JP3154139B2 - Method of manufacturing complementary MOS semiconductor device - Google Patents

Method of manufacturing complementary MOS semiconductor device

Info

Publication number
JP3154139B2
JP3154139B2 JP11725392A JP11725392A JP3154139B2 JP 3154139 B2 JP3154139 B2 JP 3154139B2 JP 11725392 A JP11725392 A JP 11725392A JP 11725392 A JP11725392 A JP 11725392A JP 3154139 B2 JP3154139 B2 JP 3154139B2
Authority
JP
Japan
Prior art keywords
region
impurity
insulating film
type
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11725392A
Other languages
Japanese (ja)
Other versions
JPH05315556A (en
Inventor
▲隆▼ 野口
豊隆 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP11725392A priority Critical patent/JP3154139B2/en
Publication of JPH05315556A publication Critical patent/JPH05315556A/en
Application granted granted Critical
Publication of JP3154139B2 publication Critical patent/JP3154139B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】相補型MOS(CMOS)半導体
装置の製造方法に係り、特にエキシマレーザードーピン
グ(アニール)を用いて、p−MOSの接合形成とn−
MOSの活性化が同時処理できるCMOS半導体装置の
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a complementary MOS (CMOS) semiconductor device, and more particularly to a method for forming a p-MOS junction and an n-type semiconductor using excimer laser doping (annealing).
The present invention relates to a method for manufacturing a CMOS semiconductor device capable of simultaneously processing MOS activation.

【0002】[0002]

【従来の技術】LSIの高集積化と共に、MOSFET
では微細化のために高濃度でかつ浅い接合(Shallow Ju
nction)が必要となっている。
2. Description of the Related Art Along with the high integration of LSI, MOSFET
In order to reduce the size, shallow junctions (Shallow Ju
nction) is needed.

【0003】このような浅い接合の形成は、従来イオン
注入(II)の後に炉アニールする方法が主流となって
行なわれている。
Conventionally, such a shallow junction is formed mainly by a furnace annealing after ion implantation (II).

【0004】図2は従来のCMOSトランジスタの製造
工程を示す断面図である。まず、図2(a)に示すよう
に、nウェル3を有し、LOCOS酸化膜2を素子分離
膜とするp型シリコン基板1にnMOSトランジスタと
pMOSトランジスタになるゲート電極5a及び5bが
形成されている。ゲート電極5aと5bの下には、ゲー
ト酸化膜(SiO2)4が形成されている。
FIG. 2 is a sectional view showing a process for manufacturing a conventional CMOS transistor. First, as shown in FIG. 2A, an nMOS transistor and gate electrodes 5a and 5b to be pMOS transistors are formed on a p-type silicon substrate 1 having an n-well 3 and using a LOCOS oxide film 2 as an element isolation film. ing. A gate oxide film (SiO 2 ) 4 is formed below the gate electrodes 5a and 5b.

【0005】pMOSトランジスタ側(nウェル3形成
側)上にレジスト膜10aを塗布し、全面に砒素イオン
(As+)をイオン注入し、n+イオン注入領域6a,6
bを形成する。
A resist film 10a is applied on the pMOS transistor side (the side on which the n-well 3 is formed), and arsenic ions (As + ) are ion-implanted over the entire surface to form n + ion-implanted regions 6a, 6a.
b is formed.

【0006】次に、図2(b)に示すように、レジスト
膜10aを除去した後、炉アニールを施し、イオン注入
領域を活性化してn+ソース(S)領域7a、n+ドレイ
ン(D)領域7bを形成する。
Next, as shown in FIG. 2B, after the resist film 10a is removed, annealing is performed in a furnace to activate the ion-implanted region to thereby make the n + source (S) region 7a and the n + drain (D ) Form a region 7b.

【0007】次に、図2(c)に示すように、nMOS
トランジスタ側上にレジスト膜10bを塗布し、全面に
ボロンイオン(B+)を注入してp+イオン注入領域6
c,6dを形成する。
Next, as shown in FIG.
A resist film 10b is applied on the transistor side, and boron ions (B + ) are implanted into the entire surface to form a p + ion implanted region 6.
c, 6d are formed.

【0008】次に、図2(d)に示すように、レジスト
膜10bを除去した後、アニールを施し、イオン注入領
域を活性化してp+ソース(S)領域7c、p+ドレイン
(D)領域7dを形成する。
Next, as shown in FIG. 2D, after removing the resist film 10b, annealing is performed to activate the ion-implanted region, thereby to form the p + source (S) region 7c and the p + drain (D). The region 7d is formed.

【0009】このようにして、同一のシリコン基板上に
nMOSトランジスタ、pMOSトランジスタが相補的
に形成される。
In this manner, the nMOS transistor and the pMOS transistor are formed on the same silicon substrate in a complementary manner.

【0010】[0010]

【発明が解決しようとする課題】上記従来のCMOS形
成方法では、レジスト膜のマスクをそれぞれ図2(a)
工程及び図2(c)工程の2回必要であり、このレジス
ト膜のマスク工程はプロセス上非常に繁雑で生産性が悪
い。しかも、上記従来方法では、特に図2(c)工程、
図2(d)工程のp+ソース、ドレイン領域7c,7d
形成においてはイオン注入時のB(ボロン)原子のチャ
ネリングの問題により高濃度でかつ浅い接合を形成する
ことが困難であった。
In the above-described conventional CMOS forming method, the masks of the resist films are respectively used as shown in FIG.
This step is required twice, that is, the step of FIG. 2C and the step of FIG. 2C. This mask step of the resist film is very complicated in the process and the productivity is low. Moreover, in the above-mentioned conventional method, in particular, the step shown in FIG.
The p + source and drain regions 7c and 7d in the step of FIG.
In the formation, it is difficult to form a high-concentration and shallow junction due to channeling of B (boron) atoms during ion implantation.

【0011】そこで本発明は、浅い接合が可能で、しか
もレジストマスクの使用回数を減少せしめた相補型MO
S半導体装置の製造方法を提供することを目的とする。
Therefore, the present invention provides a complementary MO capable of forming a shallow junction and reducing the number of times a resist mask is used.
An object of the present invention is to provide a method for manufacturing an S semiconductor device.

【0012】[0012]

【課題を解決するための手段】上記課題は本発明によれ
ば、1導電型MOSトランジスタと反対導電型MOSト
ランジスタを同一基板上に形成する相補型MOS半導体
装置の製造に際し、絶縁分離された前記1導電型MOS
トランジスタ及び前記反対導電型MOSトランジスタの
いずか一方の素子形成領域に該対応する導電型の不純物
をイオン注入する工程、前記イオン注入した領域上に透
光性絶縁膜を形成する工程、及び前記透光性絶縁膜をマ
スクとして全面にエキシマレーザードーピングを行なっ
て他の一方の素子形成領域に前記不純物イオンの導電型
に対して反対導電型の不純物を自己整合的にイオン注入
し、且つアニールすると同時に、前記透光性絶縁膜を介
して前記不純物イオン注入領域をアニールする工程、を
有することを特徴とする相補型MOS半導体装置の製造
方法によって解決される。
SUMMARY OF THE INVENTION According to the present invention, there is provided a complementary MOS semiconductor device in which a MOS transistor of one conductivity type and a MOS transistor of opposite conductivity type are formed on the same substrate. One conductivity type MOS
A step of ion-implanting the impurity of the corresponding conductivity type into one of the element formation regions of the transistor and the MOS transistor of the opposite conductivity type, a step of forming a translucent insulating film on the ion-implanted region, and When excimer laser doping is performed on the entire surface using the light-transmitting insulating film as a mask, an impurity of a conductivity type opposite to the conductivity type of the impurity ions is implanted into another element formation region in a self-aligned manner, and annealing is performed. Simultaneously, a step of annealing the impurity ion implanted region via the light-transmitting insulating film is provided.

【0013】[0013]

【作用】本発明によれば、図1に示したように、nMO
Sトランジスタ形成領域にn型不純物である砒素イオン
(As+)をイオン注入し、その後As+のイオン注入領
域をSiO2等の透光性絶縁膜マスク11で覆い、全面
にエキシマレーザードーピングを行なっている。このエ
キシマレーザードーピング工程では、p型の不純物イオ
ン(B26、またはB26ガスが解離したB+)がpM
OS形成領域にイオン注入され、アニールにより活性化
されると同時に、透光性絶縁膜マスク11の下のAs+
イオン注入領域(6a,6b)もマスクを透過したレー
ザーによりアニールされ活性化される。
According to the present invention, as shown in FIG.
Arsenic ions (As + ), which are n-type impurities, are implanted into the S transistor formation region, and then the As + ion implantation region is covered with a light-transmitting insulating film mask 11 such as SiO 2 , and excimer laser doping is performed on the entire surface. ing. In this excimer laser doping step, p-type impurity ions (B 2 H 6 , or B + in which B 2 F 6 gas is dissociated) have a pM
Ions are implanted into the OS formation region, activated by annealing, and at the same time, As + under the light-transmitting insulating film mask 11.
The ion implantation regions (6a, 6b) are also annealed and activated by the laser transmitted through the mask.

【0014】従って、本発明では、nMOS領域の不純
物注入領域の活性化アニール工程が、pMOS領域の不
純物注入、そしてその活性化アニール工程と同時になさ
れ、従来工程よりもマスク形成工程が減少し、生産能率
の向上が図られる。しかもエキシマレーザードーピング
のため、p,n共に超浅接合のMOS形成が可能とな
る。
Therefore, according to the present invention, the activation annealing step of the impurity implantation region of the nMOS region is performed simultaneously with the impurity implantation of the pMOS region and the activation annealing step thereof. The efficiency is improved. Moreover, because of excimer laser doping, it is possible to form a MOS having an ultra-shallow junction for both p and n.

【0015】レーザー(XeClレーザー)の波長は3
08nmで、Siに対する吸収係数はα〜106/cm
と大きく、1J/cm2程度のエネルギーを照射すると
大部分がSi表面から100nm程度の深さで吸収され
て熱に変化し、熱伝導により深さ方向へ熱が伝達され
る。このとき、最表面付近は約100数十nsecにわた
り溶融する。従って、低加速イオン注入により不純物注
入した浅い領域のみを極めて短時間だけ溶融し、不純物
の再分布を抑えた状態で活性化することができる。
The wavelength of the laser (XeCl laser) is 3
08 nm, the absorption coefficient for Si is α−10 6 / cm
When energy of about 1 J / cm 2 is applied, most of the energy is absorbed at a depth of about 100 nm from the Si surface and converted into heat, and heat is transmitted in the depth direction by heat conduction. At this time, the vicinity of the outermost surface is melted for about 100 tens of nanoseconds. Therefore, only a shallow region into which impurities are implanted by low-acceleration ion implantation can be melted for an extremely short time, and activated in a state in which redistribution of impurities is suppressed.

【0016】[0016]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0017】図1は、本発明のCMOSトランジスタの
一実施例を示す工程断面図である。
FIG. 1 is a process sectional view showing an embodiment of a CMOS transistor according to the present invention.

【0018】本発明に係るCMOSは、まず図1(a)
に示すように、p型シリコン基板1上に通常の工程によ
り素子分離膜としてLOCOS酸化膜(SiO2)2を
形成し、nウェル(Well)3、ゲート酸化膜(Si
2)4、ゲート電極5が形成されており、nウェル3
側の素子形成領域(pMOS形成側)にレジスト膜10
を被覆し、レジスト膜10をマスクとしてn型不純物で
ある砒素イオン(As+)をドーズ量2×1015/c
2、注入エネルギー20KeVでイオン注入してイオ
ン注入領域6a,6bを形成する。
First, the CMOS according to the present invention will be described with reference to FIG.
As shown in FIG. 1, a LOCOS oxide film (SiO 2 ) 2 is formed as an element isolation film on a p-type silicon substrate 1 by a normal process, and an n-well (Well) 3 and a gate oxide film (Si) are formed.
O 2 ) 4 and a gate electrode 5 are formed.
The resist film 10 is formed in the element formation region (pMOS formation side)
And arsenic ions (As + ), which is an n-type impurity, with a dose of 2 × 10 15 / c using the resist film 10 as a mask.
By ion implantation at m 2 and implantation energy of 20 KeV, ion implantation regions 6a and 6b are formed.

【0019】このAs+イオン注入までは、ソース
(S)/ドレイン(D)接合部、ゲート部はまだ活性化
されていない。
Until this As + ion implantation, the source (S) / drain (D) junction and the gate have not been activated yet.

【0020】そこで、次に図1(b)に示すように、図
1(a)のレジスト膜10を除去し、p型シリコン基板
のnMOS形成側にのみ、例えば、波長308nmのX
eClエキシマレーザーの紫外光が透過する透光性絶縁
膜マスク(SiO2、SiO1 -xx、Six1-x)ある
いはSOG(スピンオングラス)11を形成する。
Then, as shown in FIG. 1B, the resist film 10 shown in FIG. 1A is removed, and X-rays having a wavelength of 308 nm are formed only on the nMOS formation side of the p-type silicon substrate.
eCl ultraviolet excimer laser to form the light-transmissive insulating mask (SiO 2, SiO 1 -x N x, Si x N 1-x) or SOG (spin on glass) 11 that transmits.

【0021】次に、上方から紫外光(例えばXeClエ
キシマレーザー光)をドーピングガスB26ガス中で4
00mJ/cm2の均一な光照射エネルギー密度で数回
照射してエキシマレーザードーピング(ELD)を行な
った。
Next, ultraviolet light (for example, XeCl excimer laser light) is applied from above to the doping gas B 2 H 6 gas for 4 hours.
Excimer laser doping (ELD) was performed by irradiating several times with a uniform light irradiation energy density of 00 mJ / cm 2 .

【0022】上記ドーピングガスB26ガスとしては、
26をN2ガス中にて5%に希釈したものを分圧5To
rr程度で用いた。
As the doping gas B 2 H 6 gas,
A solution obtained by diluting B 2 H 6 to 5% in N 2 gas has a partial pressure of 5 To.
Used at about rr.

【0023】上記のELD(pMOS側)又はELA
(エキシマレーザーアニーリング)により、pMOSの
側ではBのドープ及びアニールがなされ、p+ソース
(S)/ドレイン(D)領域8a,8bの活性領域が形
成されると、同時にnMOS側のn+イオン注入領域6
a,6bが自己整合的にアニールされる。n+ソース
(S)/ドレイン(D)領域7a,7bも形成される。
このELD及びELA工程では絶縁膜マスク11のエキ
シマレーザーに対する吸収係数は、絶縁膜透過後のエキ
シマレーザーのエネルギーがELAに有効なようにSi
x1-x中のNの組成比あるいはSOG中の添加物を適正
化する。
The above ELD (pMOS side) or ELA
By (excimer laser annealing), doping and annealing of B are performed on the pMOS side, and active regions of p + source (S) / drain (D) regions 8a and 8b are formed. At the same time, n + ions on the nMOS side are formed. Injection region 6
a, 6b are annealed in a self-aligned manner. N + source (S) / drain (D) regions 7a and 7b are also formed.
In the ELD and ELA processes, the absorption coefficient of the insulating film mask 11 with respect to the excimer laser is set so that the energy of the excimer laser after passing through the insulating film is effective for ELA.
to optimize the additive composition ratio or in a SOG of N in x N 1-x.

【0024】次に、図1(b)に示した透光性絶縁膜マ
スク11はレジストでないためこのままにして、通常の
パッシベーション膜(PSG)を全面にCVD法により
形成し、その後PSGをドライエッチングすることによ
りコンタクトホール(接合孔)を形成し、更に真空蒸着
によりアルミニウム(Al)を被着させパターニングす
ることによりAl配線を形成した。
Next, since the light-transmitting insulating film mask 11 shown in FIG. 1B is not a resist, a normal passivation film (PSG) is formed on the entire surface by a CVD method, and then the PSG is dry-etched. Then, a contact hole (junction hole) was formed, and aluminum (Al) was further applied by vacuum evaporation and patterned to form an Al wiring.

【0025】上記実施例は、バルク型のCMOSトラン
ジスタを示したが、TFT(薄膜トランジスタ)でも利
用される。
Although the above embodiment shows a bulk type CMOS transistor, the present invention can be applied to a TFT (thin film transistor).

【0026】[0026]

【発明の効果】以上説明したように、本発明によれば、
従来のCMOS製造工程によりマスク形成工程が1回減
少し、生産能率の向上が図られると共に、製造過程にお
いてクリーン化にも好適に利用される。
As described above, according to the present invention,
The conventional CMOS manufacturing process reduces the number of mask forming processes by one, thereby improving the production efficiency and is suitably used for cleanliness in the manufacturing process.

【0027】しかも、本発明ではp,nの不純物拡散領
域(ソース/ドレイン領域)では超浅接合のMOS形成
あるいは超薄膜のTFT形成が可能となる。
Moreover, in the present invention, it is possible to form an ultra-shallow junction MOS or an ultra-thin TFT in the p and n impurity diffusion regions (source / drain regions).

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のCMOSトランジスタの製造工程の一
実施例を示す要部工程断面図である。
FIG. 1 is a fragmentary cross-sectional view showing one embodiment of a process for manufacturing a CMOS transistor of the present invention.

【図2】従来のCMOSトランジスタの製造工程の要部
工程断面図である。
FIG. 2 is a cross-sectional view showing a main part of a conventional CMOS transistor manufacturing process.

【符号の説明】[Explanation of symbols]

1 p型シリコン基板 2 LOCOS酸化膜(SiO2) 3 nウェル 4 ゲート酸化膜(SiO2) 5a,5b ゲート電極 6a,6b n+ イオン注入領域 7a n+ソース(S)領域 7b n+ドレイン(D)領域 8a p+ソース(S)領域 8b p+ドレイン(D)領域 10,10a,10b レジスト膜 11 透孔性絶縁膜マスクReference Signs List 1 p-type silicon substrate 2 LOCOS oxide film (SiO 2 ) 3 n well 4 gate oxide film (SiO 2 ) 5 a, 5 b gate electrode 6 a, 6 b n + ion implantation region 7 an + source (S) region 7 b n + drain ( D) region 8a p + source (S) region 8b p + drain (D) region 10, 10a, 10b resist film 11 porous insulating film mask

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−148836(JP,A) 特開 平6−104196(JP,A) 特開 平5−283631(JP,A) P.G.CAREY et al.’ Ultra−Shallow High −Concentration Bor on Profiles For CM OS Processing’,IEE E ELECTRON DEVICE LETTERS,JUNE 1985,VO L.EDL−6,No.6,pages 291 to 293 (58)調査した分野(Int.Cl.7,DB名) H01L 21/8238 H01L 21/22 H01L 21/265 602 H01L 27/092 H01L 29/78 H01L 21/336 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-3-14836 (JP, A) JP-A-6-104196 (JP, A) JP-A-5-283631 (JP, A) G. FIG. CAREY et al. 'Ultra-Shallow High-Concentration Bor on Profiles For CM OS Processing', IEEE ELECTRON DEVICE LETTERS, JUNE 1985, VOL. EDL-6, No. 6, pages 291 to 293 (58) Fields investigated (Int.Cl. 7 , DB name) H01L 21/8238 H01L 21/22 H01L 21/265 602 H01L 27/092 H01L 29/78 H01L 21/336

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 1導電型MOSトランジスタと反対導電
型MOSトランジスタを同一基板上に形成する相補型M
OS半導体装置の製造に際し、 絶縁分離された前記1導電型MOSトランジスタ及び前
記反対導電型MOSトランジスタのいずか一方の素子形
成領域に該対応する導電型の不純物をイオン注入する工
程、 前記イオン注入した領域上に透光性絶縁膜を形成する工
程、及び前記透光性絶縁膜をマスクとして全面にエキシ
マレーザードーピングを行なって他の一方の素子形成領
域に前記不純物イオンの導電型に対して反対導電型の不
純物を自己整合的にイオン注入し、且つアニールすると
同時に、前記透光性絶縁膜を介して前記不純物イオン注
入領域をアニールする工程、を有することを特徴とする
相補型MOS半導体装置の製造方法。
1. A complementary M transistor in which a MOS transistor of one conductivity type and a MOS transistor of opposite conductivity type are formed on the same substrate.
A step of ion-implanting the impurity of the corresponding conductivity type into one of the element formation regions of the one-conductivity-type MOS transistor and the opposite-conductivity-type MOS transistor that are isolated when the OS semiconductor device is manufactured; Forming a light-transmitting insulating film on the formed region, and performing excimer laser doping on the entire surface using the light-transmitting insulating film as a mask, and opposing the conductivity type of the impurity ions in the other element formation region. Self-aligned ion implantation of a conductive type impurity and annealing, and simultaneously annealing the impurity ion implanted region via the light-transmitting insulating film. Production method.
JP11725392A 1992-05-11 1992-05-11 Method of manufacturing complementary MOS semiconductor device Expired - Fee Related JP3154139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11725392A JP3154139B2 (en) 1992-05-11 1992-05-11 Method of manufacturing complementary MOS semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11725392A JP3154139B2 (en) 1992-05-11 1992-05-11 Method of manufacturing complementary MOS semiconductor device

Publications (2)

Publication Number Publication Date
JPH05315556A JPH05315556A (en) 1993-11-26
JP3154139B2 true JP3154139B2 (en) 2001-04-09

Family

ID=14707188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11725392A Expired - Fee Related JP3154139B2 (en) 1992-05-11 1992-05-11 Method of manufacturing complementary MOS semiconductor device

Country Status (1)

Country Link
JP (1) JP3154139B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014175159A1 (en) 2013-04-23 2014-10-30 株式会社アーツブレインズ Double eyelid formation tape, method for manufacturing same, and method for forming double eyelid using double eyelid formation tape
KR101941484B1 (en) 2012-02-06 2019-01-23 가부시키가이샤 아츠브레인즈 Applicator and container, both for double-fold eyelid forming solution
KR20230020431A (en) 2020-06-08 2023-02-10 가부시키가이샤 아츠브레인즈 double eyelid formation

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW399322B (en) * 1997-08-22 2000-07-21 Tsmc Acer Semiconductor Mfg Co The process and the structure of DRAM of mushroom shaped capacitor
US6300228B1 (en) 1999-08-30 2001-10-09 International Business Machines Corporation Multiple precipitation doping process

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
P.G.CAREY et al.’Ultra−Shallow High−Concentration Boron Profiles For CMOS Processing’,IEEE ELECTRON DEVICE LETTERS,JUNE 1985,VOL.EDL−6,No.6,pages 291 to 293

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101941484B1 (en) 2012-02-06 2019-01-23 가부시키가이샤 아츠브레인즈 Applicator and container, both for double-fold eyelid forming solution
WO2014175159A1 (en) 2013-04-23 2014-10-30 株式会社アーツブレインズ Double eyelid formation tape, method for manufacturing same, and method for forming double eyelid using double eyelid formation tape
JP2014212847A (en) * 2013-04-23 2014-11-17 株式会社アーツブレインズ Double eyelid forming tape, manufacturing method of the same, and double eyelid forming method using the same
KR20230020431A (en) 2020-06-08 2023-02-10 가부시키가이샤 아츠브레인즈 double eyelid formation

Also Published As

Publication number Publication date
JPH05315556A (en) 1993-11-26

Similar Documents

Publication Publication Date Title
JP3211394B2 (en) Method for manufacturing semiconductor device
JP2897004B2 (en) CMOSFET manufacturing method
US5877050A (en) Method of making N-channel and P-channel devices using two tube anneals and two rapid thermal anneals
JP3154139B2 (en) Method of manufacturing complementary MOS semiconductor device
JP3323051B2 (en) Method for manufacturing semiconductor device
JPH04287332A (en) Manufacture of semiconductor element
JPH0575041A (en) Cmos semiconductor device
JPH0423329A (en) Manufacture of semiconductor device
JPH0536721A (en) Manufacture of field effect transistor
JPH07263690A (en) Semiconductor device having salicide structure and its manufacture
JP2803925B2 (en) Method for manufacturing semiconductor device
JPH0629315A (en) Semiconductor device and manufacture thereof
JP2980084B2 (en) Method of manufacturing complementary MOS semiconductor device
JPH02189965A (en) Manufacture of semiconductor device
KR940002779B1 (en) Manufacturing method of high-voltage transistor
JPH0712064B2 (en) Method for manufacturing semiconductor integrated circuit
JPS6410952B2 (en)
JPS60224271A (en) Semiconductor device and manufacture thereof
JPH09129747A (en) Semiconductor device manufacturing method
JPS6367778A (en) Manufacture of semiconductor device
JP2001177092A (en) Method for manufacturing semiconductor device
JPH0346370A (en) Mos type semiconductor device and manufacture thereof
JPH04354328A (en) Production of semiconductor device
JPH04209524A (en) Manufacture of semiconductor device
JPH05102466A (en) Mos type semiconductor device and manufacture thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees