JPS58204109A - Detection of leakage of cooling water from blast furnace tuyere - Google Patents

Detection of leakage of cooling water from blast furnace tuyere

Info

Publication number
JPS58204109A
JPS58204109A JP8404282A JP8404282A JPS58204109A JP S58204109 A JPS58204109 A JP S58204109A JP 8404282 A JP8404282 A JP 8404282A JP 8404282 A JP8404282 A JP 8404282A JP S58204109 A JPS58204109 A JP S58204109A
Authority
JP
Japan
Prior art keywords
tuyere
cooling water
flow rate
blast furnace
correlation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8404282A
Other languages
Japanese (ja)
Inventor
Shigeo Suezaki
末崎 重雄
Koji Honma
本間 幸治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP8404282A priority Critical patent/JPS58204109A/en
Publication of JPS58204109A publication Critical patent/JPS58204109A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/10Cooling; Devices therefor
    • C21B7/103Detection of leakages of the cooling liquid

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Blast Furnaces (AREA)

Abstract

PURPOSE:To detect the leakage of cooling water occurring in the failure of a blast furnace tuyere by determining the correlation between the difference between the feed flow rate of the cooling water for the blast furnace tuyere and the discharge flow rate thereof and the blast pressure for the tuyere. CONSTITUTION:The differential flow rate of cooling water for a blast furnace tuyere between the feed flow rate and discharge flow rate is measured with a pair of flowmeters installed to feed and discharge pipes for said cooling water. The correlation between said differential flow rate of the cooling water and the blast pressure for the tuyere is determined, and the magnitude in the inclination of the regression line or the coefft. of correlation is graphically dispalyed. The magnitude is compared with a control standard and the failure of the tuyere is discriminated. The leakage of the cooling water occurring in the failure of the tuyere is thus detected easily.

Description

【発明の詳細な説明】 本発明は、高炉羽口の冷却水漏洩検知方法に法について
の提案である。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a proposal for a method for detecting cooling water leakage from a blast furnace tuyere.

公知の高炉羽口破損の検知技術としては一複数の電磁流
量計を用いて、羽口冷却水差流量を測定する方式が知ら
れている。この技術は、羽口破損2.。
As a known technique for detecting blast furnace tuyere damage, a method is known in which a plurality of electromagnetic flowmeters are used to measure the differential flow rate of tuyere cooling water. This technique is used for tuyere damage. .

があると高炉炉内に浸水が起って排水流量が給水1流量
に比べて少なくかるという現象を利用し、差流量計に設
定された上限警報により羽目破損の有無を検知する方法
である。ただ、この従来技術の場合、羽口破損の状態に
種々のケースがあるので、単純に差流量の上下限値を監
視するだけで総ての破損を検知するのは困難が伴うとい
う問題点があった。
This method utilizes the phenomenon that water intrudes into the blast furnace and the flow rate of drainage water becomes smaller than the flow rate of water supply, and detects whether or not there is damage to the siding by using an upper limit alarm set on a differential flowmeter. However, in the case of this conventional technology, there are various cases of tuyere damage, so there is a problem that it is difficult to detect all damage simply by monitoring the upper and lower limits of the differential flow rate. there were.

また、冷却水差流量の計測に当っては、次のような現象
:すなわち; ■ 差流量計がマイナス側(給水流量〈排水流蓋)に振
れる。
In addition, when measuring the differential flow rate of cooling water, the following phenomena occur: ■ The differential flow meter swings to the negative side (water supply flow rate <drainage flow cover).

■ 差流量計が正常値(′給水流量−排水流量)と下限
値を反復する。
■ The differential flow meter repeats the normal value ('water supply flow rate - drainage flow rate) and lower limit value.

■)差流量が正常値と上限値を反復する。■) The differential flow rate repeats the normal value and upper limit value.

が考えられる。そのうち上記■、■が起る原因としては
、1つは検知装置に異常゛がある場合で、他のもう1つ
は冷却水路の排水管のみに気泡が生じた場合であるけれ
ども、後者の場合は、羽目が破損して冷却水路中に炉内
ガスが混入しなければ起・、。
is possible. Of these, the reasons for the above ■ and ■ are that one is when there is an abnormality in the detection device, and the other is when air bubbles occur only in the drain pipe of the cooling waterway, but in the latter case. This will occur if the siding is damaged and the furnace gas does not get mixed into the cooling channel.

こり得ない現象であって、実際の高炉では炉内圧・力よ
り冷却水圧力の方が高いから、常態では想像しにくい。
This is an impossible phenomenon, and in an actual blast furnace, the pressure of the cooling water is higher than the pressure and force inside the furnace, so it is difficult to imagine it under normal conditions.

従って、このような場合、まず電磁流量計を主とした検
知装置の故障が検討されることになる。
Therefore, in such a case, the failure of the detection device, mainly the electromagnetic flowmeter, is first investigated.

■の現象が起る場合は、羽口破損によるものか検知装置
異常によるものかの判定は容易でなく、この場合もまず
検知装置の点検が必要とされる。
When the phenomenon (2) occurs, it is not easy to determine whether it is due to tuyere damage or an abnormality in the detection device, and in this case as well, the detection device must be inspected first.

ここでもし■、■、■の現象の原因が羽口破損(小破損
の状態)であった場合には、検知装置側・・に問題がな
いので、その故障原因の速やかなる調査ができず、真因
追求に時間もかかる。しかもその調量の間にも羽目小破
゛損個所からは炉内に浸水が続くから、それに伴う奪熱
によって高炉操業のコークス比を上昇させる。その上、
小破損でもそ1・のまま放置しておくとやがて大破損に
到り緊急休風を余義なくされる場合がある。
Here, if the cause of the phenomena ■, ■, and ■ is tuyere damage (small damage state), there is no problem with the detection device, and the cause of the failure cannot be investigated immediately. , it takes time to find the root cause. Moreover, even during metering, water continues to flood into the furnace from areas with minor damage to the siding, and the accompanying heat removal increases the coke ratio during blast furnace operation. On top of that,
Even if the damage is minor, if left as it is, it may eventually lead to major damage and require an emergency shutdown.

本発明の目的は、羽目破損の判定をそれがまだ小破損の
ときに正確に行うのに有効に利用される検知方法を提供
することにあり、とくにその判定−(8) を冷却水の給・排水の差流量と羽目送風圧力との1相関
関係の強弱により決定することにより、羽口冷却水の漏
洩を最小限に止めるのに効果のある方法である。以下に
その構成の詳細を説明する。
An object of the present invention is to provide a detection method that can be effectively used to accurately determine the damage to the siding when the damage is still small. - This is an effective method for minimizing leakage of tuyere cooling water by determining the strength of the correlation between the differential flow rate of drainage water and the tuyere blowing pressure. The details of the configuration will be explained below.

第1図は、羽口冷却水漏洩検知装置の回路図で・ある、
羽目冷却水は、給水ヘッダ1から止弁2゜8.4を通る
管路を経て羽口10に達し、その羽口10から止弁6,
7を通る管路を経て排水樋9に到る糸路で流れるが、そ
のときの給・排水流量が電磁式流量計11にて測定され
、増幅器12を1・・介して差流量指示警報計14に出
力されて差流量表示となる。なお、排水流量も同様の測
定処理によって排水流量指示警報計18に指示される。
Figure 1 is a circuit diagram of the tuyere cooling water leak detection device.
The siding cooling water reaches the tuyere 10 from the water supply header 1 through a pipe passing through the stop valve 2°8.4, and from the tuyere 10 to the stop valve 6,
The water flows through a line passing through a pipe line 7 to a drainage gutter 9, and the supply/drainage flow rate at that time is measured by an electromagnetic flow meter 11, and a differential flow rate indicator/alarm meter is sent via an amplifier 12 to a drain gutter 9. 14 to display the differential flow rate. Note that the drainage flow rate is also indicated to the drainage flow rate indicator and alarm meter 18 through a similar measurement process.

一方、羽口周辺炉内圧力と近似値である送風圧力は、熱
風管15に設置された圧力発偵器16で・。
On the other hand, the blast pressure, which is an approximate value of the pressure in the furnace around the tuyere, is determined by a pressure detector 16 installed in the hot air pipe 15.

検出され、圧力指示計17に表示されている。多ペン・
トレンド記録計18は送風圧力信号と任意の差流量信号
を随時選択する装置である。      1プロセス計
算機19は、ディスプレイ装置20とタイプライタ装置
21を有し、高炉の諸情報を、1゜(4) 取込み高炉操業の管理や制御を行なっている。 1なお
、非計測時は上記止弁8,4,6.7を閉、止弁5,8
を開にして、冷却水を前記流量計11に通すことなく直
接羽口10に送り、また直接排水樋9に向けて流す。
It is detected and displayed on the pressure indicator 17. Multi-pen/
The trend recorder 18 is a device that selects the blowing pressure signal and any differential flow rate signal at any time. The 1-process computer 19 has a display device 20 and a typewriter device 21, and takes in various information about the blast furnace 1° (4) to manage and control the blast furnace operation. 1. When not measuring, close the stop valves 8, 4, 6.7, and close the stop valves 5, 8.
is opened, and the cooling water is sent directly to the tuyere 10 without passing through the flow meter 11, and also flows directly toward the drainage gutter 9.

さて、本発明者らが過去の羽口破損時における高炉操業
について検討したところによると、第2図に示すように
羽目10から吹込まれる熱風の送風圧力と給・排水の差
流量との間には、強い相関があることが判った。すなわ
ち、正常な羽目は回用帰直線の傾きがほとんど零に近い
値を示すのに対して、破損した羽目の例では回帰直線の
傾きは−174という値を示した。従って、この回帰直
線の傾きaを求めれば羽口破損の有無の判定を容易に行
うことができるようになる。本発明は正に1)このよう
な知見にもとづいて構成したものであ谷この点、羽口破
損にあたって、給水量と排水量との差すなわち差流量が
マイナスを表示するときは、熱風が破損部から羽目通水
空間内に侵入し、冷却水中に気泡を発生させているとき
であり、見−。
According to the inventors' study of blast furnace operations in the past when tuyeres were damaged, it was found that the difference between the blowing pressure of hot air blown from the siding 10 and the differential flow rate between supply and drainage, as shown in Figure 2. It was found that there is a strong correlation. In other words, the slope of the regression line in the case of a normal stitch was almost zero, whereas the slope of the regression line in the case of a damaged stitch was -174. Therefore, by determining the slope a of this regression line, it becomes possible to easily determine whether or not the tuyere is damaged. The present invention was constructed based on the above knowledge (1).In this point, when the tuyere is damaged and the difference between the amount of water supplied and the amount of water discharged, that is, the differential flow rate shows a negative value, hot air is This is when the water enters the water passage space and generates bubbles in the cooling water.

かけ上排水量が増大したように見える。一方、差1流量
がプラスになるときは、破損羽口から炉内へ浸水してい
ることを意味しており、相関係数もマイナスを表示する
It appears that the amount of drainage has increased. On the other hand, when the difference 1 flow rate is positive, it means that water is flooding into the furnace from the damaged tuyere, and the correlation coefficient also displays a negative value.

従って、相関係数はプラスとマイナスがあり、・第8図
に示す回帰直線y2の傾きは差流量がマイナスを示した
場合であるが、逆に差流量がプラスの場合回帰直線はこ
の逆の傾きとなる。このグラフは前記ディスプレイ装置
2oに表示する。
Therefore, there are positive and negative correlation coefficients, and the slope of the regression line y2 shown in Figure 8 is when the differential flow rate is negative, but conversely, when the differential flow rate is positive, the regression line is the opposite slope. It becomes a slope. This graph is displayed on the display device 2o.

しかして、上述した相関係数の大きさまたは回用帰直線
の傾きの程度は一同時に羽口破損がどのi度かというこ
とと比例しており、また該相関係数の大きさがどのレベ
ルにあるかで、羽目破損の有無を判定できる。そのため
に、予め羽目破損時の上記係数を過去の操業結果から予
め管理値としてl−1定め計算機19に入力しておく。
Therefore, the magnitude of the above-mentioned correlation coefficient or the degree of slope of the regression line is proportional to the i degree of tuyere failure at the same time, and the magnitude of the correlation coefficient is proportional to the degree of i degree of tuyere failure. It is possible to determine whether or not there is damage to the siding. For this purpose, the above-mentioned coefficient at the time of siding damage is determined in advance as a control value l-1 from past operation results and input into the calculator 19.

本発明における相関関係の強弱は、上記した回帰直線の
傾きaの大小を比較することの他、相関係数の程度によ
って羽目破損を判定してもよい。
In order to determine the strength of the correlation in the present invention, in addition to comparing the magnitude of the slope a of the regression line described above, damage to the siding may be determined based on the degree of the correlation coefficient.

なお、該回帰直線の傾きaは次のようにして求2、。Incidentally, the slope a of the regression line is calculated as follows.

める。まず、過去の操業データより、送風圧力をlXと
し、−力差流量をyとした散布図において、最小二乗法
により求められる回帰直線y=ax+bの係数aを求め
る。その求め方は、プロセス計算機20にn個の全羽目
(40個)の差流量と送風1圧力の測定値をロータリー
形式(定周期に新しいデータをとり、最も古いデータを
捨てる)でとり込み、各羽口毎に回帰直線の係数aを次
式により(”X xi )−n ”X xt” 1=1         1=1 そして、こうして求めた回帰直線の傾きaを常に一定周
期9例えば8回/日程度でその都度計算して表示させれ
ば、その係数aの大きさをみて羽])口破損の有無を正
確に検知することができ、これを警報表示させてもよい
Melt. First, from past operation data, in a scatter diagram where the blowing pressure is lX and the -force difference flow rate is y, the coefficient a of the regression line y=ax+b is determined by the least squares method. The way to obtain it is to input the measured values of the differential flow rate and one air blowing pressure of all n pieces (40 pieces) into the process computer 20 in a rotary format (taking new data at regular intervals and discarding the oldest data). The coefficient a of the regression line for each tuyere is determined by the following formula: ("X xi ) - n "X If it is calculated and displayed each time on the order of days, it is possible to accurately detect the presence or absence of a mouth break by looking at the magnitude of the coefficient a, and this may be displayed as an alarm.

実施例 高炉容積4.500 fi8、羽口本数40本、冷却水
給水量85 m8A、羽目送風圧力4.2−会2 、 
G、。
Example: Blast furnace volume: 4.500 fi8, number of tuyere: 40, cooling water supply amount: 85 m8A, wall blowing pressure: 4.2-2,
G.

(7) 21・・・タイプライタ装置。(7) 21... Typewriter device.

〜4−61J/crn2・Gの操業において、相関係数
aの上1下限値を±8に設定し、8回/日の頻度でその
相関を求めながら操業したところ、羽口の破損を正確か
つ迅速に検知することができた。結局羽目破損が大破損
に到ることはなく、安定した高炉操業′・ができた。
In operation at ~4-61J/crn2・G, the upper and lower limits of the correlation coefficient a were set to ±8, and the operation was performed while calculating the correlation 8 times/day. and could be detected quickly. In the end, the wall damage did not lead to major damage, and stable blast furnace operation was achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明で用いる羽口冷却水漏洩検知装置の回
路図、 第2図はディスプレイ装置に表示させた送風圧l・・力
と差流量との相関関係のグラフである81・・・給水ヘ
ッダ、2・・・止弁、8・・・止弁、4・・・止弁、5
・・・止弁、6・・・止弁、7・・・止弁、8・・・止
弁、9・・・排水樋、10・・・羽口、11・・・流量
計、12・・・増、幅器、18・・・排水流量指示警報
計、 14・・・差流量指示警報計、15・・・熱風管、16
・・・圧力発信器、17・・・圧力指示計、18・・・
多ペン・トレンド記録計、 19・・・プロセス計算機、20・・・ディスプレイ装
置 、、。 (8) 特許出願人 川崎製鉄株式会社 第1図 第2図 ボ虱圧7’7 (Kf/cmす
Fig. 1 is a circuit diagram of the tuyere cooling water leak detection device used in the present invention, and Fig. 2 is a graph of the correlation between the blowing pressure l...force and the differential flow rate displayed on the display device81...・Water supply header, 2...stop valve, 8...stop valve, 4...stop valve, 5
... Stop valve, 6 ... Stop valve, 7 ... Stop valve, 8 ... Stop valve, 9 ... Drain gutter, 10 ... Tuyere, 11 ... Flowmeter, 12. ... Increase, width gauge, 18... Drainage flow rate indicator and alarm meter, 14... Differential flow rate indicator and alarm meter, 15... Hot air pipe, 16
...Pressure transmitter, 17...Pressure indicator, 18...
Multi-pen trend recorder, 19... Process calculator, 20... Display device. (8) Patent applicant Kawasaki Steel Corporation Figure 1 Figure 2 Bore pressure 7'7 (Kf/cm)

Claims (1)

【特許請求の範囲】[Claims] 1 高炉羽口冷却水の給・排水管に設置した一対の流量
計により給水流量と排水流量の冷却”・水差流量を測定
して冷却水漏洩を検知する方法において、上記冷却水差
流量と羽口送風圧力との相関を求め、得られた相関関係
から図形表示における回帰直線の傾き、もしくは相関係
数の大きさを管理基準と比較することに1・・より、羽
口破損を判定するようにしたことを特徴とする高炉羽目
の冷却水漏洩検知方法。
1. In the method of detecting cooling water leakage by measuring the cooling water flow rate and the water difference flow rate using a pair of flowmeters installed in the supply and drain pipes of the blast furnace tuyere cooling water, Determine tuyere damage by determining the correlation with the tuyere blowing pressure and comparing the slope of the regression line in the graphic display or the magnitude of the correlation coefficient with the control standard from the obtained correlation.1. A method for detecting cooling water leakage in blast furnace siding, characterized in that:
JP8404282A 1982-05-20 1982-05-20 Detection of leakage of cooling water from blast furnace tuyere Pending JPS58204109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8404282A JPS58204109A (en) 1982-05-20 1982-05-20 Detection of leakage of cooling water from blast furnace tuyere

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8404282A JPS58204109A (en) 1982-05-20 1982-05-20 Detection of leakage of cooling water from blast furnace tuyere

Publications (1)

Publication Number Publication Date
JPS58204109A true JPS58204109A (en) 1983-11-28

Family

ID=13819452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8404282A Pending JPS58204109A (en) 1982-05-20 1982-05-20 Detection of leakage of cooling water from blast furnace tuyere

Country Status (1)

Country Link
JP (1) JPS58204109A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7138085B2 (en) 2002-05-30 2006-11-21 Dofasco Inc. Tuyere cooling system
JP2020152963A (en) * 2019-03-20 2020-09-24 日本製鉄株式会社 Cooling method and coolant circulation system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7138085B2 (en) 2002-05-30 2006-11-21 Dofasco Inc. Tuyere cooling system
JP2020152963A (en) * 2019-03-20 2020-09-24 日本製鉄株式会社 Cooling method and coolant circulation system

Similar Documents

Publication Publication Date Title
US9518853B2 (en) Self-diagnosing differential pressure flow meter including a directed pressure port
EP0186478A2 (en) Method and apparatus for detecting leaks in a gas pipe line
JPS62246695A (en) Operation deciding device for steam trap
JPS58204109A (en) Detection of leakage of cooling water from blast furnace tuyere
JPS6114522A (en) Two-step orifice type flowmeter
US4386531A (en) Method and apparatus for determining the injection pressure during injection operations during construction work
CN206291942U (en) A kind of blowing type liquid level meter
JPH0763637A (en) Method for detecting leak of pipe line
JP3151803B2 (en) How to diagnose tuyere damage
JPS5679936A (en) Leakage detecting method
JPS6347596A (en) Measuring device for quantity of leakage of steam of steam trap
JP3299075B2 (en) How to detect water leakage from the tuyere
CN107255555A (en) A kind of system and method for measuring valve tiny leakage rate
CN206291940U (en) A kind of blowing type liquid level meter
JP2006292549A (en) Exhaust gas flow rate measuring system of sintering machine
JP3783831B2 (en) Flow rate measuring method, flow rate measuring apparatus, and gas meter
SU1147931A1 (en) Device for measuring average temperature of gas or liquid flow
SU996447A1 (en) Method for determining working condition of devices for detecting burning-through in chilled member of metallurgical furnace
JPS5973732A (en) Purge type liquid level gage
JPS6055229A (en) Measuring device of flow rate
JPH0774769B2 (en) Gas pipeline leak detection method
JP2619161B2 (en) Lance clogging detection device
JPH0311546Y2 (en)
JPS596500A (en) Leakage detection method of liquid transferring pipeline
JPS56127715A (en) Method of detecting leak in cooling liquid circulating system in high pressure gas atmosphere