication Critical patent/JPH04251189A/en
Application granted granted Critical
Publication of JP2714883B2 publication Critical patent/JP2714883B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers

Abstract

PURPOSE:To reduce the diameter of a fine tube container remarkably and miniaturize a heat transfer device employing a fine tube heat pipe by constituting the heat transfer deice so as to transport the amount of heat by only the axial vibration of operating fluid. CONSTITUTION:A fine tube container is characterized in that the container is formed of a continuous metallic fine tube formed so as to have a small inner diameter so that two-phase operating fluid, sealed into the container, can be moved while filling the container and a predetermined plurality of parts of the same are constituted so as to be a heat receiving section while the other predetermined plurality of parts are constituted so as to be heat reading sections and the heat receiving sections and the heat radiating sections are arranged alternately. The reduction of weight and size of the pipe is facilitated by a very easy and simple constitution and a high performance can be developed regardless of the posture of application while a micro heat pipe, high in reliability, can be constituted.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は受熱、放熱装置の大幅な
小型化軽量化を可能にすると共に従来製造不可能であっ
た極細管級領域に至る迄の細管ヒートパイプの長尺品の
製造を可能にする細管ヒートパイプの構造に関する。
[Industrial Application Field] The present invention makes it possible to significantly reduce the size and weight of heat receiving and radiating devices, and to manufacture long products of thin tube heat pipes up to the ultra-thin tube class, which was previously impossible to manufacture. Concerning the structure of a capillary heat pipe that enables this.

【0002】0002

【従来の技術】従来のヒートパイプはその装着姿勢によ
り、その性能が大幅に変化し、特にトップヒートモード
においては殆ど作動不可能となるものであった。又その
作動中に蒸発部から凝縮部へ高速度で移動する作動液蒸
発流と凝縮部から蒸発部に還流する凝縮作動液流とが相
互反対方向である為にその相互干渉により細管化が困難
であり、外径3mm程度の細管で長さ400mm程度、
又更にそれより細いマイクロヒートパイプと通称される
細管ヒートパイプにおいては数10mm程度の長さが製
造限界であった。又屈曲せしめて使用することが不可能
で使用上の自由度が小さい点も問題点であった。
BACKGROUND OF THE INVENTION The performance of conventional heat pipes varies greatly depending on the position in which they are mounted, and they are almost inoperable, especially in top heat mode. Also, during the operation, the evaporating working fluid flow that moves at high speed from the evaporating section to the condensing section and the condensing working fluid flow that returns from the condensing section to the evaporating section are in opposite directions, making it difficult to form a thin tube due to their mutual interference. It is a thin tube with an outer diameter of about 3 mm and a length of about 400 mm.
Furthermore, the production limit for thin tube heat pipes commonly called micro heat pipes was a length of about several tens of millimeters. Another problem was that it was impossible to use it by bending it, so the degree of freedom in use was small.

【0003】それ等の問題点を解決する為に本発明者は
米国特許4,921,041号及び特開昭63−318
49号に記載の如きループ型細管ヒートパイプを案出し
実用化している。その構成は図2に例示の如くであって
ループ型細管コンテナ2は細管2の両端末が相互に流通
自在に連結されて密閉コンテナとして形成されてあり、
該ループ型細管コンテナ2内には所定量の2相凝縮性作
動流体が封入されてあり、細管2の内径は作動流体の表
面張力により作動流体が常に管内を閉塞したままの状態
で循環又は移動することが出来る直径の最大直径よりは
小さい直径であり、又ループ型流体流路内には少なくも
一個所以上の部分に逆止弁に代表される循環方向規制手
段(図においては逆止弁3)が設けられてあり、ループ
型細管コンテナ2の少なくも一個所の所定の部分は受熱
部2−Hとして、残余の細管コンテナの少なくも一個所
の所定の部分が放熱部2−Cとして構成されてあり、そ
れらの大部分は受熱部2−Hと放熱部2−Cとが交互に
配置されてあることを特徴としている。
[0003] In order to solve these problems, the inventor of the present invention disclosed US Pat.
A loop-type thin tube heat pipe as described in No. 49 was devised and put into practical use. Its structure is as illustrated in FIG. 2, and the loop-type thin tube container 2 is formed as a closed container with both ends of the thin tube 2 connected to each other so as to allow free circulation.
A predetermined amount of two-phase condensable working fluid is sealed inside the loop-type capillary container 2, and the inner diameter of the capillary tube 2 allows the working fluid to circulate or move while always keeping the tube closed due to the surface tension of the working fluid. The diameter is smaller than the maximum diameter that can be used, and at least one part of the loop-type fluid flow path has a circulation direction regulating means such as a check valve (in the figure, a check valve is installed). 3), at least one predetermined portion of the loop-type thin tube container 2 is provided as a heat receiving section 2-H, and at least one predetermined portion of the remaining thin tube container is provided as a heat radiating section 2-C. Most of them are characterized in that heat receiving parts 2-H and heat radiating parts 2-C are arranged alternately.

【0004】この様なループ型細管ヒートパイプにおい
て受熱手段Hにより受熱部2−Hが加熱され、放熱手段
Cにより放熱部2−Cが冷却されるときは逆止弁3によ
り分離形成された複数の圧力室間には受熱部2−Hに発
生する核沸騰により振動的な圧力差が発生し呼吸作用が
発生する。又受熱部2−H内の核沸騰は流体内に圧力波
を伝播せしめ、この圧力波により逆止弁の弁体を振動せ
しめ、弁体の振動と上述の呼吸作用の相互作用が作動流
体4に強力な循環推進力を発生せしめる。
In such a loop type thin tube heat pipe, when the heat receiving section 2-H is heated by the heat receiving means H and the heat dissipating section 2-C is cooled by the heat dissipating means C, a plurality of tubes separated by the check valve 3 are connected to each other. An oscillating pressure difference is generated between the pressure chambers due to nucleate boiling occurring in the heat receiving portion 2-H, and a breathing effect occurs. Nucleate boiling in the heat receiving part 2-H causes pressure waves to propagate within the fluid, and this pressure wave causes the valve body of the check valve to vibrate, and the interaction between the vibration of the valve body and the above-mentioned breathing action causes the working fluid 4 to vibrate. generates a strong circulating propulsion force.

【0005】この様にして2相作動流体は自ずからルー
プ内を所定の方向に循環する。核沸騰は連続的ではない
から循環作動流体は図の如く蒸気泡5、作動流体4の(
閉塞液滴)が交互に配列されて循環する。従って熱輸送
は作動流体の熱伝導による顕熱と蒸気泡5の潜熱によっ
て輸送される。
[0005] In this manner, the two-phase working fluid naturally circulates within the loop in a predetermined direction. Since nucleate boiling is not continuous, the circulating working fluid consists of steam bubbles 5, working fluid 4 (
(obstructed droplets) are arranged alternately and circulate. Therefore, heat is transported by sensible heat due to thermal conduction of the working fluid and latent heat of the vapor bubbles 5.

【0006】この様な作動流体の循環流による熱輸送は
ヒートパイプの装着姿勢にかかわらず良好な熱輸送を可
能にするものであり、又細管ヒートパイプであるから小
型化、軽量化をも可能とするものであった。又自在に屈
曲せしめて使用することが可能で使用上の自由度は大幅
に拡大された。
[0006] Such heat transport by the circulating flow of the working fluid enables good heat transport regardless of the mounting position of the heat pipe, and since it is a thin tube heat pipe, it can also be made smaller and lighter. It was intended to be. Furthermore, it can be used by bending it freely, greatly expanding the degree of freedom in its use.

【0007】発明者は特願平2−319461号に係る
図3例示の如きループ型細管ヒートパイプをも案出し実
用化している。該ループ型細管ヒートパイプは第2図の
ループ型細管ヒートパイプからそのヒートパイプとして
の作動の基本構造であり、必須構成要素である循環方向
規制手段(図の例では逆止弁)が除去されてあり、他の
構成要素は全く同じである。即ち図3においてループ型
細管コンテナ2は充分に細い内径になっており、それに
因り細管コンテナ内に封入されてある2相凝縮性作動液
は図の如くその表面張力によって常に管内を閉塞したま
まの状態で循環又は移動する。又該ループ型細管ヒート
パイプにおいても受熱部2−Hと放熱部2−Cとは夫々
少なくも一個所に配設される。然しこれ等の配設個所は
実用的には夫々複数個所であることが望ましく、出来得
れば夫々多数個所であることがより望ましい。更に他の
条件として放熱部2−Cは常に複数の受熱部2−Hの間
に位置していることが必須条件である。又作動流体4の
封入量は通常図2のループ型細管ヒートパイプでは細管
コンテナの全内容積の20%〜50%が適量であるのに
対し、図3の該ループ型細管ヒートパイプにおいては全
内容積の30%〜95%の作動液が適量として封入され
る。
The inventor has also devised and put into practical use a loop-type thin tube heat pipe as shown in FIG. 3 in accordance with Japanese Patent Application No. 2-319461. The loop-type capillary heat pipe is the basic structure of the loop-type capillary heat pipe shown in FIG. 2 for operation as a heat pipe, and the circulation direction regulating means (in the example shown in the figure, a check valve), which is an essential component, is removed. The other components are exactly the same. That is, in FIG. 3, the loop-type capillary container 2 has a sufficiently small inner diameter, so that the two-phase condensable working fluid sealed inside the capillary container always remains closed within the tube due to its surface tension, as shown in the figure. circulate or move in a state. Also in the loop type thin tube heat pipe, the heat receiving section 2-H and the heat dissipating section 2-C are each disposed at at least one location. However, from a practical standpoint, it is desirable that these devices be disposed in a plurality of locations, and if possible, it is more desirable that they be provided in a large number of locations. Still another condition is that the heat dissipating section 2-C is always located between the plurality of heat receiving sections 2-H. In addition, the amount of working fluid 4 sealed is normally 20% to 50% of the total internal volume of the capillary container in the loop-type capillary heat pipe shown in FIG. 2, whereas in the loop-type capillary heat pipe shown in FIG. A suitable amount of hydraulic fluid is sealed in the container, which is 30% to 95% of the internal volume.

【0008】この様な構成のループ型細管ヒートパイプ
は逆止弁が配設されてある従来のループ型細管ヒートパ
イプとは熱輸送原理を全く異にする別種のループ型細管
ヒートパイプである。即ち逆止弁が無いので作動流体の
ループ内循環は自然対流による循環が発生するのみで、
細管ヒートパイプの装着姿勢や受熱部及び放熱間の配設
位置によって定まる自然対流の方向に従ってゆるやかに
循環する。従って作動流体の循環方向は不定であり、時
に図における時計方向、時に反時計方向に循環するのみ
で熱量の輸送に寄与する所は極めて僅かである。該ルー
プ型細管ヒートパイプの熱量輸送の殆どは作動流体の軸
方向振動によって行われる。
The loop-type capillary heat pipe having such a structure is a different type of loop-type capillary heat pipe having a completely different heat transport principle from the conventional loop-type capillary heat pipe provided with a check valve. In other words, since there is no check valve, the working fluid circulates within the loop only by natural convection.
The heat circulates slowly according to the direction of natural convection, which is determined by the mounting posture of the thin tube heat pipe and the placement position between the heat receiving part and the heat radiating part. Therefore, the circulation direction of the working fluid is undefined, sometimes only in the clockwise direction in the figure, and sometimes in the counterclockwise direction, and contributing to the transport of heat is extremely small. Most of the heat transfer in the loop-type capillary heat pipe is performed by axial vibration of the working fluid.

【0009】図3に於いて受熱手段Hにより受熱した受
熱部2−Hにおいては夫々に核沸騰が発生し、それによ
り圧力波が発生し、同時に断続する蒸気泡群が発生する
。各受熱部2−Hで発生した圧力波と蒸気泡群の圧力と
は相隣接する受熱部間の細管コンテナ内を閉塞する状態
で封入されてある作動流体を時には同時に押し合い、時
には同時に引き合い、時には一方から他方へ押圧し、又
時には一方から他方に吸引して、振動状態となる。管路
はループをなしているから受熱部2−Hが多数である場
合は相互に増幅したり干渉したりするが結果的には振動
は増幅されループ内の総ての作動流体が軸方向の振動状
態となる。
In FIG. 3, nucleate boiling occurs in each of the heat receiving portions 2-H which receive heat from the heat receiving means H, thereby generating pressure waves and at the same time generating a group of intermittent vapor bubbles. The pressure waves generated in each heat receiving part 2-H and the pressure of the vapor bubbles sometimes simultaneously push the working fluid sealed in the narrow tube container between adjacent heat receiving parts in a closed state, sometimes simultaneously pull together, and sometimes It is pressed from one side to the other, and sometimes it is attracted from one side to the other, resulting in a vibrating state. Since the pipe line forms a loop, if there are a large number of heat receiving parts 2-H, they will amplify or interfere with each other, but as a result, the vibrations will be amplified and all the working fluid in the loop will move in the axial direction. Becomes in a vibrating state.

【0010】この様な軸方向振動は振動に際して管壁内
表面に発生する流動境界層とコンテナ内壁面を熱媒体と
して流体内に激しい均熱化作用を発生し、熱量を流体の
高温側から低温側に輸送する。従って冷却手段Cにより
低温となった放熱部2−Cに向って受熱部2−Hの高温
部の熱量が輸送される。
[0010] Such axial vibration generates a strong heat equalizing effect in the fluid using the fluid boundary layer generated on the inner surface of the pipe wall and the inner wall surface of the container as heat media, and heat is transferred from the high temperature side of the fluid to the low temperature side. Transport to the side. Therefore, the amount of heat in the high temperature part of the heat receiving part 2-H is transported by the cooling means C toward the heat radiating part 2-C which has become low temperature.

【0011】一方作動流体はゆるやかではあるが循環す
るから、図3例示の如き状態で蒸気泡群5は作動流体4
によって放熱部2−Cに向って運搬され、凝縮により縮
小して凝縮潜熱を放出する。
On the other hand, since the working fluid circulates slowly, the group of vapor bubbles 5 flows through the working fluid 4 in the state shown in FIG.
It is transported toward the heat radiating part 2-C by condensation, shrinks, and releases latent heat of condensation.

【0012】従って第3図のループ型細管ヒートパイプ
は基本的には作動流体の軸方向振動によって顕熱として
大部分の熱量を輸送し、副次的には蒸気泡の緩速度循環
により潜熱として熱量を運搬する。この様な作動流体の
軸方向振動による熱量輸送の原理については特公平2−
35239号に詳述されてあり、又実例について特願平
2−319461号に詳述されてある。
Therefore, the loop-type capillary heat pipe shown in FIG. 3 basically transports most of the heat as sensible heat through axial vibration of the working fluid, and secondarily transports most of the heat as latent heat through the slow circulation of vapor bubbles. Transports heat. The principle of heat transfer by axial vibration of the working fluid is described in Japanese Patent Publication No. 2-
35239, and an example is described in detail in Japanese Patent Application No. 319461/1999.

【0013】図3例示の如き逆止弁省略型のループ型細
管ヒートパイプは従来のループ型細管ヒートパイプと全
く作動原理の異なるものではあるが従来の通常型ヒート
パイプの問題点を解決し、トップヒートでも良好に作動
し、受放熱装置の小型化軽量化を可能にする点では同様
である。又自在に屈曲せしめて使用出来る点でも同様で
ある。該ループ型細管ヒートパイプは主として作動流体
の軸方向振動により熱輸送がなされるから作動流体封入
量が80%以上ではトップヒート、ボトムヒート、水平
ヒートの各受熱モードで熱輸送能力が殆ど変化しない点
で従来型の逆止弁付ループ型細管ヒートパイプより勝れ
ている。然し平均的な熱輸送性能としては若干低下する
Although the loop-type capillary heat pipe without the check valve shown in FIG. 3 has a completely different operating principle from the conventional loop-type capillary heat pipe, it solves the problems of the conventional conventional heat pipe. It is similar in that it works well even under top heat and allows the heat receiving and dissipating device to be made smaller and lighter. It is also similar in that it can be used by bending it freely. Since the loop-type capillary heat pipe mainly transports heat through axial vibration of the working fluid, when the amount of working fluid enclosed is 80% or more, the heat transport capacity hardly changes in each heat receiving mode of top heat, bottom heat, and horizontal heat. In this respect, it is superior to the conventional loop-type capillary heat pipe with a check valve. However, the average heat transport performance is slightly lower.

【0014】作動流体封入量が60%以下の場合はトッ
プヒートモード及び水平ヒートモードは従来型細管ヒー
トパイプより熱輸送性能は低下する。然しボトムヒート
モードにおいては逆止弁の存在により核沸騰蒸気泡の上
昇を妨害することが無いから作動流体の振幅が大幅に増
大して、熱輸送能力は逆止弁付従来型ループ型細管ヒー
トパイプに比較して大幅に向上する点は大きな特色であ
る。
When the amount of working fluid enclosed is less than 60%, the heat transport performance in the top heat mode and the horizontal heat mode is lower than that of the conventional thin tube heat pipe. However, in bottom heat mode, the existence of the check valve does not obstruct the rise of nucleate boiling vapor bubbles, so the amplitude of the working fluid increases significantly, and the heat transport capacity is higher than that of conventional loop type capillary heat with check valve. A major feature is that it is significantly improved compared to pipes.

【0015】[0015]

【発明が解決しようとする課題】図2及び図3例示の2
種類のループ型細管ヒートパイプは何れも使用時の装着
姿勢にかかわらず良好な作動をする点、自在に屈曲せし
めて使用することが出来る点等を始めとして従来の通常
ヒートパイプの問題点を殆ど解決するものではあるが、
業界の要望に応えて熱輸送装置や受放熱装置を更に小型
化軽量化を推進する為には幾つかの課題を残しているも
のであった。
[Problem to be solved by the invention] 2 of the examples shown in FIGS. 2 and 3
All types of loop-type thin tube heat pipes have almost all of the problems of conventional ordinary heat pipes, including the fact that they operate well regardless of the position in which they are worn, and can be bent and used freely. Although it is a solution,
In order to further reduce the size and weight of heat transport devices and heat receiving and dissipating devices in response to industry demands, several issues remain.

【0016】その課題は次の如くである。 (イ)内径1.2mm前後を境界として、より細径化を
実施した場合、製品の不良率が急増し信頼性が大幅に低
下する。これは逆止弁付ループ型細管ヒートパイプの場
合、逆止弁があまりに小型な為品質管理が困難となる。 又図4(逆止弁有り)図5(逆止弁無し)に例示した接
続溶接部の説明図から分かる様に逆止弁装着接手、ルー
プ形成の為の接続用接手8、作動流体注入細管用接手9
、ガス排出細管用接手10等の如く、実際のループ型細
管ヒートパイプ製作には複数又は多数の接手部分を必要
とし、接手3、8には夫々2個所の溶接部分、接手9、
10には夫々4個所の溶接部分を必要とするものでこれ
等の溶接作業は外径1.6mm内径1.2mm以下では
急激に困難さが増加し製品の信頼性が大幅に低下する。 図4、図5は図面簡略の為細管コンテナは線図で示して
ある。
The problem is as follows. (a) If the inner diameter is made smaller at around 1.2 mm, the defect rate of the product will increase sharply and the reliability will decrease significantly. This is because in the case of a loop-type thin tube heat pipe with a check valve, quality control is difficult because the check valve is too small. Also, as can be seen from the illustrations of the connection welds shown in Figure 4 (with check valve) and Figure 5 (without check valve), there is a check valve mounting joint, a connection joint 8 for forming a loop, and a working fluid injection thin tube. Joint 9
, the joint 10 for gas discharge capillary tubes, etc., requires a plurality or a large number of joint parts to actually manufacture a loop-type capillary heat pipe, and joints 3 and 8 each have two welded parts, joints 9 and 8, respectively.
10 requires four welding parts, and if the outer diameter is 1.6 mm or less and the inner diameter is less than 1.2 mm, the difficulty of welding increases rapidly and the reliability of the product decreases significantly. In FIGS. 4 and 5, the thin tube container is shown as a line diagram for the purpose of simplifying the drawings.

【0017】(ロ)ループ型細管コンテナを細径化して
もその効果が充分に得られない場合が多い。即ち細管コ
ンテナが細径化されても接手類の細径化が困難な為、ル
ープ型細管ヒートパイプの各所に外径の太い個所が残置
される。特に作動流体注入接手及びガス排出接手には注
入細管、及び排出細管のカシメ溶接部が残置されその長
さは15mmにも及ぶ。又接手外径は外径1mmの細管
に対して約2mmとなる。この様に外径の細径化の困難
な個所が残置されることがループ型細管ヒートパイプの
適用上の自由度を小さくする状態は図4、図5から明ら
かである。
(b) Even if the diameter of the loop-type thin tube container is made smaller, the effect is often not sufficiently obtained. That is, even if the diameter of the capillary container is reduced, it is difficult to reduce the diameter of the joints, so portions with large outer diameters remain at various locations in the loop-type capillary heat pipe. In particular, caulked welds of the injection capillary and discharge capillary are left in the working fluid injection joint and the gas discharge joint, and the length thereof is as much as 15 mm. Further, the outer diameter of the joint is approximately 2 mm for a thin tube with an outer diameter of 1 mm. It is clear from FIGS. 4 and 5 that the degree of freedom in application of the loop-type thin tube heat pipe is reduced due to the remaining portions where it is difficult to reduce the outer diameter.

【0018】(ハ)外径1.6mm内径1.2mm前後
を境として細管コンテナの細径化が進むにつれて作動流
体の適量封入の困難さが増加する。即ち細径化と共に作
動流体の表面張力による管内閉塞力が強くなりループ型
細管内に一旦混入された空気の除去は困難となる。その
対策として図4、図5の如き注入細管用接手9とガス排
出細管用接手10を設ける手段が採られているが完全で
はなく、正確な適量封入は細管径化と共に困難となって
いた。
(c) As the diameter of the capillary container progresses from 1.6 mm in outer diameter to 1.2 mm in inner diameter, the difficulty in enclosing an appropriate amount of working fluid increases. That is, as the diameter becomes smaller, the inner tube closing force due to the surface tension of the working fluid becomes stronger, and it becomes difficult to remove air once mixed into the loop-shaped thin tube. As a countermeasure, measures have been taken to provide a joint 9 for the injection capillary tube and a joint 10 for the gas discharge capillary tube as shown in Figs. 4 and 5, but this is not perfect, and it has become difficult to fill the correct amount accurately as the diameter of the tube increases. .

【0019】[0019]

【課題を解決する為の手段】前述の如きループ型細管ヒ
ートパイプの長所を残したまま、その残された課題を解
決して、細管コンテナの細径化を進める手段として、本
発明においては図4、図5の逆止弁3、ループ端末接続
用接手8、作動流体注入細管用接手9、ガス排出細管用
接手10等の一切の接手を廃止した構造とすることにし
た。即ち図3ループ型細管のループ化を取止め細管コン
テナの両端を封止した構造とする。従って図3ループ型
細管ヒートパイプにおける作動中の作動流体の緩やかな
循環は不可能となり、熱量の輸送は総て作動流体の軸方
向振動のみによって行われる構造になる。緩やかな循環
流が失なわれることにより、蒸気泡5の潜熱による熱輸
送分の性能が低下するがこの分は細管コンテナがループ
型の場合より細径化され、振動を与えるべき作動流体の
質量が小さくなり、振動発生の為に消費されるエネルギ
ー損失が減少すると共に振動が活発化することにより補
なわれる。
[Means for Solving the Problems] As a means for reducing the diameter of a thin tube container by solving the remaining problems while retaining the advantages of the loop-type thin tube heat pipe as described above, the present invention has been developed as shown in Figs. 4. It was decided to adopt a structure in which all the joints such as the check valve 3, the loop end connection joint 8, the working fluid injection capillary joint 9, and the gas discharge capillary joint 10 shown in FIG. 5 were abolished. That is, the loop-shaped thin tube shown in FIG. 3 is not looped, and both ends of the thin tube container are sealed. Therefore, it becomes impossible to gently circulate the working fluid during operation in the loop-type capillary heat pipe shown in FIG. 3, and the structure is such that the transport of heat is carried out only by the axial vibration of the working fluid. Due to the loss of the gentle circulation flow, the performance of the heat transport due to the latent heat of the steam bubbles 5 decreases, but this is compensated for by having a thinner tube container than in the case of a loop type, and reducing the mass of the working fluid to be vibrated. becomes smaller, and the energy loss consumed to generate vibrations is reduced and compensated for by the activation of vibrations.

【0020】上述の如き本発明に係るマイクロヒートパ
イプの基本構造を図1に示す。図において密閉細管コン
テナ1は真空封入されてある所定の2相凝縮性作動流体
が、その表面張力によりコンテナ内を常に充填閉塞した
ままの状態で移動する様、充分に小さい内径に形成され
た長尺金属細管で構成されてあり、その所定の複数の部
分が受熱部1−Hとして他の所定の複数部分が放熱部1
−Cとして構成されてあり、且つ放熱部1−Cは複数の
受熱部1−Hの間に位置する様構成されてある。図にお
いて破線H及び破線Cは夫々受熱手段及び放熱手段を示
してある。細管コンテナ1の両端末1−Eは細管コンテ
ナ1内に所定量の2相凝縮性作動流体を封入の後溶接封
止されてある。
FIG. 1 shows the basic structure of the micro heat pipe according to the present invention as described above. In the figure, a sealed thin tube container 1 has a length formed with a sufficiently small inner diameter so that a predetermined two-phase condensable working fluid sealed in vacuum moves inside the container in a state where the container is always filled and closed due to its surface tension. It is made up of a thin metal tube, and a plurality of predetermined parts thereof are a heat receiving part 1-H, and a plurality of other predetermined parts are a heat radiating part 1.
-C, and the heat radiating section 1-C is arranged to be located between the plurality of heat receiving sections 1-H. In the figure, broken lines H and C indicate heat receiving means and heat radiating means, respectively. Both ends 1-E of the capillary container 1 are sealed by welding after a predetermined amount of two-phase condensable working fluid is sealed inside the capillary container 1.

【0021】[0021]

【作用】この様に構成されてある細管ヒートパイプは各
受熱部で発生する核沸騰により、受熱部と受熱部の間の
細管コンテナ内の作動流体に軸方向振動が発生し、この
作動流体の振動が受熱部から放熱部に熱量を移動せしめ
る。この原理については前述図3に例示のループ型細管
ヒートパイプ(逆止弁の無い型)の作動原理において詳
述し且つ特公平2−35239号及び特願平2−319
461号に詳述されてあるので省略する。この作動流体
の軸方向振動による熱輸送は外径1.6mm以下、内径
1.2mm以下の細管ヒートパイプに効果的であり特に
マイクロヒートパイプの領域の極細管ヒートパイプに適
している。これは作動流体の循環による熱輸送の効率は
、管内圧力損失の増加に因り、細径が進むにつれて悪化
するのに対し、軸方向振動による輸送の効率は、振動を
与えられるべき液の質量減少により振動発生が容易とな
ることに起因して、細径化が進むにつれて良好となるこ
とによる。
[Operation] In the thin tube heat pipe configured in this way, the nucleate boiling that occurs in each heat receiving section causes axial vibration in the working fluid in the thin tube container between the heat receiving sections. Vibration causes heat to be transferred from the heat receiving part to the heat radiating part. This principle is described in detail in the operation principle of the loop-type thin tube heat pipe (type without check valve) shown in FIG.
Since it is detailed in No. 461, it will be omitted here. This heat transport by axial vibration of the working fluid is effective for thin tube heat pipes with an outer diameter of 1.6 mm or less and an inner diameter of 1.2 mm or less, and is particularly suitable for ultra-thin tube heat pipes in the micro heat pipe area. This is because the efficiency of heat transport by circulation of the working fluid deteriorates as the diameter becomes smaller due to the increase in pressure loss within the pipe, whereas the efficiency of heat transport by axial vibration deteriorates as the mass of the liquid to be vibrated decreases. This is because it becomes easier to generate vibrations, and as the diameter becomes smaller, the condition becomes better.

【0022】本発明に係るマイクロヒートパイプの作用
において最も大きな特徴は作動流体注入が極めて容易な
点である。即ち図1基本構造図いおいて細管コンテナ1
の両端末1−Eを溶接封止する前の状態において片端末
側から液相作動流体を圧入し、他端末から管内ガスを排
出せしめ液相作動流体のみが流出する状態になった時点
で両端末を封止するだけで極めて容易に細管コンテナ内
の不純ガス類は排出され、作動流体の満量封入は完了す
る。この場合の片端末の封止はバルブを装着しその閉操
作によるものとすれば満量封入の後、バルブ開閉と精密
秤量計による重量測定を併用し乍ら蒸発法を実施するこ
とにより容易且つ精密に最適封入量に液量を調整するこ
とが出来る。この方法は管内に空気混入の恐れが無く、
且つ精密微量な液量調整が出来るから内径0.5mm以
下の極細管ヒートパイプであっても正確な液の封入が可
能となる。
The most important feature of the micro heat pipe according to the present invention is that it is extremely easy to inject the working fluid. In other words, in Fig. 1 basic structure diagram, thin tube container 1
Before both terminals 1-E are welded and sealed, liquid-phase working fluid is pressurized from one terminal side, gas inside the pipe is discharged from the other terminal, and when only the liquid-phase working fluid flows out, both terminals 1-E are sealed. Just by sealing the end, impurity gases inside the thin tube container can be discharged very easily, and the full filling of the working fluid is completed. In this case, one terminal can be easily sealed by attaching a valve and closing it. After filling the volume to its full capacity, it is easy to seal one end by carrying out the evaporation method while opening and closing the valve and measuring the weight with a precision weighing scale. The amount of liquid can be precisely adjusted to the optimal amount. This method eliminates the risk of air getting into the pipe,
In addition, since it is possible to precisely adjust the amount of liquid, it is possible to accurately fill liquid even in a microtube heat pipe with an inner diameter of 0.5 mm or less.

【0023】他の作用としてはあらゆる接手が廃止され
た構造であるから従来の2種類のループ型細管より使用
時の自由度が大きくあらゆる装置に容易に装着すること
が出来る。又接続部が全く無い点は腐食に強く、接続不
良により発生する故障も皆無となり信頼性が大幅に向上
する。
Another effect is that the structure eliminates any joints, so it has a greater degree of freedom in use than the conventional two types of loop-type thin tubes, and can be easily attached to any device. Furthermore, the fact that there are no connecting parts means that it is highly resistant to corrosion, and there are no failures caused by poor connections, greatly improving reliability.

【0024】本発明に係るマイクロヒートパイプの構造
の更に特異な作用としてはその作動良好な作動流体封入
量の範囲が内容積の10%〜95%とループ型細管ヒー
トパイプに比較して極めて広くなり且つその全範囲にお
いてボトムヒートモードとトップヒートモードの性能差
異が極めて少なくなる作用がある。これは作動流体が循
環不能なことにより、逆に核沸騰の軸方向振動発生に寄
与するエネルギーが効率良く作用し封入液量が多くても
良好に作動し、又液量が少ない場合は振幅が充分に大き
くなることに因り良好に作動するものと考えられる。こ
の点は細管コンテナ内に封入する液量割合の精度を低下
せしめても性能が悪化しないことを意味するもので作動
流体封入作業を容易にする。
A further unique feature of the structure of the micro heat pipe according to the present invention is that the range of the amount of working fluid filled in for good operation is from 10% to 95% of the internal volume, which is extremely wide compared to that of a loop-type thin tube heat pipe. In addition, there is an effect that the difference in performance between the bottom heat mode and the top heat mode is extremely small in the entire range. This is because the working fluid cannot be circulated, and conversely, the energy that contributes to the generation of axial vibrations in nucleate boiling works efficiently, and it operates well even when the amount of sealed liquid is large, and the amplitude decreases when the amount of liquid is small. It is thought that it works well because it is sufficiently large. This point means that performance does not deteriorate even if the accuracy of the liquid volume ratio sealed in the thin tube container is reduced, and the work of filling the working fluid is facilitated.

【0025】この様な極細管により構成されたヒートパ
イプの場合、使用された金属材料によっては長期間に亘
って受ける激しい温度サイクルにより金属結晶に粒界剥
離が生じ多量の金属粉末が発生し、細管コンテナの屈曲
部に滞留してこれを閉塞せしめる場合がある。実験の結
果細管材料として燐脱酸銅使用の場合は150℃で作動
せしめ300時間前後で閉塞が発生する。無酸素銅使用
の場合は270℃で作動せしめ1000時間経過後も全
く変更が発生しなかった。
[0025] In the case of a heat pipe constructed of such ultra-thin tubes, depending on the metal material used, grain boundary separation occurs in metal crystals due to severe temperature cycles over a long period of time, and a large amount of metal powder is generated. It may stay in the bent part of the thin tube container and block it. As a result of experiments, when phosphorus-deoxidized copper is used as the tube material, blockage occurs after about 300 hours of operation at 150°C. When oxygen-free copper was used, no change occurred even after 1000 hours of operation at 270°C.

【0026】本発明に係るマイクロヒートパイプの構造
は細管コンテナの内径1.2mm以下マイクロヒートパ
イプ領域の極細管ヒートパイプを目標として案出された
が、管内径4mm前後の細管ヒートパイプであっても、
蛇行形状の1ターンの長さが短く、又受放熱部間の距離
が短い場合は有効に適用することが出来る。
The structure of the micro heat pipe according to the present invention was devised with the aim of being an ultra-thin heat pipe in the area of micro heat pipes with an inner diameter of 1.2 mm or less in a thin tube container. too,
It can be effectively applied when the length of one turn of the meandering shape is short and the distance between the heat receiving and radiating parts is short.

【0027】[0027]

【実施例】外径1mm内径0.7mmの長尺金属細管を
長径38mm短径18mmの長円形螺旋状に成形しター
ン数を45ターンとした螺旋蛇行の細管コンテナを2個
製作した。受熱手段としては半径9mmの2条の半円溝
を有するフィン高さ13mm、受熱底面50mm×50
mmのアルミヒートシンクを準備した。これ等を図6の
如くはんだ接着により組立てた後、各細管コンテナ内に
内容積に対し所定割合のHCFC142bを作動液とし
て封入し、細管コンテナの両端末を溶接封止して本発明
に係るマイクロヒートパイプを構成した。図において簡
略の為細管コンテナは線図で示してある。又図において
1−1,1−2は細管コンテナ、1−H−1,1−H−
2は受熱部、1−C−1及び1−C−2は放熱部、1−
E及び1−Eは細管端末部である。又Cの矢印は冷却手
段の冷却風である。
[Example] A long metal thin tube having an outer diameter of 1 mm and an inner diameter of 0.7 mm was formed into an oblong spiral shape with a major axis of 38 mm and a minor axis of 18 mm to produce two meandering spiral thin tube containers having 45 turns. As a heat receiving means, a fin with a height of 13 mm has two semicircular grooves with a radius of 9 mm, and a heat receiving bottom surface of 50 mm x 50 mm.
An aluminum heat sink of mm was prepared. After assembling these by soldering as shown in Fig. 6, a predetermined ratio of HCFC142b to the internal volume is sealed in each capillary container as a working fluid, and both ends of the capillary container are sealed by welding to form a micro-tube according to the present invention. A heat pipe was constructed. In the figure, the capillary container is shown in a diagram for simplicity. In the figure, 1-1, 1-2 are thin tube containers, 1-H-1, 1-H-
2 is a heat receiving part, 1-C-1 and 1-C-2 are heat radiating parts, 1-
E and 1-E are capillary end portions. Further, the arrow C indicates the cooling air of the cooling means.

【0028】この様に構成された本発明のマイクロヒー
トパイプについて封入液量を変化せしめ、受熱部に加え
る熱量を変化せしめ受熱部の温度上昇及び熱輸送能力を
測定した。熱輸送能力はヒートシンク受熱面温度と冷却
風温度の温度差Δt[℃]を被除数とし熱入力Q[W]
を除数とした商として算出される熱抵抗値R[℃/W]
によって比較した。冷却風速3m/sにおけるボトムヒ
ートモード及びトップヒートモードの測定結果を夫々下
記の表1及び表2に示す。
[0028] Regarding the micro heat pipe of the present invention constructed in this way, the amount of sealed liquid was varied, and the amount of heat applied to the heat receiving part was varied, and the temperature rise of the heat receiving part and the heat transport capacity were measured. The heat transport capacity is calculated using the temperature difference Δt [℃] between the heat sink heat receiving surface temperature and the cooling air temperature as the dividend, and the heat input Q [W]
Thermal resistance value R [℃/W] calculated as the quotient with
compared by. The measurement results in bottom heat mode and top heat mode at a cooling air speed of 3 m/s are shown in Tables 1 and 2 below, respectively.

【0029】[0029]

【表1】[Table 1]

【0030】[0030]

【表2】[Table 2]

【0031】表1及び表2の測定結果は次のことを良く
示している。 (a)この程度の小型放熱器で50Wの熱抵抗値が0.
7℃/W以下の放熱性能を示すことは業界の要望に一致
する。 (b)封入液量の多少にかかわらず良好な性能を示すが
封入液量30%〜50%が特に良好である。 (c)トップヒートモードにおいてもボトムヒートモー
ドに劣らぬ性能が得られる。
The measurement results in Tables 1 and 2 clearly show the following. (a) A small heat sink of this size has a thermal resistance value of 0.0 at 50W.
Demonstrating heat dissipation performance of 7° C./W or less is in line with industry requirements. (b) Good performance is shown regardless of the amount of sealed liquid, but the performance is particularly good when the filled liquid amount is 30% to 50%. (c) Even in the top heat mode, performance comparable to that in the bottom heat mode can be obtained.

【0032】[0032]

【発明の効果】以上に説明した様に本発明に係るマイク
ロヒートパイプは内径1.2mm以下通称マイクロヒー
トパイプ領域に至る極細管ヒートパイプの製造を容易に
し、高性能の小型放熱器の提供を容易にするものである
。又本発明のマイクロヒートパイプは従来の各種ヒート
パイプの如くトップヒートモードで性能が低下すること
が無いのでこれを適用した小型放熱器は姿勢変化の激し
い機器にも安心して装着することが出来る。又封入液量
が極めて小量であるから遠心力や衝撃に対する強度も充
分に得られる。更にコンテナには何等の溶接部がない点
から高い信頼性が要求される小型放熱器を構成すること
が出来る。
[Effects of the Invention] As explained above, the micro heat pipe according to the present invention facilitates the production of ultra-thin tube heat pipes with an inner diameter of 1.2 mm or less, which is commonly called a micro heat pipe region, and provides a high-performance compact radiator. It makes it easier. Furthermore, unlike various conventional heat pipes, the micro heat pipe of the present invention does not deteriorate in performance in the top heat mode, so a small heat radiator using the micro heat pipe can be safely installed in equipment that undergoes rapid changes in posture. Furthermore, since the amount of liquid enclosed is extremely small, sufficient strength against centrifugal force and impact can be obtained. Furthermore, since the container does not have any welded parts, it is possible to construct a compact heat radiator that requires high reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明のマイクロヒートパイプの基本構造を示
す平面図である。
FIG. 1 is a plan view showing the basic structure of a micro heat pipe of the present invention.

【図2】作動流体の循環により熱量を輸送する型のルー
プ型細管ヒートパイプの基本構造を示す一部断面の平面
図である。
FIG. 2 is a partially sectional plan view showing the basic structure of a loop-type capillary heat pipe that transports heat by circulating a working fluid.

【図3】主として作動流体の軸方向振動により熱量を輸
送する型のループ型細管ヒートパイプの構造を示す一部
断面の平面図である。
FIG. 3 is a partially sectional plan view showing the structure of a loop-type capillary heat pipe that transports heat mainly by axial vibration of a working fluid.

【図4】図2のループ型細管ヒートパイプを組立てる為
の接続溶接部を示す説明図である。
FIG. 4 is an explanatory diagram showing connection welds for assembling the loop-type capillary heat pipe of FIG. 2;

【図5】図3のループ型細管ヒートパイプを組立てる為
の接続溶接部を示す説明図である。
FIG. 5 is an explanatory diagram showing connection welds for assembling the loop-type capillary heat pipe of FIG. 3;

【図6】本発明のマイクロヒートパイプ応用実施例の小
型放熱器の構造を示す斜視略図である。
FIG. 6 is a schematic perspective view showing the structure of a small heat radiator according to an applied embodiment of the micro heat pipe of the present invention.

【符号の説明】[Explanation of symbols]

1      細管コンテナ 1−H  受熱部 1−C  放熱部 1−E  細管端末封止部 2      ループ型細管コンテナ 3      循環方向規制手段(逆止弁)4    
  作動流体 5      蒸気泡 H      受熱手段 C      放熱手段 H−S  受熱用ヒートシンク
1 Thin tube container 1-H Heat receiving section 1-C Heat radiation section 1-E Thin tube end sealing section 2 Loop type thin tube container 3 Circulation direction regulating means (check valve) 4
Working fluid 5 Steam bubble H Heat receiving means C Heat radiating means H-S Heat receiving heat sink

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  密閉細管コンテナは真空封入されてあ
る所定の2相凝縮性作動流体が、その表面張力によりコ
ンテナ内を常に充填閉塞したままの状態で移動すること
が出来る様、充分に小さい内径に形成された長尺金属細
管で構成されてあり、その所定の複数部分が受熱部とし
て他の所定の複数部分が放熱部として構成されてあり、
且つ放熱部は複数の受熱部の間に位置する様構成されて
あることを特徴とするマイクロヒートパイプ。
Claim 1: A sealed capillary container has a sufficiently small inner diameter so that a predetermined two-phase condensable working fluid sealed under vacuum can move inside the container in a constantly filled and closed state due to its surface tension. A plurality of predetermined portions thereof are configured as a heat receiving portion and a plurality of other predetermined portions are configured as a heat dissipation portion.
A micro heat pipe characterized in that the heat radiating section is configured to be located between the plurality of heat receiving sections.
【請求項2】  密閉細管コンテナは長尺の金属細管が
多数ターンの蛇行形状か螺旋形状の何れかの形状に形成
され、その両端末が気密に封止されて形成された細管コ
ンテナであり、その各ターンの夫々の所定の部分が単数
又は複数の受熱部と単数又は複数の放熱部として構成さ
れてあることを特徴とする請求項1のマイクロヒートパ
イプ。
2. A sealed capillary container is a capillary container in which a long metal capillary is formed into either a meandering shape with many turns or a spiral shape, and both ends of the tube are hermetically sealed; 2. The micro heat pipe according to claim 1, wherein each predetermined portion of each turn is configured as one or more heat receiving parts and one or more heat radiating parts.
【請求項3】  長尺金属細管はその内径が1.2mm
以下であり、金属細管は無酸素銅細管であることを特徴
とする請求項1のマイクロヒートパイプ。
[Claim 3] The long metal thin tube has an inner diameter of 1.2 mm.
2. The micro heat pipe according to claim 1, wherein the metal capillary is an oxygen-free copper capillary.
JP3061385A 1990-11-22 1991-01-09 Micro heat pipe Expired - Lifetime JP2714883B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP3061385A JP2714883B2 (en) 1991-01-09 1991-01-09 Micro heat pipe
US07/745,555 US5219020A (en) 1990-11-22 1991-08-15 Structure of micro-heat pipe
DE4132290A DE4132290C2 (en) 1990-11-22 1991-09-27 Heat transfer device
GB9123131A GB2250087B (en) 1990-11-22 1991-10-31 Structure of micro-heat pipe
FR9114014A FR2669719B1 (en) 1990-11-22 1991-11-14 HOT TUBE HEAT PIPE AND METHOD FOR MANUFACTURING SAME.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3061385A JP2714883B2 (en) 1991-01-09 1991-01-09 Micro heat pipe

Publications (2)

Publication Number Publication Date
JPH04251189A true JPH04251189A (en) 1992-09-07
JP2714883B2 JP2714883B2 (en) 1998-02-16

Family

ID=13169653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3061385A Expired - Lifetime JP2714883B2 (en) 1990-11-22 1991-01-09 Micro heat pipe

Country Status (1)

Country Link
JP (1) JP2714883B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0914875A (en) * 1995-06-29 1997-01-17 Akutoronikusu Kk Porous flat metal tube heat pipe type heat exchanger
US5697428A (en) * 1993-08-24 1997-12-16 Actronics Kabushiki Kaisha Tunnel-plate type heat pipe
JP2001298139A (en) * 2000-04-18 2001-10-26 Ts Heatronics Co Ltd Heat sink and manufacturing method thereof
CN102538525A (en) * 2011-12-23 2012-07-04 航天科工哈尔滨风华有限公司 Process for filling low temperature heat pipe media
JP2015141002A (en) * 2014-01-30 2015-08-03 富士通株式会社 Manufacturing method of heat pipe, heat pipe, and electronic apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008016788A (en) * 2006-07-05 2008-01-24 Ts Heatronics Co Ltd Electronic device temperature regulator and electronic device manufacturing apparatus using the same
JP5424107B2 (en) * 2009-10-20 2014-02-26 中部電力株式会社 Superconducting magnet with self-excited vibration heat pipe

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62252892A (en) * 1986-04-23 1987-11-04 Akutoronikusu Kk Meandering loop shaped heat pipe

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62252892A (en) * 1986-04-23 1987-11-04 Akutoronikusu Kk Meandering loop shaped heat pipe

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5697428A (en) * 1993-08-24 1997-12-16 Actronics Kabushiki Kaisha Tunnel-plate type heat pipe
JPH0914875A (en) * 1995-06-29 1997-01-17 Akutoronikusu Kk Porous flat metal tube heat pipe type heat exchanger
JP2001298139A (en) * 2000-04-18 2001-10-26 Ts Heatronics Co Ltd Heat sink and manufacturing method thereof
CN102538525A (en) * 2011-12-23 2012-07-04 航天科工哈尔滨风华有限公司 Process for filling low temperature heat pipe media
JP2015141002A (en) * 2014-01-30 2015-08-03 富士通株式会社 Manufacturing method of heat pipe, heat pipe, and electronic apparatus

Also Published As

Publication number Publication date
JP2714883B2 (en) 1998-02-16

Similar Documents

Publication Publication Date Title
US5219020A (en) Structure of micro-heat pipe
JP3158267B2 (en) Loop type meandering thin tube heat pipe
US6173761B1 (en) Cryogenic heat pipe
CN100426494C (en) Heat radiator of heat pipe
JPH0420788A (en) Cooling device and temperature control device
JPH0914875A (en) Porous flat metal tube heat pipe type heat exchanger
WO2007136379A1 (en) Spiral flat-tube heat exchanger
JPH04251189A (en) Micro heat pipe
JPH0697147B2 (en) Loop type thin tube heat pipe
US6655450B2 (en) Forced oscillatory flow type heat pipe and designing method for the same
JPS60263088A (en) Heat exchanger
JP3713633B2 (en) Closed temperature control system
JPH0566095A (en) Heat joint device and manufacture thereof
JPH0724293B2 (en) Boiling cooler
JPH01111197A (en) Heat transfer device
JP3695892B2 (en) Loop type heat pipe
JPH10339592A (en) Pressure proof structured thin plate heat pipe and manufacture thereof
Brooks et al. Nuclear Power Plants: Design and Performance of Liquid-metal Heat Exchangers and Steam Generators
JPS60232496A (en) Heat exchanger
JP2000205674A (en) Heat exchanger for pulse pipe refrigerating machine
US20220243995A1 (en) Heat pipe
JPH0849991A (en) Closed system temperature controller
JP7370883B2 (en) Heat transfer member and cooling device having heat transfer member
CN219200138U (en) Novel pulsation heat pipe radiator
JP2004257682A (en) Evaporator

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071107

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091107

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101107

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101107

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 14

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 14

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370