JP3148479B2 - High sensitivity magnetic field detector - Google Patents

High sensitivity magnetic field detector

Info

Publication number
JP3148479B2
JP3148479B2 JP23176293A JP23176293A JP3148479B2 JP 3148479 B2 JP3148479 B2 JP 3148479B2 JP 23176293 A JP23176293 A JP 23176293A JP 23176293 A JP23176293 A JP 23176293A JP 3148479 B2 JP3148479 B2 JP 3148479B2
Authority
JP
Japan
Prior art keywords
voltage
circuit
squid
current
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23176293A
Other languages
Japanese (ja)
Other versions
JPH0784018A (en
Inventor
徳男 千葉
哲 中山
利光 師岡
Original Assignee
セイコーインスツルメンツ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコーインスツルメンツ株式会社 filed Critical セイコーインスツルメンツ株式会社
Priority to JP23176293A priority Critical patent/JP3148479B2/en
Publication of JPH0784018A publication Critical patent/JPH0784018A/en
Application granted granted Critical
Publication of JP3148479B2 publication Critical patent/JP3148479B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【産業上の利用分野】本発明はDC−SQUID(直流
駆動型超伝導量子干渉素子)を用いた高感度磁場検出装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-sensitivity magnetic field detecting apparatus using a DC-SQUID (DC driven superconducting quantum interference device).

【従来の技術】従来、DC−SQUID駆動回路装置の
一部を構成するバイアス電流供給回路は定電流回路によ
って構成されていた。図8は従来の高感度磁場検出装置
の構成を表した図である。1はDC−SQUID、2は
定電流回路、5は電圧増幅回路、6は積分回路、7は電
圧電流変換回路で、8の点線で囲んだ部分が帰還回路で
ある。DC−SQUID1は定電流回路2からバイアス
電流が供給される。DC−SQUID1の信号電圧は電
圧増幅回路5で増幅され帰還回路8へ伝達され、帰還電
流は帰還コイル9により帰還磁束としてDC−SQUI
D1へ帰還される。図9は従来例によるDC−SQUI
Dの電流−電圧特性とバイアス電流の関係を示した図で
ある。DC−SQUIDの電流−電圧特性において、超
伝導臨界電流はDC−SQUIDへの入力磁束の大きさ
に応じてΔI変化する。定電流回路を用いて最大超伝導
臨界電流値と同じ大きさのバイアス電流を供給した場
合、図9に示すように入力磁束の大きさに応じて最大で
ΔV1の電圧変化が得られる。
2. Description of the Related Art Conventionally, a bias current supply circuit constituting a part of a DC-SQUID drive circuit device has been constituted by a constant current circuit. FIG. 8 is a diagram showing a configuration of a conventional high-sensitivity magnetic field detection device. 1 is a DC-SQUID, 2 is a constant current circuit, 5 is a voltage amplifying circuit, 6 is an integrating circuit, 7 is a voltage-current converting circuit, and a portion surrounded by a dotted line of 8 is a feedback circuit. DC-SQUID 1 is supplied with a bias current from constant current circuit 2. The signal voltage of the DC-SQUID 1 is amplified by the voltage amplifying circuit 5 and transmitted to the feedback circuit 8, and the feedback current is converted by the feedback coil 9 as a feedback magnetic flux into the DC-SQUID 1.
It is returned to D1. FIG. 9 shows a conventional DC-SQUI.
FIG. 9 is a diagram showing a relationship between a current-voltage characteristic of D and a bias current. In the current-voltage characteristics of the DC-SQUID, the superconducting critical current changes by ΔI according to the magnitude of the magnetic flux input to the DC-SQUID. When a bias current having the same magnitude as the maximum superconducting critical current value is supplied by using a constant current circuit, a voltage change of ΔV1 at maximum is obtained according to the magnitude of the input magnetic flux as shown in FIG.

【発明が解決しようとする課題】上記従来の高感度磁場
検出装置ではΔV1の値はDC−SQUID固有の値で
あり、さらに大きくすることはできなかった。接続した
DC−SQUIDの電圧変化ΔV1が小さい場合、磁束
電圧変換効率dV/dφが劣化し、高感度磁場検出装置
の雑音特性や周波数特性を劣化させる問題があった。
In the above-described conventional high-sensitivity magnetic field detecting apparatus, the value of ΔV1 is a value unique to DC-SQUID and cannot be further increased. When the voltage change ΔV1 of the connected DC-SQUID is small, the magnetic flux-voltage conversion efficiency dV / dφ deteriorates, and there is a problem that the noise characteristics and the frequency characteristics of the high-sensitivity magnetic field detection device deteriorate.

【課題を解決するための手段】本発明は、上記の課題を
解決するため、DC−SQUID駆動回路装置の一部を
構成するバイアス電流供給回路には、定電流回路に加
え、信号電圧を電流に変換してバイアス電流に加算する
電圧電流変換手段を設置した。あるいは、バイアス電流
供給回路は、定電圧回路と、定電圧回路の出力電圧と信
号電圧を加算する電圧加算回路と、電圧加算回路の出力
電圧を電流に変換する電圧電流変換手段とで構成した。
According to the present invention, in order to solve the above-mentioned problems, a bias current supply circuit constituting a part of a DC-SQUID drive circuit device includes a constant current circuit and a signal voltage. And a voltage / current conversion means for adding to the bias current. Alternatively, the bias current supply circuit includes a constant voltage circuit, a voltage addition circuit that adds the output voltage of the constant voltage circuit and the signal voltage, and a voltage-current conversion unit that converts the output voltage of the voltage addition circuit into a current.

【作用】上記のような高感度磁場検出装置では、接続し
たDC−SQUIDの電流−電圧特性上で電圧変化ΔV
1が小さい場合でも、磁束変化に対してより大きな電圧
変化を実現することができ、すなわち磁束電圧変換効率
dV/dφを向上させることができる。
In the above-described high-sensitivity magnetic field detecting device, the voltage change ΔV is determined on the current-voltage characteristic of the connected DC-SQUID.
Even when 1 is small, a larger voltage change can be realized with respect to the magnetic flux change, that is, the magnetic flux voltage conversion efficiency dV / dφ can be improved.

【実施例】以下に本発明の実施例について図面を参照し
て説明する。図1は本発明の第1実施例を示す高感度磁
場検出装置の構成を表した図である。1はDC−SQU
ID、5は電圧増幅回路、6は積分回路、7は電圧電流
変換回路で、8の点線で囲んだ部分が帰還回路である。
4の部分はバイアス電流供給回路で本発明により設置し
た電圧電流変換手段3と定電流回路2とからなる。DC
−SQUID1の信号電圧は電圧増幅回路5で増幅され
帰還回路8へ伝達され、帰還電流は帰還コイル9により
帰還磁束としてDC−SQUID1へ帰還される。一
方、電圧増幅器5の出力は電圧電流変換手段3で電流変
換され、定電流回路2からの定電流に加算されDC−S
QUID1に供給される。上記のような高感度磁場検出
装置の構成によれば、DC−SQUID1に供給される
バイアス電流はDC−SQUID1の電圧の増加にとも
ない増加する。図6は本発明の第一実施例によるDC−
SQUIDの電流−電圧特性とバイアス電流の関係を示
した図である。超伝導臨界電流はDC−SQUIDへの
入力磁束の変化に応じてΔI変化する。定電流回路2の
電流値を最大超伝導臨界電流値と同じ大きさに設定した
場合、DC−SQUID1に供給されるバイアス電流は
図6中に示したように電圧の増加とともに増加する。従
って、出力電圧の最大値は図中のΔV2で示す大きさと
なり、図9の従来例で示した出力電圧ΔV1より大きな
電圧変化を実現できる。上記のような高感度磁場検出装
置では、DC−SQUIDの定電流バイアス時の電圧変
化が小さい場合、信号電圧を電流に変換してバイアス電
流に加算する電圧電流変換手段を設置することにより、
磁束変化に対してより大きな電圧変化を実現でき、磁束
電圧変換効率dV/dφを向上させ、高感度磁場検出装
置の雑音特性や周波数特性を向上させることが可能であ
る。図2は本発明の第2実施例を示す高感度磁場検出装
置の構成を表した図である。図1に示した実施例とは電
圧電流変換手段3の電圧検出位置が異なる。図1に示し
た実施例は、電圧電流変換手段3によって電圧増幅回路
5の出力電圧が検出され電流に変換される構成である
が、本実施例は電圧電流変換手段3はDC−SQUID
1の電圧を直接検出して電流に変換し、定電流回路3の
電流と加算する構成である。その他の構成は図1に示し
た実施例と同様である。上記のような高感度磁場検出装
置の構成による作用および効果は増幅前の電圧を電流に
変換することを除いて前の実施例と変わるところはな
い。図3は本発明の第3実施例を示す高感度磁場検出装
置のバイアス電流供給部分の構成を表した図である。1
2は電圧加算回路、13は定電圧回路である。前の実施
例とは、定電圧回路13の出力電圧と電圧増幅回路5の
出力である信号電圧を、電圧加算回路12であらかじめ
加算してから電圧電流手段3でバイアス電流に変換する
ところが異なる。上記のような高感度磁場検出装置の構
成による作用および効果はあらかじめ電圧加算してから
バイアス電流に変換することを除いて前の実施例と変わ
るところはない。図4は本発明の第4実施例を示す高感
度磁場検出装置のバイアス電流供給部分の構成を表した
図である。前の実施例とは、バイアス電流をDC−SQ
UID1のダンピング抵抗10を介して供給するところ
が異なる。バイアス電流をダンピング抵抗10を介して
供給することによりバイアス電流に含まれる高周波雑音
を低減できる。さらに、電流−電圧特性において、ダン
ピング抵抗値Rdの4分の1の抵抗値と電流値の積で表
される電圧が増加する。図7は本発明の第4実施例によ
るDC−SQUIDの電流−電圧特性とバイアス電流の
関係を示した図である。電流−電圧特性において、ダン
ピング抵抗値Rdの4分の1の抵抗値と電流値の積で表
される電圧増加分、特性は右へ(電圧側へ)傾きが増加
する。従来の定電流バイアスでは、入力磁束の大きさに
応じて得られる最大の電圧変化は図9の従来例に示した
ΔV1と変わりない。本発明によるバイアス電流供給回
路4の構成によれば、出力電圧の最大値は図中のΔV3
で示す大きさとなり、図6で示した出力電圧ΔV2より
さらに大きな電圧変化を実現できる。上記のような高感
度磁場検出装置の構成によれば、磁束変化に対してより
大きな電圧変化を実現でき、その作用および効果は前の
実施例と変わるところはない。図5は本発明の第5実施
例を示す高感度磁場検出装置のバイアス電流供給部分の
構成を表した図である。前の実施例とは、バイアス電流
を抵抗11を介してDC−SQUID1に供給するとこ
ろが異なる。バイアス電流を抵抗11を介して供給する
ことによりバイアス電流に含まれる高周波雑音を低減で
きる。さらに、電流−電圧特性において、抵抗11の1
個の抵抗値Rの2倍の抵抗値と電流値の積で表される電
圧が増加する。上記のような高感度磁場検出装置の構成
による作用および効果は前の実施例と変わるところはな
い。図5では抵抗11を2個配置した例を示したが、抵
抗11を1個としても本発明によるバイアス供給回路4
を用いた高感度磁場検出装置の構成による作用および効
果は前の実施例と変わるところはない。上記実施例は無
変調型の高感度磁場検出装置を示したが、帰還回路8を
変調型とした高感度磁場検出装置においてそのバイアス
供給回路4を上記のように電圧電流変換手段3と定電流
回路2で構成してもその作用および効果は前の実施例と
変わるところはない。また、帰還回路8を変調型とした
高感度磁場検出装置においてそのバイアス供給回路4を
図3に示した本発明の第3実施例のように、定電圧回路
13と、定電圧回路13の出力電圧と信号電圧を加算す
る電圧加算回路12と、電圧加算回路の出力電圧を電流
に変換する電圧電流変換手段3とで構成してもその作用
および効果は前の実施例と変わるところはない。DC−
SQUID1としては超伝導リングを1個有する従来型
のDC−SQUIDの他に、特開平4−2979に示さ
れるような直列結合型のDC−SQUIDや特開平4−
2980に示されるような並列結合型のDC−SQUI
Dも用いられる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram illustrating a configuration of a high-sensitivity magnetic field detection device according to a first embodiment of the present invention. 1 is DC-SQUA
ID and 5 are voltage amplifier circuits, 6 is an integration circuit, 7 is a voltage-current conversion circuit, and a portion surrounded by a dotted line of 8 is a feedback circuit.
A portion 4 is a bias current supply circuit comprising a voltage / current conversion means 3 and a constant current circuit 2 installed according to the present invention. DC
The signal voltage of -SQUID1 is amplified by the voltage amplifier circuit 5 and transmitted to the feedback circuit 8, and the feedback current is fed back to the DC-SQUID1 by the feedback coil 9 as feedback magnetic flux. On the other hand, the output of the voltage amplifier 5 is converted into a current by the voltage-current conversion means 3 and added to the constant current from the constant current circuit 2 so that the DC-S
Supplied to QUID1. According to the configuration of the high-sensitivity magnetic field detection device as described above, the bias current supplied to DC-SQUID1 increases as the voltage of DC-SQUID1 increases. FIG. 6 shows a DC-DC according to the first embodiment of the present invention.
FIG. 4 is a diagram illustrating a relationship between a current-voltage characteristic of a SQUID and a bias current. The superconducting critical current changes by ΔI according to the change of the input magnetic flux to the DC-SQUID. When the current value of the constant current circuit 2 is set to the same value as the maximum superconducting critical current value, the bias current supplied to the DC-SQUID 1 increases as the voltage increases, as shown in FIG. Therefore, the maximum value of the output voltage becomes the magnitude indicated by ΔV2 in the figure, and a voltage change larger than the output voltage ΔV1 shown in the conventional example of FIG. 9 can be realized. In the high-sensitivity magnetic field detection device as described above, when the voltage change at the time of the constant current bias of the DC-SQUID is small, the voltage-current conversion unit that converts the signal voltage into the current and adds the current to the bias current is provided.
It is possible to realize a larger voltage change with respect to the magnetic flux change, improve the magnetic flux-voltage conversion efficiency dV / dφ, and improve the noise characteristics and frequency characteristics of the high-sensitivity magnetic field detection device. FIG. 2 is a diagram illustrating a configuration of a high-sensitivity magnetic field detection device according to a second embodiment of the present invention. The voltage detection position of the voltage / current converter 3 is different from that of the embodiment shown in FIG. The embodiment shown in FIG. 1 has a configuration in which the output voltage of the voltage amplifying circuit 5 is detected and converted into a current by the voltage-to-current converter 3, but in this embodiment, the voltage-to-current converter 3 is a DC-SQUID.
1 is directly detected, converted into a current, and added to the current of the constant current circuit 3. Other configurations are the same as those of the embodiment shown in FIG. The operation and effect of the configuration of the high-sensitivity magnetic field detection device described above are the same as those of the previous embodiment except that the voltage before amplification is converted into a current. FIG. 3 is a diagram showing a configuration of a bias current supply portion of a high sensitivity magnetic field detection device according to a third embodiment of the present invention. 1
2 is a voltage adding circuit, and 13 is a constant voltage circuit. The difference from the previous embodiment is that the output voltage of the constant voltage circuit 13 and the signal voltage output from the voltage amplifying circuit 5 are added in advance by the voltage adding circuit 12 and then converted into a bias current by the voltage / current means 3. The operation and effect of the configuration of the high-sensitivity magnetic field detection device described above are the same as those of the previous embodiment except that the voltage is added in advance and then converted to the bias current. FIG. 4 is a diagram showing a configuration of a bias current supply portion of a high sensitivity magnetic field detection device according to a fourth embodiment of the present invention. The bias current is set to DC-SQ
The difference is that the power is supplied via the damping resistor 10 of UID1. By supplying the bias current through the damping resistor 10, high frequency noise included in the bias current can be reduced. Further, in the current-voltage characteristics, the voltage represented by the product of the resistance value and the current value of a quarter of the damping resistance value Rd increases. FIG. 7 is a diagram showing a relationship between a current-voltage characteristic and a bias current of a DC-SQUID according to a fourth embodiment of the present invention. In the current-voltage characteristics, the slope of the characteristic increases to the right (to the voltage side) by the voltage increase represented by the product of the resistance value and one-fourth of the damping resistance value Rd. With the conventional constant current bias, the maximum voltage change obtained according to the magnitude of the input magnetic flux is the same as ΔV1 shown in the conventional example of FIG. According to the configuration of the bias current supply circuit 4 according to the present invention, the maximum value of the output voltage is ΔV3 in FIG.
, And a voltage change larger than the output voltage ΔV2 shown in FIG. 6 can be realized. According to the configuration of the high-sensitivity magnetic field detection device as described above, a larger voltage change can be realized with respect to a change in magnetic flux, and the operation and effect are the same as those in the previous embodiment. FIG. 5 is a diagram showing a configuration of a bias current supply portion of a high sensitivity magnetic field detection device according to a fifth embodiment of the present invention. The difference from the previous embodiment is that the bias current is supplied to the DC-SQUID 1 via the resistor 11. By supplying the bias current through the resistor 11, high frequency noise included in the bias current can be reduced. Further, in the current-voltage characteristic, the resistance 11
The voltage represented by the product of the resistance value twice the resistance value R and the current value increases. The operation and effect of the configuration of the high-sensitivity magnetic field detection device described above are the same as those of the previous embodiment. Although FIG. 5 shows an example in which two resistors 11 are arranged, the bias supply circuit 4 according to the present invention can be used even if one resistor 11 is used.
The operation and effect of the configuration of the high-sensitivity magnetic field detection device using the same are not different from the previous embodiment. In the above embodiment, the non-modulation type high-sensitivity magnetic field detecting device is shown. However, in the high-sensitivity magnetic field detecting device in which the feedback circuit 8 is a modulation type, the bias supply circuit 4 is connected to the voltage-current converting means 3 and the constant current Even if the circuit 2 is used, the operation and effect are the same as those of the previous embodiment. Further, in the high-sensitivity magnetic field detecting device in which the feedback circuit 8 is a modulation type, the bias supply circuit 4 has a constant voltage circuit 13 and an output of the constant voltage circuit 13 as in the third embodiment of the present invention shown in FIG. Even if it is composed of the voltage adding circuit 12 for adding the voltage and the signal voltage and the voltage-current converting means 3 for converting the output voltage of the voltage adding circuit into a current, the operation and the effect are the same as those of the previous embodiment. DC-
As the SQUID 1, besides a conventional DC-SQUID having one superconducting ring, a series-coupled DC-SQUID as disclosed in Japanese Patent Laid-Open No.
DC-SQUI of parallel connection type as shown in 2980
D is also used.

【発明の効果】以上説明したように本発明によれば、高
感度磁場検出装置において、信号電圧を電流に変換して
バイアス電流に加算する電圧電流変換手段を設置するこ
とにより、接続したDC−SQUIDの定電流バイアス
時の電圧変化が小さい場合でも、磁束変化に対してより
大きな電圧変化を実現することすることができ、磁束電
圧変換効率dV/dφを向上させ、高感度磁場検出装置
の雑音特性や周波数特性を向上させることが可能であ
る。
As described above, according to the present invention, in the high-sensitivity magnetic field detecting apparatus, the voltage-current converting means for converting the signal voltage into the current and adding the signal voltage to the bias current is provided, whereby the connected DC-DC converter is provided. Even when the voltage change during the constant current bias of the SQUID is small, a larger voltage change can be realized with respect to the magnetic flux change, the magnetic flux voltage conversion efficiency dV / dφ is improved, and the noise of the high-sensitivity magnetic field detection device is improved. It is possible to improve characteristics and frequency characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例を示す高感度磁場検出装置
の構成図である。
FIG. 1 is a configuration diagram of a high-sensitivity magnetic field detection device showing a first embodiment of the present invention.

【図2】本発明の第2実施例を示す高感度磁場検出装置
の構成図である。
FIG. 2 is a configuration diagram of a high-sensitivity magnetic field detection device according to a second embodiment of the present invention.

【図3】本発明の第3実施例を示す高感度磁場検出装置
のバイアス電流供給部分の構成図である。
FIG. 3 is a configuration diagram of a bias current supply part of a high sensitivity magnetic field detection device according to a third embodiment of the present invention.

【図4】本発明の第4実施例を示す高感度磁場検出装置
のバイアス電流供給部分の構成図である。
FIG. 4 is a configuration diagram of a bias current supply portion of a high sensitivity magnetic field detection device according to a fourth embodiment of the present invention.

【図5】本発明の第5実施例を示す高感度磁場検出装置
のバイアス電流供給部分の構成図である。
FIG. 5 is a configuration diagram of a bias current supply portion of a high sensitivity magnetic field detection device according to a fifth embodiment of the present invention.

【図6】本発明の実施例によるDC−SQUIDの電流
−電圧特性とバイアス電流の関係を示した図である。
FIG. 6 is a diagram illustrating a relationship between a current-voltage characteristic and a bias current of the DC-SQUID according to the embodiment of the present invention.

【図7】本発明の第4実施例によるDC−SQUIDの
電流−電圧特性とバイアス電流の関係を示した図であ
る。
FIG. 7 is a diagram illustrating a relationship between a current-voltage characteristic and a bias current of a DC-SQUID according to a fourth embodiment of the present invention.

【図8】従来の高感度磁場検出装置の構成を表した図で
ある。
FIG. 8 is a diagram illustrating a configuration of a conventional high-sensitivity magnetic field detection device.

【図9】従来例によるDC−SQUIDの電流−電圧特
性とバイアス電流の関係を示した図である。
FIG. 9 is a diagram showing a relationship between a current-voltage characteristic and a bias current of a DC-SQUID according to a conventional example.

【符号の説明】[Explanation of symbols]

1 DC−SQUID 2 定電流回路 3 電圧電流変換手段 4 バイアス電流供給回路 5 電圧増幅回路 6 積分回路 7 電圧電流変換回路 8 帰還回路 9 帰還コイル 10 ダンピング抵抗 11 抵抗 12 電圧加算回路 13 定電圧回路 DESCRIPTION OF SYMBOLS 1 DC-SQUID 2 Constant current circuit 3 Voltage-current conversion means 4 Bias current supply circuit 5 Voltage amplifier circuit 6 Integration circuit 7 Voltage-current conversion circuit 8 Feedback circuit 9 Feedback coil 10 Damping resistor 11 Resistance 12 Voltage addition circuit 13 Constant voltage circuit

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−340488(JP,A) 特開 平4−204279(JP,A) 特開 平4−269680(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01R 33/00 - 33/18 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-4-340488 (JP, A) JP-A-4-204279 (JP, A) JP-A-4-269680 (JP, A) (58) Field (Int. Cl. 7 , DB name) G01R 33/00-33/18

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 DC−SQUID(直流駆動型超伝導量
子干渉素子)と前記DC−SQUIDにバイアス電流を
供給するバイアス電流供給回路と、前記DC−SQUI
Dの信号電圧を増幅する電圧増幅回路と、信号電圧を積
分し電圧電流変換して前記DC−SQUIDに帰還をか
けるための帰還回路からなる高感度磁場検出装置におい
て、前記バイアス電流供給回路を定電流回路と、信号電
圧を電流に変換してバイアス電流に加算する電圧電流変
換手段とで構成して、磁束電圧変換効率を向上させる
とを特徴とする高感度磁場検出装置。
1. A DC-SQUID (DC driven superconducting quantum interference device), a bias current supply circuit for supplying a bias current to the DC-SQUID, and the DC-SQUI
The bias current supply circuit is fixed in a high-sensitivity magnetic field detection device including a voltage amplification circuit for amplifying the signal voltage of D and a feedback circuit for integrating the signal voltage and converting the voltage to a current to feed back the DC-SQUID. A high-sensitivity magnetic field detection device comprising a current circuit and voltage-current conversion means for converting a signal voltage into a current and adding it to a bias current, thereby improving magnetic flux-voltage conversion efficiency .
【請求項2】 DC−SQUID(直流駆動型超伝導量
子干渉素子)と前記DC−SQUIDにバイアス電流を
供給するバイアス電流供給回路と、前記DC−SQUI
Dの信号電圧を増幅する電圧増幅回路と、信号電圧を積
分し電圧電流変換して前記DC−SQUIDに帰還をか
けるための帰還回路からなる高感度磁場検出装置におい
て、前記バイアス電流供給回路は、定電圧回路と、前記
定電圧回路の出力電圧と信号電圧を加算する電圧加算回
路と、前記電圧加算回路の出力電圧を電流に変換する電
圧電流変換手段とで構成して、磁束電圧変換効率を向上
させることを特徴とする高感度磁場検出装置。
2. DC-SQUID (DC-driven superconducting amount)
And a bias current to the DC-SQUID.
A bias current supply circuit for supplying the DC-SQUI;
The product of the signal voltage and the voltage amplifier circuit that amplifies the signal voltage of D
Divide the voltage and current and feed back to the DC-SQUID
High sensitivity magnetic field detector consisting of feedback circuit for
The bias current supply circuit includes a constant voltage circuit, a voltage addition circuit that adds an output voltage of the constant voltage circuit and a signal voltage, and a voltage / current conversion unit that converts an output voltage of the voltage addition circuit into a current. Configure to improve magnetic flux voltage conversion efficiency
Sensitive magnetic field detecting device, characterized in that cause.
【請求項3】 前記DC−SQUIDのバイアス電流供
給線はDC−SQUIDのダンピング抵抗に接続されて
いることを特徴とする請求項1記載の高感度磁場検出装
置。
3. The high-sensitivity magnetic field detecting device according to claim 1, wherein the bias current supply line of the DC-SQUID is connected to a damping resistor of the DC-SQUID.
【請求項4】 前記DC−SQUIDのバイアス電流供
給線は抵抗を介してDC−SQUIDに接続されている
ことを特徴とする請求項1記載の高感度磁場検出装置。
4. The high-sensitivity magnetic field detection device according to claim 1, wherein the bias current supply line of the DC-SQUID is connected to the DC-SQUID via a resistor.
JP23176293A 1993-09-17 1993-09-17 High sensitivity magnetic field detector Expired - Fee Related JP3148479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23176293A JP3148479B2 (en) 1993-09-17 1993-09-17 High sensitivity magnetic field detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23176293A JP3148479B2 (en) 1993-09-17 1993-09-17 High sensitivity magnetic field detector

Publications (2)

Publication Number Publication Date
JPH0784018A JPH0784018A (en) 1995-03-31
JP3148479B2 true JP3148479B2 (en) 2001-03-19

Family

ID=16928637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23176293A Expired - Fee Related JP3148479B2 (en) 1993-09-17 1993-09-17 High sensitivity magnetic field detector

Country Status (1)

Country Link
JP (1) JP3148479B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104422903B (en) * 2013-08-23 2017-09-26 中国科学院上海微系统与信息技术研究所 Debugging system and method for the sensor using SPUID
CN110032236B (en) * 2019-04-30 2024-01-23 成都新欣神风电子科技有限公司 DC sensor circuit with arbitrary bias voltage output

Also Published As

Publication number Publication date
JPH0784018A (en) 1995-03-31

Similar Documents

Publication Publication Date Title
EP0595350A2 (en) Reproducing circuit for a magnetic head
JPS5827561B2 (en) Electromagnetic transducer bias circuit
US7057423B2 (en) Current-voltage transforming circuit employing limiter circuit
JP3148479B2 (en) High sensitivity magnetic field detector
JPS63842B2 (en)
US6483684B2 (en) Current limiting apparatus
JP3081902B2 (en) Magnetic field detection circuit
JP2615269B2 (en) Offset reduction circuit of differential amplifier
JP3916225B2 (en) Current detector
US4737696A (en) Actuator drive circuit
EP0884602B1 (en) Low noise preamplifier for a magnetoresistive data transducer
US4922160A (en) Impedance load driving circuit
EP0355922B1 (en) Input circuit with accelerated switching
JPH04268471A (en) Highly sensitive device for detecting magnetic field
JPS6117072A (en) Resistance variation detecting circuit
JPH04340488A (en) Highly-sensitive apparatus for detecting magnetic field
JP2878074B2 (en) Electronic load device
JP3062213B2 (en) Semiconductor laser control circuit
JPH0946151A (en) Current feedback bias amplifier circuit
JPH06324130A (en) Squid sensor device
JP2552250B2 (en) SQUID magnetometer
JPH0524972Y2 (en)
JP2707159B2 (en) High sensitivity magnetic field detector
JPS6246326Y2 (en)
JPS58118002A (en) Automatic regularizing circuit for output level of magneto-resistance effect element

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees