JP3151803B2 - How to diagnose tuyere damage - Google Patents

How to diagnose tuyere damage

Info

Publication number
JP3151803B2
JP3151803B2 JP19533496A JP19533496A JP3151803B2 JP 3151803 B2 JP3151803 B2 JP 3151803B2 JP 19533496 A JP19533496 A JP 19533496A JP 19533496 A JP19533496 A JP 19533496A JP 3151803 B2 JP3151803 B2 JP 3151803B2
Authority
JP
Japan
Prior art keywords
tuyere
pressure
flow rate
difference
damage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19533496A
Other languages
Japanese (ja)
Other versions
JPH1017911A (en
Inventor
博史 中村
貞夫 松本
治男 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP19533496A priority Critical patent/JP3151803B2/en
Publication of JPH1017911A publication Critical patent/JPH1017911A/en
Application granted granted Critical
Publication of JP3151803B2 publication Critical patent/JP3151803B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Blast Furnaces (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、高炉、シャフト
炉、熱風炉等の送風羽口の破損を早期に検出できると共
に、破損口径を推定できる羽口の破損診断方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for diagnosing a tuyere breakage which can early detect breakage of a blowing tuyere of a blast furnace, a shaft furnace, a hot blast stove, etc. and can estimate a diameter of the tuyere.

【0002】[0002]

【従来の技術】高炉、シャフト炉、熱風炉等の送風羽
口、例えば、高炉の羽口は、熱風炉で1100〜125
0℃の高温に加熱された空気を、高炉内へ均等に吹き込
むために設けられた吹き込み口であって、通常は銅製の
高速冷却法を用いたものが主流となっている。この羽口
の冷却方法では、溶銑による羽口の大破は少なく、例え
発生してもピンホール程度である。また、羽口の破損
は、溶銑による溶損の頻度は少なくなり、先端部の摩耗
が支配的となることから、小孔の時点での破損検知が必
要となってきている。
2. Description of the Related Art A tuyere of a blast furnace, a shaft furnace, a hot blast stove, etc., for example, a tuyere of a blast furnace is a hot blast stove of 1100-125.
A blowing port provided for uniformly blowing air heated to a high temperature of 0 ° C. into a blast furnace, and which is usually a high-speed cooling method made of copper is mainly used. In this tuyere cooling method, the tuyere is not greatly damaged by hot metal, and even if it occurs, it is only a pinhole. In addition, in the case of tuyere damage, the frequency of erosion by hot metal decreases, and wear at the tip becomes dominant. Therefore, it is necessary to detect damage at the time of a small hole.

【0003】従来の高炉羽口の破損検知方法としては、
炉内への漏水時に冷却水とコークスが反応するいわゆる
水性反応(H2O+C→H2+CO)によって生じる水素
(H2)ガス分析によって監視するか、もしくは羽口の
冷却水圧力を炉内圧力よりも低下させ、冷却水中に混入
するCOガスをガス分析により検知する方法が採用され
ていたが、外乱や操作性に問題があり、再現性や信頼度
の面で満足できるものではなかった。
[0003] Conventional methods for detecting blast furnace tuyere damage include:
Monitoring by hydrogen (H 2 ) gas analysis generated by a so-called aqueous reaction (H 2 O + C → H 2 + CO) in which the cooling water reacts with coke when water leaks into the furnace, or the cooling water pressure at the tuyere A method of detecting the CO gas mixed in the cooling water by gas analysis has been adopted, but there is a problem in disturbance and operability, and it is not satisfactory in terms of reproducibility and reliability.

【0004】これらの対策としては、羽口の冷却水の給
排水管におけるいずれか一方にカルマン渦式流量計を設
け、この流量計における一定時間毎の流量積算値を正常
時における流量積算値および当該積算時の1つ以前の積
算値のいずれかと比較し、それが一定差以上となった場
合に警報を発し、さらにその差がより大きくなった場合
に給水側の遮断弁を閉鎖する方法(特公昭51−600
8号公報)、羽口の冷却水の給排水管に設置した冷却水
流量に比例する個数のパルスを出力するディジタル流量
計の出力差を利用して冷却水の漏洩を検知する装置にお
いて、ディジタル流量計の出力端子にそれぞれ接続すべ
き2個の計数回路と、該計数回路の動作時間および休止
時間を同期的かつ周期的に制御するタイミングコントロ
ール回路と、前記計数回路の出力差を演算する演算回路
と、該演算回路の出力を予め設定された許容値の大きさ
と比較する比較回路と、該比較回路の出力信号を連続的
に記憶する記憶回路と、前記比較回路および記憶回路の
各出力端子にそれぞれ接続した2個の警報器からなる装
置(特開昭52−2814号公報)、すべての冷却系統
における給水流量計、排水流量計のそれぞれに積算回路
を接続し全積算回路の動作時間、休止時間を同一のタイ
ミングコントロール回路によって同期的かつ周期的に制
御しつつ、各冷却系統毎に前記給水流量計に接続した積
算回路の出力と前記排水流量計に接続した積算回路の出
力との差に相当する大きさの流量差信号を電気的に検出
し、該流量差信号を一方では記憶装置に入力して一定時
間記憶させ、他方では比較演算装置に入力してその設定
限界値、設定警戒値との比較を行い、該流量差信号の大
きさが限界値を超えたときならびに下回るが警戒値を超
える状態が一定時間以上継続するときにのみ、記憶装置
によるその時点までの流量差信号および/またはその時
点以降に発生する流量差信号を記録し、かつ警報器を動
作させる方法(特開昭53−122475号公報)、各
羽口毎の流入流量と流出流量との流量差を演算し、該流
量差データを所定時間保持しておき、流量差データが設
定値を超えたときは、保持されていたデータを通常の記
録速度よりも速い速度で記録させることにより、高炉羽
口の破損状況を迅速かつ正確に把握する方法(特開昭5
9−65743号公報)等が提案されている。
As a countermeasure, a Karman vortex flow meter is provided at one of the supply / drain pipes of the cooling water at the tuyere. A method is compared with one of the integrated values before the one at the time of the integration, issues an alarm if the difference exceeds a certain value, and closes the shutoff valve on the water supply side if the difference becomes larger (particularly Kuniaki 51-600
No. 8), a device for detecting leakage of cooling water by using an output difference of a digital flowmeter which outputs a number of pulses proportional to the flow rate of cooling water installed in a supply / drain pipe of cooling water at the tuyere. Two counting circuits to be respectively connected to the output terminals of the counter, a timing control circuit for synchronously and periodically controlling the operation time and the idle time of the counting circuit, and an arithmetic circuit for calculating an output difference of the counting circuit A comparison circuit that compares the output of the arithmetic circuit with a predetermined allowable value, a storage circuit that continuously stores an output signal of the comparison circuit, and output terminals of the comparison circuit and the storage circuit. A device consisting of two alarms connected to each other (Japanese Patent Laid-Open Publication No. 52-2814), an integrating circuit is connected to each of a feed water flow meter and a drain flow meter in all cooling systems, and the total number of times of integration is measured. The operation time and the pause time are controlled synchronously and periodically by the same timing control circuit, and the output of the integrating circuit connected to the feedwater flow meter and the integrating circuit connected to the wastewater flow meter for each cooling system. A flow difference signal having a magnitude corresponding to the difference with the output is electrically detected. On the one hand, the flow difference signal is input to a storage device and stored for a certain period of time, and on the other hand, is input to a comparison operation device to set the set limit. The value is compared with the set alert value, and only when the magnitude of the flow rate difference signal exceeds the limit value and when the value falls below the alert value and continues to exceed the alert value for a certain period of time or longer, the storage device performs the process up to that point. A method of recording a flow difference signal and / or a flow difference signal generated after that time and operating an alarm (Japanese Patent Application Laid-Open No. 53-122475). The difference is calculated, the flow rate difference data is held for a predetermined time, and when the flow rate difference data exceeds a set value, the held data is recorded at a speed higher than a normal recording speed, so that the blast furnace Method for quickly and accurately grasping the state of damage to tuyere
No. 9-65743) has been proposed.

【0005】[0005]

【発明が解決しようとする課題】上記特公昭51−60
08号公報、特開昭52−2814号公報、特開昭53
−122475号公報ならびに特開昭59−65743
号公報に開示の方法は、いずれも給水流量と排水流量と
の流量差あるいは一定時間毎の積算値と設定値を比較
し、羽口の破損有無を検知するものであるが、計測機器
については必ず零点のづれ(以下オフセット値という)
が発生するため、単なる流量差の比較や、健全積算値と
の比較のみでは、大破は別として微小なピンホール等の
微小漏れのような破損に関しては、破損であるとの断定
は極めて精度が悪くなる。
SUMMARY OF THE INVENTION The above Japanese Patent Publication No. Sho 51-60
08, JP-A-52-2814, and JP-A-53-2814.
-122475 and JP-A-59-65743.
The method disclosed in Japanese Patent Publication No. JP-A-2005-27209 is to detect the presence or absence of damage to the tuyere by comparing the flow rate difference between the water supply flow rate and the drainage flow rate or the integrated value at a fixed time and the set value. Be sure to shift the zero point (hereinafter referred to as offset value)
Therefore, if a simple comparison of the flow rate difference or a comparison with the sound integrated value alone is made, it is extremely accurate to determine that the damage is a damage such as a minute leak such as a minute pinhole, apart from a large breach. become worse.

【0006】上記従来技術においては、センサー特有の
オフセット値の問題を解決するのが不可欠な要素であ
り、単純に自動校正機能付きであれば良いのであるが、
給排水側に設置されている2個の流量計の校正タイミン
グを合わせるのは、かなり難しく、また、通常の高炉で
は、20〜40個の羽口が使用されていることから、例
え機能を持っていたとしても、誤警報等が生じ、使用上
の問題が生じる。
In the above prior art, it is indispensable to solve the problem of the offset value peculiar to the sensor, and it suffices if the automatic calibration function is simply provided.
It is very difficult to match the calibration timing of the two flow meters installed on the water supply and drainage side. In addition, since a normal blast furnace uses 20 to 40 tuyeres, it has a function. Even so, a false alarm or the like may occur, causing a problem in use.

【0007】この発明の目的は、上記従来技術の欠点を
解消し、微小なピンホール等の微小漏れのような破損を
も高精度かつ早期に検出できる羽口の破損診断方法を提
供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned disadvantages of the prior art and to provide a tuyere damage diagnosis method capable of detecting damage such as minute leaks such as minute pinholes with high accuracy and at an early stage. is there.

【0008】[0008]

【課題を解決するための手段】この発明の羽口の破損診
断方法は、給水流量と排水流量との差流量が予め定めた
設定値を超えると、給水圧力を変化させて炉内圧力との
差圧を変化させたときの冷却水の差流量との相関を求め
て回帰式を作成し、差圧がゼロとなるポイントの差流量
の値から羽口の破損か計器誤差かを判別すると共に、羽
口の破損の場合は回帰式の傾きから破損口径の推定を行
うこととしている。このように、差流量が予め定めた設
定値を超えると、給水圧力を変化させて炉内圧力との差
圧を変化させたときの冷却水の差流量との相関を求め
回帰式を作成し、差圧がゼロとなるポイントの差流量の
値から羽口の破損か計器誤差かを判別すると共に、羽口
の破損の場合は回帰式の傾きから破損口径の推定を行う
ことによって、オフセット値によって生じた差流量か、
破損によって生じた差流量かを判別することができ、微
小なピンホール等の微小漏れのような破損をも高精度か
つ早期に検出することができると共に、破損状況をも容
易に把握することができる。
SUMMARY OF THE INVENTION According to the method for diagnosing tuyere damage according to the present invention, when a difference flow rate between a feed water flow rate and a drain flow rate exceeds a predetermined set value, the feed water pressure is changed to determine the difference between the flow rate and the furnace pressure. Find the correlation with the difference flow rate of cooling water when the pressure difference is changed
And create a regression equation to calculate the differential flow rate at the point where the differential pressure becomes zero.
Line with, in the case of damage to the tuyere estimated damage caliber from the slope of the regression equation to determine whether the breakage or the error of the meter from the value tuyere
It is and TURMERIC. Thus, exceeds the set value the difference flow rate is predetermined by obtaining a correlation between a difference flow rate of the cooling water when varying the water pressure was changed pressure difference between the furnace pressure
Create a regression equation and calculate the differential flow rate at the point where the differential pressure becomes zero.
In addition to determining whether the tuyere is damaged or an instrument error from the value, in the case of tuyere damage, by estimating the damaged bore from the slope of the regression equation, the difference flow rate caused by the offset value,
It is possible to determine whether the flow rate is different due to breakage, and to detect breakage such as minute leaks such as minute pinholes with high accuracy and at an early stage, and to easily grasp the damage situation. it can.

【0009】[0009]

【発明の実施の形態】羽口破損時の炉内への漏水量(Δ
Q)は、給水圧力(Pw)と炉内圧力(Pi)との差圧
および開口面積(A)で決定され、下記(1)式で示さ
れる。また、給水流量と排水流量との差流量は、下記
(2)式で示される。 ΔQ=αA√[2g(Pw−Pi)γ]……(1)式 ΔQ=Q1−Q2……(2)式 ただし、α : 係数、A : 開口面積(破断時の断
面積)、g : 重力加速度、Pw : 給水圧力、P
i : 炉内圧力、γ : 水の比重、ΔQ: 炉内へ
の漏水量(差流量)、Q1:給水流量、Q2 : 排水流
量である。
BEST MODE FOR CARRYING OUT THE INVENTION The amount of water leakage (Δ
Q) is determined by the pressure difference between the feed water pressure (Pw) and the furnace pressure (Pi) and the opening area (A), and is expressed by the following equation (1). The difference flow rate between the supply water flow rate and the drainage flow rate is expressed by the following equation (2). ΔQ = αA√ [2g (Pw−Pi) γ] (1) Equation ΔQ = Q 1 −Q 2 (2) where α: coefficient, A: opening area (cross-sectional area at break), g: gravity acceleration, Pw: feedwater pressure, P
i: Furnace pressure, γ: Specific gravity of water, ΔQ: Water leakage into the furnace (differential flow), Q 1 : Feed water flow, Q 2 : Waste water flow.

【0010】したがって、給水側と排水側の流量計の差
(差流量)は、給水圧力と炉内圧力との差圧によって変
化するため、もし羽口の破損によって差流量が発生した
のであれば、一方の圧力を変化させた場合、差流量は変
化するはずである。この場合炉内圧力は、操業安定性確
保の面から操作できないので、給水圧力側を変化させる
のであるが、この変化時のパターンを解り易くまとめる
と図2のようになり、(Pw−Pi)とΔQの相関図の
回帰線は、下記(3)式で示される。この場合、通常運
転点の差圧ΔPNを基準として給水圧力と炉内圧力との
差圧をΔP1、ΔP2に変化させる。 ΔQ=αA√[2g(Pw−Pi)γ]+β……(3)式
Accordingly, the difference (differential flow rate) between the flow meter on the water supply side and the flow meter on the drainage side changes depending on the pressure difference between the water supply pressure and the furnace pressure. If one of the pressures is changed, the differential flow should change. In this case, since the pressure in the furnace cannot be controlled from the viewpoint of ensuring operation stability, the water supply pressure side is changed. However, the pattern at the time of this change can be easily understood to be as shown in FIG. 2, and (Pw-Pi) The regression line in the correlation diagram between ΔQ and ΔQ is shown by the following equation (3). In this case, the differential pressure between the feed water pressure and the furnace pressure is changed to ΔP 1 and ΔP 2 based on the differential pressure ΔP N at the normal operating point. ΔQ = αA√ [2g (Pw−Pi) γ] + β (3)

【0011】図2中の黒○印の(ア)の曲線は、実際に
破損したときのデータで、破損状況(断面積)によって
決まる定数であるαA、流量計のオフセット値βは一定
であるから、差流量ΔQは√[2g(Pw−Pi)γ]
に比例する。一方、×印の(イ)の曲線は、最初からオ
フセット値(β’)が支配的で、差流量(ΔQ)が発生
していた場合であっても、炉内圧力と給水圧力の差圧を
変化させても、殆ど定値で変化しない、すなわち、回帰
式で見ると、αA√[2g(Pw−Pi)γ]≪βとな
り、破損、未破損の判別が可能である。
In FIG. 2, the curve indicated by black circles (A) is the data when actual breakage occurs, and αA, which is a constant determined by the damage state (cross-sectional area), and the offset value β of the flow meter are constant. Therefore, the differential flow rate ΔQ is √ [2g (Pw−Pi) γ]
Is proportional to On the other hand, the curve (a) marked with a cross indicates that the offset value (β ') is dominant from the beginning and the differential pressure between the furnace pressure and the feedwater pressure is obtained even when the differential flow rate (ΔQ) occurs. Does not substantially change at a constant value even when is changed, that is, when viewed from a regression equation, αA√ [2g (Pw-Pi) γ] ≪β, and it is possible to determine whether the device is damaged or not.

【0012】この発明では、上記のような基本原理に従
い、炉内圧力と給水圧力の各差圧の条件毎にデータの採
取を行い、それらを数値処理して回帰式を求め、その時
の回帰式の差圧の項{αA√[2g(Pw−Pi)
γ]}とオフセット値(β)を求めるのである。最初に
差圧の項の{αA√[2g(Pw−Pi)γ]}からα
Aを求めると、破損部の開口直径(D)が次式により求
められ、微小なピンホールなのか、直径1〜2mm程度
の比較的大きな破損なのかを判別することができる。 D=√[(4αA)/π] α=1とすると、D=√
[(4/π)A]
According to the present invention, in accordance with the basic principle as described above, data is collected for each condition of the differential pressure between the furnace pressure and the feedwater pressure, and the data is numerically processed to obtain a regression equation. Pressure differential term {αA} [2g (Pw-Pi)
γ]} and the offset value (β). First, from the differential pressure term {αA} [2g (Pw−Pi) γ]},
When A is obtained, the opening diameter (D) of the damaged portion is obtained by the following equation, and it can be determined whether the hole is a minute pinhole or a relatively large damage having a diameter of about 1 to 2 mm. D = √ [(4αA) / π] If α = 1, D = √
[(4 / π) A]

【0013】また、前記回帰式より通常運転点の差流量
(ΔQN)と差圧が零になった時の差流量(ΔQ0)を比
較し、例えば、ΔQ0/ΔQN≧0.90であれば、オフ
セット発生による誤差と判別し、流量計の零点調整を行
う処置を実施し、ΔQ0/ΔQN<0.90であれば、羽
口破損とみなして炉内へ大量の水が入らないように給水
圧力、水量調整を行うのである。
Further, the differential flow rate (ΔQ N ) at the normal operating point is compared with the differential flow rate (ΔQ 0 ) when the differential pressure becomes zero from the regression equation, for example, ΔQ 0 / ΔQ N ≧ 0.90 If so, it is determined that there is an error due to the occurrence of an offset, and a measure for adjusting the zero point of the flow meter is performed. If ΔQ 0 / ΔQ N <0.90, it is considered that the tuyere is damaged and a large amount of water enters the furnace. Adjust the water supply pressure and water volume so that they do not enter.

【0014】[0014]

【実施例】【Example】

実施例1 以下にこの発明の羽口の破損診断方法の詳細を実施の一
例を示す図1に基づいて説明する。図1はこの発明の羽
口の破損診断方法を備えた高炉羽口冷却系統の概略説明
図である。図1において、1は給水ヘッダーで、図示し
ない給水設備から送水された冷却水が供給されている。
給水ヘッダー1と羽口2とを接続する給水管3には、給
水ヘッダー1側から入口弁4、給水側電磁流量計5、流
量調整弁6、給水圧力計7の順に設置され、給水ヘッダ
ー1から冷却水が給水管3の入口弁4、給水側電磁流量
計5、流量調整弁6、給水圧力計7を経由して羽口2に
供給される。8は排水ヘッダーで、図示しない排水溝へ
冷却水を排出する。排水ヘッダー8と羽口2とを接続す
る排水管9には、羽口2側から流量調整弁10、排水側
電磁流量計11、排水三方弁12、出口弁13の順に設
置され、羽口2から冷却水が流量調整弁10、排水側電
磁流量計11、排水三方弁12、出口弁13を経由して
排水ヘッダー8に排出されるよう構成されている。
Embodiment 1 Hereinafter, details of a tuyere damage diagnosis method according to the present invention will be described with reference to FIG. 1 showing an embodiment. FIG. 1 is a schematic explanatory diagram of a blast furnace tuyere cooling system provided with the tuyere damage diagnosis method of the present invention. In FIG. 1, reference numeral 1 denotes a water supply header to which cooling water supplied from a water supply facility (not shown) is supplied.
In the water supply pipe 3 connecting the water supply header 1 and the tuyere 2, an inlet valve 4, a water supply side electromagnetic flowmeter 5, a flow control valve 6, and a water supply pressure gauge 7 are installed in this order from the water supply header 1 side. The cooling water is supplied to the tuyere 2 via the inlet valve 4 of the water supply pipe 3, the water supply side electromagnetic flow meter 5, the flow control valve 6, and the water supply pressure gauge 7. A drain header 8 discharges cooling water to a drain not shown. In the drain pipe 9 connecting the drain header 8 and the tuyere 2, a flow control valve 10, a drain side electromagnetic flow meter 11, a three-way drain valve 12, and an outlet valve 13 are installed in this order from the tuyere 2 side. The cooling water is discharged to the drain header 8 through the flow control valve 10, the drain side electromagnetic flow meter 11, the drain three-way valve 12, and the outlet valve 13.

【0015】14は破損診断制御部で、給水側電磁流量
計5および排水側電磁流量計11で計測された給水流量
および排水流量が入力されると共に、給水圧力計7で計
測された給水圧力が入力される。また、破損診断制御部
14には、羽口2近傍に設けた炉内圧力計15で計測さ
れた炉内圧力が入力される。16は破損診断制御部14
に設定値を入力するためのキーボードである。破損診断
制御部14は、給水側電磁流量計5および排水側電磁流
量計11で計測された給水流量と排水流量の差流量(Δ
Q)を前記(1)式および(2)式により演算し、キー
ボード16から予め入力されている設定値と比較して常
時監視するよう構成されている。
Numeral 14 denotes a damage diagnosis control unit, which receives the water supply flow rate and the waste water flow rate measured by the water supply side electromagnetic flow meter 5 and the drainage side electromagnetic flow meter 11 and inputs the water supply pressure measured by the water supply pressure gauge 7. Is entered. The furnace pressure measured by the furnace pressure gauge 15 provided near the tuyere 2 is input to the damage diagnosis control unit 14. 16 is a damage diagnosis control unit 14
Is a keyboard for inputting a set value to the. The damage diagnosis control unit 14 determines the difference between the flow rate of the feed water and the flow rate of the waste water (Δ
Q) is calculated by the above equations (1) and (2), and is compared with a set value input in advance from the keyboard 16 to constantly monitor.

【0016】また、破損診断制御部14は、給水流量と
排水流量の差流量(ΔQ)が設定値を超えると、警報を
発すると共に、入口弁4を徐々に絞り込み、羽口給水圧
力Pwが炉内圧力計15から入力される炉内圧力Piよ
り高い条件下(Pw>Pi)で、通常運転時の炉内圧力
Piと羽口給水圧力Pwの差圧(ΔPN)を、例えば、
80%、60%、30%と段階的に低下させ、各段階毎
に給水流量と排水流量の差流量データを演算する。この
場合の演算する差流量データは、前記した3パターンに
限定されるものではなく、0%以上の条件でn数を増加
させることもできる。また、入口弁4の絞り込み操作
は、手動または遠隔操作でもよく、その操作は羽口給水
圧力Pwと炉内圧力Piとの差(Pw−Pi)を監視し
て、その条件内で行うことが重要である。例えば、Pw
−Pi<0の条件になると、炉内ガスが羽口2内に逆流
し、粉塵等の内容物が排水側を閉塞し、冷却水の流れが
遮断されて大破に至る場合もある。
When the difference (ΔQ) between the water supply flow rate and the drainage flow rate exceeds a set value, the damage diagnosis control unit 14 issues an alarm and gradually narrows the inlet valve 4 so that the tuyere water supply pressure Pw decreases. Under a condition (Pw> Pi) higher than the furnace pressure Pi input from the internal pressure gauge 15, the differential pressure (ΔP N ) between the furnace pressure Pi and the tuyere feedwater pressure Pw during normal operation is, for example,
The flow rate is reduced stepwise to 80%, 60%, and 30%, and the difference flow data between the supply water flow rate and the drainage flow rate is calculated for each step. The difference flow rate data to be calculated in this case is not limited to the three patterns described above, and the number n can be increased under the condition of 0% or more. Further, the throttle operation of the inlet valve 4 may be performed manually or remotely, and the operation may be performed under the conditions by monitoring the difference (Pw−Pi) between the tuyere feed pressure Pw and the furnace pressure Pi. is important. For example, Pw
When the condition of −Pi <0 is satisfied, the gas in the furnace may flow back into the tuyere 2, and the contents such as dust may block the drain side, and the flow of the cooling water may be interrupted, resulting in a severe wreck.

【0017】破損診断制御部14は、演算した差流量デ
ータ毎に差流量(ΔQ)をプロットし、その回帰式を求
める。例えば、炉内圧力:3.2kg/cm2、羽口給
水圧力7.0kg/cm2で直径約2mmのピンホール
がある場合、(この時α=1、β=0とすると) ΔQ=(π/4)D2×√[2g(Pw−Pi)γ]×3600 =3.14×10-6×√[2×9.8(7.0−3.2)×104×0. 001]×3600 =0.31m3/hr の差流量が理論的に発生しており、前記通常運転時の炉
内圧力Piと羽口給水圧力Pwの差圧の80%、60
%、30%の場合における差圧(ΔP)と差流量(Δ
Q)は、表1の通りとなる。
The damage diagnosis control unit 14 plots the differential flow rate (ΔQ) for each of the calculated differential flow rate data, and obtains a regression equation. For example, when there is a pinhole having a furnace pressure of 3.2 kg / cm 2 , a tuyere water supply pressure of 7.0 kg / cm 2 , and a diameter of about 2 mm (assuming α = 1 and β = 0 at this time) ΔQ = ( π / 4) D 2 × {[2g (Pw-Pi) γ] × 3600 = 3.14 × 10 −6 ×} [2 × 9.8 (7.0-3.2) × 10 4 × 0. 001] × 3600 = 0.31 m 3 / hr theoretically, and 80% of the pressure difference between the furnace pressure Pi and the tuyere feedwater pressure Pw during the normal operation, 60%
%, 30%, the differential pressure (ΔP) and the differential flow rate (Δ
Q) is as shown in Table 1.

【0018】[0018]

【表1】 [Table 1]

【0019】実際には、上記のように差流量(ΔQ)の
指示が減少するのであるが、多少の誤差もあることから
データにバラツキが発生するので、破損診断制御部14
は、前記(3)式に示したとおり、これらのデータの回
帰式を求めるのである。
In practice, the indication of the difference flow rate (ΔQ) is reduced as described above, but the data may vary due to some errors.
Finds a regression equation for these data as shown in equation (3).

【0020】破損診断制御部14は、前記により求めた
回帰式の差圧の項{αΑ√[2g(ΔP)γ]}のαA
から破損部の孔径(D)を求めると共に、計器のオフセ
ット値βを求め、前記したとおり、羽口2の破損なの
か、計器の誤差によるものなのかを判別するのである。
この場合、例えば、直径2mmの孔径では、通常0.3
1m3/hrの漏洩量(差流量)のものが、通常運転時
の炉内圧力と羽口給水圧力の差圧を30%まで低減させ
ると、0.17m3/hr[√(0.3)]約0.55
倍に低下し、電磁流量計5、11の精度内で十分に把握
することができる。なお、電磁流量計5、11には、ダ
ンピング時定数(T)がセット(今回の場合10秒)さ
れており、数値が安定するまでに時間遅れが発生するこ
とから、給水圧力変更後5T後(今回の場合50秒後)
からデータ採取を行う。したがって、サンプリングタイ
ミングを表すと、図3のようになる。
The damage diagnosis control unit 14 calculates αA of the differential pressure term {α {[2g (ΔP) γ]} of the regression equation obtained above.
, The hole diameter (D) of the damaged portion is obtained, and the offset value β of the meter is obtained. As described above, it is determined whether the tuyere 2 is damaged or the meter is caused by an error.
In this case, for example, for a hole diameter of 2 mm, usually 0.3 mm
1 m 3 / hr as the amount of leakage (flow rate) of, when reducing the differential pressure furnace pressure and tuyeres water pressure during normal operation to 30%, 0.17m 3 /hr[√(0.3 )] About 0.55
It can be sufficiently grasped within the accuracy of the electromagnetic flow meters 5 and 11. The damping time constant (T) is set (10 seconds in this case) in the electromagnetic flowmeters 5 and 11, and a time delay occurs until the numerical value is stabilized. (After 50 seconds in this case)
Collect data from Therefore, the sampling timing is as shown in FIG.

【0021】また、この発明においては、前記したとお
り、羽口給水圧力Pwと炉内圧力Piの差圧ΔPを変化
させることを条件の1つとして挙げていることから、図
1に示す系統図では、給水入口の圧力計7により計測さ
れた圧力を代表点として採用しており、そのまま炉内圧
力と比較するのではなく、圧力計7の設置位置から羽口
2の先端までの圧力損失分を差引く。さらに、羽口2の
先端部分は、高流速となっていることから動水圧の分だ
け静圧が低下するため、この分も含めて補正が必要とな
る。その補正式は下記のとおりである。
Further, in the present invention, as described above, one of the conditions is to change the pressure difference ΔP between the tuyere feed pressure Pw and the furnace pressure Pi. Uses the pressure measured by the pressure gauge 7 at the feed water inlet as a representative point, and does not directly compare the pressure with the pressure inside the furnace, but instead measures the pressure loss from the installation position of the pressure gauge 7 to the tip of the tuyere 2. Subtract Furthermore, since the tip portion of the tuyere 2 has a high flow velocity, the static pressure is reduced by the hydrodynamic pressure, so that the correction including this is necessary. The correction formula is as follows.

【0022】圧力計7による計測圧力をPw1とすると、
羽口2の先端部分の圧力は、 Pw=Pw1−ΔPw1−VN 2/(2g)γ ただし、ΔPw1は、その流量における圧力計7の設置位
置から羽口2の先端までの水側圧力損失で、設計流量Q
Dの時の圧損をΔPwDとする。データ採取時の給水流量
をQNとすると、下記式により算出できる。 ΔPw1=ΔPwD×(QN/QD2 また、VN 2/(2g)γは、羽口2の先端部分の動水圧
で、VNは給水流量がQN時の先端流速を表す。設計流量
D時の流速をVDとすると、下記式により算出できる。 VN=VD×(QN/QD) ただし、γは、冷却水の比重で、40℃の場合992k
g/m3である。
Assuming that the pressure measured by the pressure gauge 7 is P w1 ,
The pressure of the tip portion of the tuyere 2, Pw = P w1 -ΔP w1 -V N 2 / (2g) γ However, [Delta] P w1 is water from the pressure gauge 7 installed position of the flow rate thereof to the tip of the tuyere 2 With the side pressure loss, the design flow Q
Let the pressure loss at D be ΔP wD . The feed water flow at the time of data collection When Q N, can be calculated by the following equation. ΔP w1 = ΔP wD × (Q N / Q D ) 2 Also, V N 2 / (2 g) γ is the dynamic water pressure at the tip of the tuyere 2, and V N is the tip flow rate when the feedwater flow rate is Q N. Represent. The flow rate at the time of design flow rate Q D When V D, can be calculated by the following equation. V N = V D × (Q N / Q D ) where γ is the specific gravity of the cooling water and 992 k at 40 ° C.
g / m 3 .

【0023】以上の方法を採用することによって、微小
なピンホールによる水漏れ発見率が著しく向上し、計器
誤差と羽口破損によるものとの判別が可能となり、早期
処置により炉況の不安定化を回避できると共に、操業ト
ラブルの減少に大きく寄与することができる。また、こ
の発明は、高炉羽口に限らず、羽口ホルダーや反応炉の
冷却金物の破損検出用として適用することができる。
By employing the above method, the rate of detecting water leaks due to minute pinholes is remarkably improved, and it is possible to discriminate between an instrument error and a tuyere damage, and the reactor condition is destabilized by early treatment. Can be avoided, and the operation trouble can be greatly reduced. In addition, the present invention is not limited to the blast furnace tuyere, and can be applied to the detection of breakage of the tuyere holder and cooling hardware of the reactor.

【0024】[0024]

【発明の効果】この発明の羽口診断方法は、差流量が予
め定めた設定値を超えると、給水圧力を変化させて炉内
圧力との差圧を変化させたときの冷却水の差流量との相
関を求めて回帰式を作成し、差圧がゼロとなるポイント
の差流量の値から羽口の破損か計器誤差かを判別すると
共に、羽口の破損の場合は回帰式の傾きから破損口径の
推定を行うから、微小なピンホールによる水漏れ発見率
が著しく向上し、計器誤差と羽口破損によるものとの判
別が可能となり、早期処置により炉況の不安定化を回避
できると共に、操業トラブルの減少に大きく寄与するこ
とができる。
According to the tuyere diagnostic method of the present invention, when the differential flow rate exceeds a predetermined set value, the differential flow rate of the cooling water when the feed water pressure is changed to change the differential pressure with the furnace pressure is changed. The point where the differential pressure becomes zero is calculated by calculating the correlation with
Whether the tuyere is damaged or an instrument error is determined from the value of the differential flow rate, and in the case of tuyere damage, the diameter of the damaged bore is estimated from the slope of the regression equation. Thus, it is possible to discriminate between an instrument error and a tuyere breakage, thereby avoiding instability of the furnace condition by early treatment and greatly contributing to a reduction in operation trouble.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の羽口の破損診断方法を備えた高炉羽
口冷却系統の概略説明図である。
FIG. 1 is a schematic explanatory diagram of a blast furnace tuyere cooling system provided with a tuyere damage diagnosis method of the present invention.

【図2】羽口破損時の漏水量特性を示す羽口先端水圧と
炉内圧力との差圧ΔPを変化させた場合の差流量ΔQと
の関係を示すグラフである。
FIG. 2 is a graph showing a relationship between a differential pressure ΔP between a tuyere tip water pressure and a furnace pressure, which indicates a water leakage amount characteristic when the tuyere is broken, and a differential flow rate ΔQ.

【図3】データのサンプリングタイミングの説明図であ
る。
FIG. 3 is an explanatory diagram of data sampling timing.

【符号の説明】[Explanation of symbols]

1 給水ヘッダー 2 羽口 3 給水管 4 入口弁 5 給水側電磁流量計 6、10 流量調整弁 7 給水圧力計 8 排水ヘッダー 9 排水管 11 排水側電磁流量計 12 排水三方弁 13 出口弁 14 破損診断制御部 15 炉内圧力計 16 キーボード DESCRIPTION OF SYMBOLS 1 Water supply header 2 Tuyere 3 Water supply pipe 4 Inlet valve 5 Water supply side electromagnetic flowmeter 6, 10 Flow control valve 7 Water supply pressure gauge 8 Drainage header 9 Drainage pipe 11 Drainage side electromagnetic flowmeter 12 Drainage three-way valve 13 Outlet valve 14 Breakage diagnosis Control unit 15 Furnace pressure gauge 16 Keyboard

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F27B 1/28 C21B 7/16 C21B 7/24 F27D 21/00 Continuation of the front page (58) Field surveyed (Int. Cl. 7 , DB name) F27B 1/28 C21B 7/16 C21B 7/24 F27D 21/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 羽口の冷却系統毎の給水管および排水管
にそれぞれ設置した流量計の出力差(差流量)を検出し
て羽口の破損を検知する方法において、差流量が予め定
めた設定値を超えると、給水圧力を変化させて炉内圧力
との差圧を変化させたときの冷却水の差流量との相関を
求めて回帰式を作成し、差圧がゼロとなるポイントの差
流量の値から羽口の破損か計器誤差かを判別すると共
に、羽口の破損の場合は回帰式の傾きから破損口径の推
定を行うことを特徴とする羽口の破損診断方法。
1. A method for detecting a difference in output of a flow meter (differential flow rate) installed in each of a water supply pipe and a drain pipe for each cooling system of a tuyere and detecting breakage of the tuyere, wherein the differential flow rate is predetermined. When the pressure exceeds the set value, a regression equation is created by calculating the correlation with the difference flow rate of the cooling water when the pressure difference between the supply water pressure and the furnace pressure is changed . difference
Together to determine or damaged instruments error tuyere from the flow value, damage diagnosis method tuyeres if damage of the tuyere, wherein the TURMERIC line estimation of damage caliber from the slope of the regression equation.
JP19533496A 1996-07-04 1996-07-04 How to diagnose tuyere damage Expired - Fee Related JP3151803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19533496A JP3151803B2 (en) 1996-07-04 1996-07-04 How to diagnose tuyere damage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19533496A JP3151803B2 (en) 1996-07-04 1996-07-04 How to diagnose tuyere damage

Publications (2)

Publication Number Publication Date
JPH1017911A JPH1017911A (en) 1998-01-20
JP3151803B2 true JP3151803B2 (en) 2001-04-03

Family

ID=16339452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19533496A Expired - Fee Related JP3151803B2 (en) 1996-07-04 1996-07-04 How to diagnose tuyere damage

Country Status (1)

Country Link
JP (1) JP3151803B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014179825A1 (en) * 2013-05-06 2014-11-13 Technological Resources Pty. Limited A solids injection lance

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5787254B2 (en) * 2011-04-12 2015-09-30 鈴茂器工株式会社 Pressed sushi molding apparatus and pressed sushi molding method
JP7230615B2 (en) * 2019-03-20 2023-03-01 日本製鉄株式会社 Cooling method and refrigerant distribution system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014179825A1 (en) * 2013-05-06 2014-11-13 Technological Resources Pty. Limited A solids injection lance
CN105264320A (en) * 2013-05-06 2016-01-20 技术资源有限公司 A solids injection lance
US10018419B2 (en) 2013-05-06 2018-07-10 Tata Steel Limited Solids injection lance
EA030690B1 (en) * 2013-05-06 2018-09-28 Тата Стил Лимитед Solids injection lance

Also Published As

Publication number Publication date
JPH1017911A (en) 1998-01-20

Similar Documents

Publication Publication Date Title
KR100560249B1 (en) Non-iterative method for obtaining mass flow rate
EP2893301B1 (en) Self-diagnosing differential pressure flow meter
EP0598720A1 (en) Nonintrusive flow sensing system.
JP3129121B2 (en) Pipe line obstruction detector
EP0188911A2 (en) Method and apparatus for detecting leaks in a gas pipe line
CN101506629A (en) Flow measurement diagnostics
JP2009014686A (en) Gas appliance discriminating device and its method
JP3344742B2 (en) Method and apparatus for detecting fluid leaks from tubes
JP3151803B2 (en) How to diagnose tuyere damage
JP2763284B2 (en) Method and apparatus for measuring compressed air flow rate in brake pipe air supply line
KR100871943B1 (en) Methods and apparatus for monitoring water process equipment
JP2765446B2 (en) Pipeline leak detection method
JP3117834B2 (en) Gas leak detection method
JP2005267572A (en) Method and device for determining abnormality in flow control
JPS6360844B2 (en)
JPH08247900A (en) Abnormality diagnosis device for flow rate control facility
JP3117842B2 (en) Gas leak detection method
JP2765456B2 (en) Pipeline leak detection method
JPH08178782A (en) Differential pressure measuring apparatus
JPH06294500A (en) Gas leak position automatic cutoff device
JP3063514B2 (en) Flow measurement method using pressure sensor
JP3117844B2 (en) Gas leak detection method
SU996447A1 (en) Method for determining working condition of devices for detecting burning-through in chilled member of metallurgical furnace
JPH0882537A (en) Abnormality detector of flowmeter
JP2619161B2 (en) Lance clogging detection device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees