JP3158033B2 - High frequency circuit board - Google Patents

High frequency circuit board

Info

Publication number
JP3158033B2
JP3158033B2 JP34230095A JP34230095A JP3158033B2 JP 3158033 B2 JP3158033 B2 JP 3158033B2 JP 34230095 A JP34230095 A JP 34230095A JP 34230095 A JP34230095 A JP 34230095A JP 3158033 B2 JP3158033 B2 JP 3158033B2
Authority
JP
Japan
Prior art keywords
adhesion layer
layer
line
circuit board
dielectric substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34230095A
Other languages
Japanese (ja)
Other versions
JPH09186509A (en
Inventor
慎一 郡山
謙治 北澤
幹男 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP34230095A priority Critical patent/JP3158033B2/en
Publication of JPH09186509A publication Critical patent/JPH09186509A/en
Application granted granted Critical
Publication of JP3158033B2 publication Critical patent/JP3158033B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Waveguides (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高周波素子等が搭
載され、マイクロストリップ線路、ストリップ線路、コ
プレーナ線路等の伝送線路が形成された回路基板に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a circuit board on which a high-frequency element or the like is mounted and on which a transmission line such as a microstrip line, a strip line or a coplanar line is formed.

【0002】[0002]

【従来技術】一般に、高周波用からミリ波領域における
伝送線路のうち、スパッタリング等の薄膜法を用いて形
成されるマイクロストリップ線路等の伝送線路として
は、一般には、Cu,Al,Au等の電気抵抗率の小さ
な金属導体が用いられる。
2. Description of the Related Art Generally, among transmission lines in a high frequency range to a millimeter wave region, transmission lines such as microstrip lines formed by using a thin film method such as sputtering generally include electric lines such as Cu, Al and Au. A metal conductor having a small resistivity is used.

【0003】ところが、これらの金属導体は、基板とな
る誘電体基板との密着力が小さいため、導体の剥離を防
止することを目的として、金属導体と誘電体基板の間に
密着層を介在させる。通常形成される密着層としては、
Cr、Ti等の純金属や、Ni−Cr,Ta−N,Ti
−W等が用いられている。
However, since these metal conductors have a small adhesive force with a dielectric substrate as a substrate, an adhesive layer is interposed between the metal conductor and the dielectric substrate for the purpose of preventing peeling of the conductor. . As a normally formed adhesion layer,
Pure metals such as Cr and Ti, Ni-Cr, Ta-N, Ti
-W or the like is used.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、これら
の伝送線路を、たとえばミリ波帯のような周波数の高い
領域で使用する場合、導体の抵抗に起因する導体損失は
周波数の平方根に比例して、誘電体基板の誘電正接に起
因する誘電体損は周波数に比例して周波数の上昇にとも
ない増加し、信号の減衰が著しく大きくなる。特に配線
密度を大きくするために配線幅を小さくすると、導体損
が大きくなりデバイスへの要求特性が厳しいものになっ
ているのが現状である。
However, when these transmission lines are used in a high frequency region such as a millimeter wave band, the conductor loss due to the resistance of the conductor is proportional to the square root of the frequency. The dielectric loss caused by the dielectric loss tangent of the dielectric substrate increases in proportion to the frequency as the frequency increases, and the signal attenuation increases significantly. In particular, if the wiring width is reduced in order to increase the wiring density, the conductor loss increases and the required characteristics of the device are strict at present.

【0005】従って、ミリ波帯のような周波数の高い領
域で用いる伝送線路においては、密着層としてできるだ
け電気抵抗率の小さな物質をできるだけ薄く形成して、
伝送損失が大きくなりすぎないようにする必要があっ
た。
Therefore, in a transmission line used in a high frequency region such as a millimeter wave band, a material having as small an electric resistivity as possible is formed as an adhesive layer as thin as possible.
It was necessary to prevent transmission loss from becoming too large.

【0006】ところが、いかに密着層の電気抵抗率を小
さくし、薄くしても密着層の存在は、原理的にその伝送
線路の伝送損失を増大させてしまうという問題は回避す
ることができない。特に取り扱う信号の周波数が高くな
ると、導体表面の電流が流れる領域の深さ、即ち、表皮
深さが小さくなり、密着層の影響が相対的に大きくなっ
てしまう。
However, no matter how the electrical resistivity of the adhesive layer is reduced and reduced, the problem that the presence of the adhesive layer in principle increases the transmission loss of the transmission line cannot be avoided. In particular, when the frequency of the signal to be handled is increased, the depth of the region on the conductor surface where the current flows, that is, the skin depth is reduced, and the influence of the adhesion layer is relatively increased.

【0007】本発明は、このような課題を解決すること
を目的とし、導体層と誘電体基板との間に密着層を有し
ていながら、伝送損失が、密着層がない場合と同程度に
小さい伝送線路を具備した回路基板を提供することを目
的としている。
An object of the present invention is to solve such a problem, and while having an adhesion layer between a conductor layer and a dielectric substrate, the transmission loss is reduced to the same level as when there is no adhesion layer. It is an object of the present invention to provide a circuit board having a small transmission line.

【0008】[0008]

【課題を解決するための手段】本発明者らは、密着層を
伝送線路の一部とする考え方に反し、密着層を誘電体基
板の一部としてみなすことにより、伝送線路の電気特性
を良電気伝導性の金属導体の電気特性のみに支配され、
密着層の影響を限りなく小さくできることを見出し、本
発明に至った。
In contrast to the idea that the adhesion layer is a part of the transmission line, the present inventors consider the adhesion layer as a part of the dielectric substrate to improve the electrical characteristics of the transmission line. Dominated solely by the electrical properties of electrically conductive metal conductors,
The inventors have found that the influence of the adhesive layer can be reduced as much as possible, and have reached the present invention.

【0009】即ち、本発明の高周波回路基板は、誘電体
基板の表面に、薄膜法により、Cu、Au、Alの群か
ら選ばれる少なくとも1種からなる金属導体層を有し、
マイクロストリップ線路、ストリップ線路、コプレーナ
線路、スロット線路のうちの少なくと1種を形成する伝
送線路が形成された回路基板において、前記金属導体層
と前記誘電体基板との間に、Ti、Taのうちの少なく
とも1種を含む化合物からなる電気抵抗率が4.4mΩ
cm以上の密着層を介在させたことを特徴とするもので
ある。
That is, the high-frequency circuit board of the present invention has a metal conductor layer made of at least one selected from the group consisting of Cu, Au and Al on a surface of a dielectric substrate by a thin film method.
In a circuit board on which a transmission line forming at least one of a microstrip line, a strip line, a coplanar line, and a slot line is formed, between the metal conductor layer and the dielectric substrate, The electrical resistivity of a compound containing at least one of them is 4.4 mΩ.
cm or more with an adhesive layer interposed therebetween.

【0010】[0010]

【作用】従来、高周波回路基板における伝送線路とし
て、Cu、Au等の良電気伝導性の金属導体からなる伝
送線路を薄膜法で形成し、誘電体基板と、金属導体と間
に密着層としてたとえば主成分がTiである物質を用い
た場合について説明する。
Conventionally, as a transmission line in a high-frequency circuit board, a transmission line made of a metal conductor having good electrical conductivity such as Cu or Au is formed by a thin film method. A case where a substance whose main component is Ti is used will be described.

【0011】Tiは密着力が大きく一般的に密着層とし
て、好適に用いられるが、その電気抵抗率は純Tiの場
合でも約80μΩcmと大きい。導体としてCuを用い
た場合、その電気抵抗率は1.7μΩcmであるので、
Tiからなる密着層の電気抵抗率は、金属導体層の電気
抵抗率よりも約50倍大きいことになる。
Although Ti has a large adhesive force and is preferably used as an adhesive layer in general, its electrical resistivity is as large as about 80 μΩcm even in the case of pure Ti. When Cu is used as the conductor, its electrical resistivity is 1.7 μΩcm,
The electrical resistivity of the adhesion layer made of Ti is about 50 times larger than the electrical resistivity of the metal conductor layer.

【0012】伝送線路を伝送させる信号の周波数が高く
なると、金属導体層中に流れる電流は、導体パターンの
表面に集中するようになる。この導体表面を流れる電流
が、表面からどれくらいの深さまで流れるかの目安にな
る表皮深さは、たとえば60GHzのミリ波で、導体が
純Cuの場合、0.27μmとなり、密着層厚みが0.
1μmの場合、かなりの電流が電気抵抗率の高い密着層
中を流れるために、密着層での損失が問題となる。
When the frequency of the signal transmitted through the transmission line increases, the current flowing in the metal conductor layer concentrates on the surface of the conductor pattern. The skin depth, which is an indication of how deep the current flowing on the conductor surface flows from the surface, is, for example, a millimeter wave of 60 GHz. When the conductor is pure Cu, the skin depth is 0.27 μm, and the thickness of the adhesion layer is 0.
In the case of 1 μm, a considerable current flows through the adhesion layer having a high electric resistivity, and thus a problem of loss at the adhesion layer becomes a problem.

【0013】そこで、通常、この線路構成で伝送損失を
小さくするために、密着層の厚みを薄くすればよいが、
薄くしすぎると密着効果がなくなってしまうので、せい
ぜい0.05μm程度の厚みが必要である。つまり、電
気抵抗の大きい密着層が存在している以上、伝送損失が
存在し、しかも密着層は最も電流が集中する誘電体基板
との界面に存在しているため、伝送損失は密着層がない
場合に比べ明らかに大きくなってしまう。
Therefore, in order to reduce the transmission loss in this line configuration, the thickness of the adhesion layer may be reduced.
If the thickness is too small, the adhesion effect is lost, so a thickness of at most about 0.05 μm is required. That is, as long as the adhesion layer having a large electric resistance is present, transmission loss is present, and since the adhesion layer is present at the interface with the dielectric substrate where the current is concentrated most, the transmission loss is not caused by the adhesion layer. It is clearly larger than the case.

【0014】Tiのかわりに電気抵抗率が比較的小さい
Cr(約17μΩcm)を用いた場合、密着層による伝
送特性の劣化はTiよりも小さくなるものの、原理的に
は、金属導体層よりも電気抵抗率の大きい密着層中を一
部の電流が流れるため、密着層がない場合に比べ伝送損
失は必然的に大きくなる。
When Cr (approximately 17 μΩcm) having a relatively small electric resistivity is used in place of Ti, although the deterioration of the transmission characteristics due to the adhesion layer is smaller than that of Ti, in principle, the electric conductivity is smaller than that of the metal conductor layer. Since a part of the current flows in the close contact layer having a large resistivity, the transmission loss is inevitably increased as compared with the case where no close contact layer is provided.

【0015】これに対し、本発明によれば、密着層の電
気抵抗率を4.4mΩcm以上にまで高めることによ
り、高周波の信号が伝送される時に電流は、密着層を流
れることがなくなるために、密着層の存在による伝送損
失を実質的に皆無とすることができるのである。
On the other hand, according to the present invention, by increasing the electric resistivity of the adhesion layer to 4.4 mΩcm or more, the current does not flow through the adhesion layer when a high-frequency signal is transmitted. In addition, transmission loss due to the presence of the adhesion layer can be substantially eliminated.

【0016】[0016]

【発明の実施の形態】本発明の高周波回路基板を図1を
もとに説明する。図1において、1は、誘電体基板、2
は、金属導体層であり、電気抵抗率が10mΩcm以下
の金属、具体的にはCu、Al、Auの良電気伝導性の
金属により回路パターンが形成される。この金属導体層
2は、薄膜法により形成されたものであり、例えば、金
属蒸着法、スパッタリング法等の手法により厚み10μ
m以下の薄膜として形成されたものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A high-frequency circuit board according to the present invention will be described with reference to FIG. In FIG. 1, 1 is a dielectric substrate, 2
Is a metal conductor layer, and a circuit pattern is formed of a metal having an electric resistivity of 10 mΩcm or less, specifically, a metal having good electric conductivity such as Cu, Al and Au. The metal conductor layer 2 is formed by a thin film method. For example, the metal conductor layer 2 has a thickness of 10 μm by a method such as a metal deposition method or a sputtering method.
m.

【0017】この薄膜法により形成された金属導体層2
は、誘電体基板との密着性が低いために、密着性を高め
るために誘電体基板1と金属導体層2との間に密着層3
を形成する。本発明によれば、この密着層を電気抵抗率
が4.4mΩcm以上の材質により形成することが大き
な特徴である。この密着層の電気抵抗率を4.4mΩc
m以上に限定したのは、電気抵抗率が4.4mΩcmよ
り小さいと、高周波の信号が伝送線路を流れる時に、電
流が密着層3を流れるために、伝送損失が大きくなって
しまうためである。望ましくは、密着層の電気抵抗率が
100mΩcm以上であることがよい。
The metal conductor layer 2 formed by this thin film method
Since the adhesiveness between the dielectric substrate 1 and the metal conductor layer 2 is high because the adhesiveness with the dielectric substrate is low,
To form According to the present invention, it is a great feature that this adhesion layer is formed of a material having an electric resistivity of 4.4 mΩcm or more. The electric resistivity of this adhesion layer is 4.4 mΩc.
The reason why the electric resistance is limited to m or more is that when the electric resistivity is smaller than 4.4 mΩcm, when a high-frequency signal flows through the transmission line, a current flows through the adhesion layer 3, so that transmission loss increases. Desirably, the electrical resistivity of the adhesion layer is 100 mΩcm or more.

【0018】この密着層としては、Cu、Al、Au等
の金属導体層2と誘電体基板1との密着性を高める上
で、Ti、Taのうちの少なくとも1種を含む、酸化
物、窒化物、炭化物等の無機化合物を含むことが望まし
い。この密着層も金属導体層1と同様に薄膜法により形
成されたものであり、0.01〜10μm、特に0.0
5〜2μmの厚みで形成されることが望ましい。
The adhesion layer may be formed of an oxide, a nitride containing at least one of Ti and Ta in order to enhance the adhesion between the metal conductor layer 2 of Cu, Al, Au or the like and the dielectric substrate 1. It is desirable to include an inorganic compound such as a substance, a carbide and the like. This adhesion layer is also formed by a thin film method similarly to the metal conductor layer 1, and is 0.01 to 10 μm, particularly 0.0
It is desirable to form it with a thickness of 5 to 2 μm.

【0019】このような密着層を薄膜法により形成する
には、例えば、Ti化合物をスパッタリング法により形
成する場合、蒸着源からTi原子を蒸発させると同時
に、スパッタガス中に若干のO2 ガスやN2 ガスを混入
させて、気相中あるいは成膜最表層上で反応させ、Ti
の一部を酸化物あるいは窒化物にすることにより密着層
の電気抵抗率を大きくすることが可能である。
In order to form such an adhesion layer by a thin film method, for example, when a Ti compound is formed by a sputtering method, a slight amount of O 2 gas or N 2 gas is mixed and reacted in the gas phase or on the outermost layer of the film to form a Ti 2
It is possible to increase the electric resistivity of the adhesion layer by making a part of the oxide or the nitride.

【0020】なお、密着層として、酸化物あるいは窒化
物が混入すると、純Tiからなる密着層に比較して密着
力が低下する場合もあるが、成膜初期は純Ar中で成膜
して、純Ti層を形成し、その後、徐々にO2 ガスやN
2 ガスを導入して密着層の厚さ方向に組成分布をもたせ
ることにより密着力の低下を抑えることができる。
When an oxide or a nitride is mixed in the adhesion layer, the adhesion may be lower than that of the adhesion layer made of pure Ti. , A pure Ti layer is formed, and then O 2 gas or N
By introducing two gases to give a composition distribution in the thickness direction of the adhesion layer, it is possible to suppress a decrease in adhesion.

【0021】具体的に誘電体基板表面に伝送線路を形成
するには、上記のようにして密着層を形成した後、さら
にCu、Al、Au等の良電気伝導性の金属導体を純A
r中で形成した後、周知のフォトリソグラフィ等の手法
によりパターンを形成すればよい。
Specifically, in order to form a transmission line on the surface of a dielectric substrate, after forming an adhesion layer as described above, a metal conductor having good electric conductivity such as Cu, Al, Au, etc.
After the formation in R, a pattern may be formed by a known method such as photolithography.

【0022】なお、本発明において誘電体基板の表面に
形成される伝送線路は、マイクロストリップ線路、スト
リップ線路、コプレーナ線路、スロット線路のうちの少
なくと1種を形成する場合に好適である。
In the present invention, the transmission line formed on the surface of the dielectric substrate is suitable for forming at least one of a microstrip line, a strip line, a coplanar line, and a slot line.

【0023】また、伝送線路が形成される誘電体基板と
しては、純度99%以上の高純度アルミナ基板の他、ガ
ラスセラミックス基板、マグネシア基板等のセラミック
基板の他、石英ガラス基板等のガラス基板、サファイア
基板等の単結晶基板が好適に用いられる。
The dielectric substrate on which the transmission line is formed may be a high-purity alumina substrate having a purity of 99% or more, a ceramic substrate such as a glass ceramic substrate or a magnesia substrate, a glass substrate such as a quartz glass substrate, or the like. A single crystal substrate such as a sapphire substrate is preferably used.

【0024】[0024]

【実施例】【Example】

実施例1 誘電体基板として、純度99.6%のアルミナ焼結体か
らなり、両面を鏡面研磨した厚さ310μmの基板を準
備した。この基板の一表面にスパッタリング法によりT
i、またはTi化合物を蒸着し、次いで裏面にも同様に
Tiを主成分とした密着層を形成した。この時の蒸着源
として純度99.9%のTi金属を用い、基板温度15
0℃、全圧10mTorrに一定とし、Ar、O2 、N
2 の流量を表1のように変化させて行った。
Example 1 A 310 μm-thick substrate made of an alumina sintered body having a purity of 99.6% and mirror-polished on both sides was prepared as a dielectric substrate. One surface of this substrate is T
i or a Ti compound was deposited, and then an adhesion layer containing Ti as a main component was similarly formed on the back surface. At this time, Ti metal having a purity of 99.9% was used as an evaporation source, and the substrate temperature was set to 15%.
0 ° C., total pressure 10 mTorr, Ar, O 2 , N
The second flow was conducted varied as in Table 1.

【0025】その後、密着層の表面に金属導体層として
スパッタリング法により、Ar中でCuを2μmずつ両
面に形成した。その後、フォトリソグラフィ技術を用い
て、導体幅300μm、長さが5cmのマイクロストリ
ップ線路を作製した。作製した伝送線路の20GHzに
おける伝送損失をネットワークアナライザーで測定し
た。なお、密着層形成のためのスパッタリング条件、密
着層厚み、密着層の電気抵抗率、20GHzにおける伝
送損失は表1に示した。
Then, Cu was formed on both surfaces in Ar by 2 μm in Ar as a metal conductor layer by sputtering on the surface of the adhesion layer. Thereafter, a microstrip line having a conductor width of 300 μm and a length of 5 cm was manufactured by using a photolithography technique. The transmission loss at 20 GHz of the produced transmission line was measured with a network analyzer. Table 1 shows the sputtering conditions for forming the adhesion layer, the thickness of the adhesion layer, the electrical resistivity of the adhesion layer, and the transmission loss at 20 GHz.

【0026】また、得られた伝送線路の誘電体基板に対
する密着性を調べた。密着性は、上記と同様にして作製
した1mm×1mmのパッドに金属金具を半田付けし,
その金具を引っ張り,金具が剥がれた時の引っ張り力を
密着力として評価した。また,参考として、密着層を何
ら形成しないものを作製し、同様に評価を行った。
Further, the adhesion of the obtained transmission line to the dielectric substrate was examined. Adhesion was measured by soldering a metal fitting to a 1 mm x 1 mm pad made in the same manner as above.
The metal fitting was pulled, and the tensile force when the metal fitting was peeled was evaluated as the adhesion. In addition, for reference, a sample in which no adhesion layer was formed was prepared and similarly evaluated.

【0027】[0027]

【表1】 [Table 1]

【0028】表1より、密着層の厚みが0.2μmの線
路で比較すると、密着層を純Tiから形成した試料No.
1では、伝送線路の伝送損失は30dB/mであるのに
対して、スパッタリング時にO2 ガスやN2 ガスを導入
し、密着層の電気抵抗率を大きくすると、伝送損失が小
さくなっていることがわかる。これは、密着層の電気抵
抗率が大きくなったことにより、密着層中を流れる電流
が小さくなり、密着層による損失が小さくなったためと
考えられる。この場合、伝送損失低減の効果が認められ
るのは、密着層の電気抵抗率が4.4mΩcm以上の場
合であった。
From Table 1, it can be seen from the comparison of the line having a thickness of 0.2 μm that the sample No.
In the case of No. 1, the transmission loss of the transmission line is 30 dB / m, but when O 2 gas or N 2 gas is introduced during sputtering and the electric resistivity of the adhesion layer is increased, the transmission loss is reduced. I understand. This is considered to be because the current flowing in the adhesion layer was reduced due to the increase in the electrical resistivity of the adhesion layer, and the loss due to the adhesion layer was reduced. In this case, the effect of reducing the transmission loss was recognized when the electrical resistivity of the adhesion layer was 4.4 mΩcm or more.

【0029】また、誘電体基板との密着性においても、
純Tiからなる密着層を形成した場合に比較して若干の
低下があるが、実用上は何ら問題のないものであった。
Further, the adhesion to the dielectric substrate is also
Although there was a slight decrease as compared with the case where the adhesion layer made of pure Ti was formed, there was no problem in practical use.

【0030】実施例2 密着層形成時の蒸着源としてTaを用いる以外は、実施
例1と同様にしてマイクロストリップ伝送線路が形成さ
れた回路基板を作製した。基板、成膜方法、試料の加
工、評価はスパッタリングのターゲット以外は実施例1
と同様である。表2にスパッタリング時のガス流量、密
着層厚み、密着層の電気抵抗率、20GHzにおける伝
送損失、および密着力を示す。
Example 2 A circuit board on which a microstrip transmission line was formed was manufactured in the same manner as in Example 1 except that Ta was used as a vapor deposition source when forming an adhesion layer. The substrate, the film forming method, the processing of the sample, and the evaluation were the same as those in Example 1 except for the sputtering target.
Is the same as Table 2 shows the gas flow rate during sputtering, the thickness of the adhesion layer, the electrical resistivity of the adhesion layer, the transmission loss at 20 GHz, and the adhesion.

【0031】[0031]

【表2】 [Table 2]

【0032】表2より、密着層の厚みが0.1μmの線
路で比較すると、スパッタリング時にO2 ガスをN2
スと同時に導入し、密着層の電気抵抗率を大きくする
と、伝送損失が小さくなっていることがわかる。この場
合、密着層の電気抵抗率が6.0mΩcmにおいて伝送
損失低減の効果が認められた。
From Table 2, it can be seen that the transmission loss is reduced when the O 2 gas is introduced simultaneously with the N 2 gas at the time of sputtering and the electric resistivity of the adhesion layer is increased, when comparing the lines with the thickness of the adhesion layer of 0.1 μm. You can see that it is. In this case, the effect of reducing transmission loss was observed when the electrical resistivity of the adhesion layer was 6.0 mΩcm.

【0033】[0033]

【発明の効果】以上詳述した通り、本発明によれば、高
周波回路基板における薄膜法により伝送線路として形成
された金属導体層の誘電体基板との間に密着力を変える
ことなく、密着層による伝送損失を密着層が存在しない
場合と同等程度に小さくすることができる。これにより
マイクロストリップ線路等を備えた高周波回路基板とし
て、信頼性の高い基板を得ることができる。
As described above in detail, according to the present invention, the adhesion layer between the metal conductor layer formed as the transmission line by the thin film method on the high-frequency circuit board and the dielectric substrate is not changed. Can be reduced to the same extent as the case where the adhesion layer is not present. As a result, a highly reliable substrate can be obtained as a high-frequency circuit substrate including a microstrip line or the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の高周波回路基板の構造を説明するため
の図である。
FIG. 1 is a diagram for explaining the structure of a high-frequency circuit board according to the present invention.

【符号の説明】[Explanation of symbols]

1 誘電体基板 2 金属導体層 3 密着層 DESCRIPTION OF SYMBOLS 1 Dielectric substrate 2 Metal conductor layer 3 Adhesion layer

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−72200(JP,A) 特開 平4−174590(JP,A) 特開 平2−90693(JP,A) 特開 昭54−73275(JP,A) 特開 平5−347501(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01P 3/08 H05K 1/09 H05K 3/38 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-62-72200 (JP, A) JP-A-4-174590 (JP, A) JP-A-2-90693 (JP, A) JP-A-54-72 73275 (JP, A) JP-A-5-347501 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01P 3/08 H05K 1/09 H05K 3/38

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】誘電体基板の表面に、薄膜法により、C
u、Au、Alの群から選ばれる少なくとも1種からな
る金属導体層を有し、マイクロストリップ線路、ストリ
ップ線路、コプレーナ線路、スロット線路のうちの少な
くと1種を形成する伝送線路が形成された回路基板にお
いて、前記金属導体層と前記誘電体基板との間に、T
i、Taのうちの少なくとも1種を含む化合物からなる
電気抵抗率が4.4mΩcm以上の密着層を介在させた
ことを特徴とする高周波回路基板。
1. The method according to claim 1, wherein the surface of the dielectric substrate is coated with C
A transmission line having at least one type of metal conductor layer selected from the group consisting of u, Au, and Al and forming at least one of a microstrip line, a strip line, a coplanar line, and a slot line is formed. In the circuit board, T is provided between the metal conductor layer and the dielectric substrate.
A high-frequency circuit board, comprising an adhesion layer made of a compound containing at least one of i and Ta and having an electrical resistivity of 4.4 mΩcm or more.
JP34230095A 1995-12-28 1995-12-28 High frequency circuit board Expired - Fee Related JP3158033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34230095A JP3158033B2 (en) 1995-12-28 1995-12-28 High frequency circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34230095A JP3158033B2 (en) 1995-12-28 1995-12-28 High frequency circuit board

Publications (2)

Publication Number Publication Date
JPH09186509A JPH09186509A (en) 1997-07-15
JP3158033B2 true JP3158033B2 (en) 2001-04-23

Family

ID=18352665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34230095A Expired - Fee Related JP3158033B2 (en) 1995-12-28 1995-12-28 High frequency circuit board

Country Status (1)

Country Link
JP (1) JP3158033B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9109784B2 (en) 2011-09-26 2015-08-18 Posco Led Company Ltd. LED-based lighting apparatus with heat pipe cooling structure

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007109825A (en) 2005-10-12 2007-04-26 Nec Corp Multilayer wiring board, semiconductor device using the same, and their manufacturing methods
JP4453036B2 (en) 2006-12-22 2010-04-21 エルピーダメモリ株式会社 Semiconductor device and package substrate
JP5440898B2 (en) * 2008-04-08 2014-03-12 日立金属株式会社 High frequency transmission line and circuit board using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9109784B2 (en) 2011-09-26 2015-08-18 Posco Led Company Ltd. LED-based lighting apparatus with heat pipe cooling structure

Also Published As

Publication number Publication date
JPH09186509A (en) 1997-07-15

Similar Documents

Publication Publication Date Title
CN102342187B (en) Coverlay film, method for manufacturing coverlay film, and flexible printed wiring board
EP1562288A2 (en) Surface acoustic wave device
US4434544A (en) Multilayer circuit and process for manufacturing the same
US5111003A (en) Multilayer wiring substrate
US6331811B2 (en) Thin-film resistor, wiring substrate, and method for manufacturing the same
KR100217462B1 (en) Thin-film multilayered electrode
JP3158033B2 (en) High frequency circuit board
JPH04212441A (en) Ceramic wiring board
Ramy et al. Optimization of the thick-and thin-film technologies for microwave circuits on alumina and fused silica substrates
JP2954562B2 (en) Superconducting planar circuit and manufacturing method thereof
RU2287875C2 (en) Microwave hybrid integrated circuit and its manufacturing process
EP0797266B1 (en) Dielectric filter and method of making same
JP2650721B2 (en) High power type thin film resistor for high frequency
JPH09116306A (en) Microstrip line filter
JP2839523B2 (en) Dielectric substrate with metal film for matching circuit formation
JPS59169157A (en) High frequency circuit
JPH04351102A (en) Microstrip line
JPS62198191A (en) Manufacture of microwave integrated circuit substrate
JP3677381B2 (en) Wiring board
JP3199563B2 (en) Wiring board
EP0130468A2 (en) Protective coatings for conductors to prevent mechanical and electronic failures particularly during heat-treatment of their supporting structures
Johnson et al. Advances in thick film conductors for microwave integrated circuits
JPH0818201A (en) Thick film circuit board and its manufacture
JP2962846B2 (en) Wiring board
Bharti et al. Thin films for MIC applications

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090209

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees