JPH04340488A - Highly-sensitive apparatus for detecting magnetic field - Google Patents

Highly-sensitive apparatus for detecting magnetic field

Info

Publication number
JPH04340488A
JPH04340488A JP11354891A JP11354891A JPH04340488A JP H04340488 A JPH04340488 A JP H04340488A JP 11354891 A JP11354891 A JP 11354891A JP 11354891 A JP11354891 A JP 11354891A JP H04340488 A JPH04340488 A JP H04340488A
Authority
JP
Japan
Prior art keywords
circuit
output
current
magnetic field
squid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11354891A
Other languages
Japanese (ja)
Inventor
Satoru Nakayama
哲 中山
Narikazu Odawara
成計 小田原
Satoshi Sekiya
関谷 聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP11354891A priority Critical patent/JPH04340488A/en
Publication of JPH04340488A publication Critical patent/JPH04340488A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To enable automatic regulation of a bias current and a modulation current in a highly-sensitive apparatus for detecting a magnetic field. CONSTITUTION:A bias current circuit 8 and a modulation current circuit 9 constituting a part of an F.L.L. circuit device of a highly-sensitive apparatus for detecting a magnetic field are provided with a bias signal regulating means 30 and a modulation signal regulating means 31 respectively. An automatic regulation means 24 connected to these bias signal regulating means 30 and modulation signal regulating means 31 and to the output of an amplifier circuit 2 amplifying a signal from DC SQUID 1 or further to the output of a phase detecting circuit 3 detecting an output of the amplifier circuit 2 is provided.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、直流駆動型超伝導量子
干渉素子(DS  Superconducting 
 Quantum  Interference  D
ivice:以下DCSQUIDという)を使用して磁
束を測定する、高感度磁場検出装置に関するものである
[Industrial Application Field] The present invention relates to a DC-driven superconducting quantum interference device (DS Superconducting quantum interference device).
Quantum Interference D
The present invention relates to a high-sensitivity magnetic field detection device that measures magnetic flux using a ivice (hereinafter referred to as DCSQUID).

【0002】0002

【従来の技術】図2は、従来の高感度磁場検出装置の構
成を示すブロック図である。発振回路5から出力される
基準信号は、振幅調整回路41で調整され、第1の電圧
電流変換回路6で電流に変換されモジュレーション信号
としてDC  SQUID1に加えられる。DC  S
QUID1に可変電流源40から適当なバイアス電流が
供給されているとき、DC  SQUID1に鎖交する
磁束はモジュレーション信号により変調され、変調信号
として検出され、増幅回路2で増幅され、発振回路5か
らの参照信号を用いて位相検波回路3で検波される。こ
の位相検波回路3の出力に応じた検出信号が、積分回路
4から出力され、第2の電圧電流変換回路7で電流に変
換され、DC  SQUID1に鎖交する磁束の変化を
補償するような帰還信号として、DC  SQUID1
に加えられる。そして、この帰還信号あるいは検出信号
を読み出すことによって磁場の測定が行える。微小磁場
の測定は、外乱磁場を除くために磁気シ一ルドされた特
殊な環境の下で行なわれる。従来、以上のような測定を
行なうための可変電流源40と振幅調整回路41の調整
は、外乱磁場のある環境で、或は、磁石などの磁性体を
使いDC  SQUID1にノイズを加えて、増幅回路
2からの、基準信号に同期した出力の振幅や、位相検波
回路3の出力を見ながら、例えば可変抵抗器の様な物を
使い、手動で行なっていた。
2. Description of the Related Art FIG. 2 is a block diagram showing the configuration of a conventional high-sensitivity magnetic field detection device. The reference signal output from the oscillation circuit 5 is adjusted by the amplitude adjustment circuit 41, converted into a current by the first voltage-current conversion circuit 6, and added to the DC SQUID 1 as a modulation signal. D.C.S.
When an appropriate bias current is supplied to the QUID 1 from the variable current source 40, the magnetic flux interlinking with the DC SQUID 1 is modulated by the modulation signal, detected as a modulation signal, amplified by the amplifier circuit 2, and output from the oscillation circuit 5. It is detected by the phase detection circuit 3 using the reference signal. A detection signal corresponding to the output of the phase detection circuit 3 is output from the integration circuit 4, converted into a current by the second voltage-current conversion circuit 7, and fed back to compensate for changes in the magnetic flux interlinked with the DC SQUID 1. As a signal, DC SQUID1
added to. The magnetic field can then be measured by reading out this feedback signal or detection signal. Measurements of minute magnetic fields are performed under a special environment that is magnetically shielded to remove disturbance magnetic fields. Conventionally, the adjustment of the variable current source 40 and the amplitude adjustment circuit 41 for performing the above-mentioned measurements has been carried out in an environment with a disturbance magnetic field, or by adding noise to the DC SQUID 1 using a magnetic material such as a magnet, and performing amplification. This was done manually, using something like a variable resistor, while observing the amplitude of the output from circuit 2 synchronized with the reference signal and the output of phase detection circuit 3.

【0003】0003

【発明が解決しようとする課題】従来の高感度磁場検出
装置では、上記のように、バイアス電流やモジュレーシ
ョン信号の調整を手動で行なうため、調整に必要な機器
類を測定環境に装置を持ち込むか、或は、高感度磁場検
出装置を測定環境の外に出して調整を行なっていた。こ
のため、最適に調整しても、環境を変えて測定するとき
には、最適状態からずれてしまう事があった。また、高
感度磁場検出装置の実用の場面では、一般に、複数の素
子を集め多チャンネル化して、磁場の空間分布を測定す
る。しかし、上記のように手動で調整していたのでは、
チャンネル数が増えるほどに、迅速な測定が困難になる
、という問題があった。
[Problems to be Solved by the Invention] In conventional high-sensitivity magnetic field detection devices, as described above, the bias current and modulation signal are manually adjusted, so it is necessary to bring the equipment necessary for adjustment into the measurement environment. Alternatively, adjustments were made by taking the highly sensitive magnetic field detection device outside the measurement environment. For this reason, even if it is optimally adjusted, it may deviate from the optimal state when measuring in a different environment. In addition, when a highly sensitive magnetic field detection device is put into practical use, a plurality of elements are generally assembled to form multiple channels to measure the spatial distribution of the magnetic field. However, if you were adjusting it manually as above,
There has been a problem in that as the number of channels increases, rapid measurement becomes more difficult.

【0004】0004

【課題を解決するための手段】本発明は上記のような課
題を解決するために、高感度磁場検出装置のF.L.L
.回路装置の一部を構成するバイアス電流回路とモジュ
レーション電流回路にそれぞれ、バイアス信号調整手段
とモジュレーション信号調整手段を設け、このバイアス
信号調整手段とモジュレーション信号調整手段と、DC
  SQUIDからの信号を増幅する増幅回路の出力、
或は、さらに増幅回路の出力を検波する位相検波回路の
出力とに接続する自動調整手段を設けた。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention provides F. L. L
.. A bias signal adjustment means and a modulation signal adjustment means are respectively provided in the bias current circuit and the modulation current circuit constituting a part of the circuit device, and the bias signal adjustment means and the modulation signal adjustment means and the DC
The output of the amplifier circuit that amplifies the signal from the SQUID,
Alternatively, automatic adjustment means is further provided which is connected to the output of the phase detection circuit for detecting the output of the amplifier circuit.

【0005】[0005]

【作用】上記のように構成された高感度磁場測定装置に
おいては、増幅回路の出力か位相検波回路の出力を自動
調整手段において評価しながら、バイアス信号調整回路
とモジュレーション信号調整回路を調整し、バイアス信
号やモジュレーション信号の値を変えることができる。
[Operation] In the high-sensitivity magnetic field measurement device configured as described above, the bias signal adjustment circuit and the modulation signal adjustment circuit are adjusted while the output of the amplifier circuit or the output of the phase detection circuit is evaluated by the automatic adjustment means. You can change the values of the bias signal and modulation signal.

【0006】[0006]

【実施例】以下に、本発明の実施例について図面を参照
して説明する。図1は、本発明の第1の実施例を示す、
高感度磁場検出装置の構成のブロック図である。図1に
おいて、DC  SQUID1は帰還変調コイル10と
DC  SQUIDリング11で構成され、帰還変調コ
イル10とDC  SQUIDリング11は磁気的に結
合している。バイアス電流回路8は、第1のDC電源1
2とバイアス信号調整手段30と第3の電圧電流変換回
路14で構成され、さらに、バイアス信号調整手段30
は、第1のD/A変換回路13と第1のスイッチ15と
第1の可変抵抗16で構成されている。DC電源12と
第1の可変抵抗16と第1のスイッチ15は、第1のス
イッチ15が自動側の時第1のDC電源12の出力信号
がそのまま第1のスイッチ15から出力され、第1のス
イッチ15が手動側の時第1のDC電源12の出力は第
1の可変抵抗16で調整されて第1のスイッチ15から
出力されるように接続している。第1のスイッチ15の
出力は、第1のD/A変換回路13にD/A変換の際の
基準信号として入力するように接続している。第1のD
/A変換回路13のアナログ出力は、第3の電圧電流変
換回路14で電流に変換されて、バイアス電流としてD
C  SQUIDリング11に供給される。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a first embodiment of the invention,
FIG. 2 is a block diagram of the configuration of a highly sensitive magnetic field detection device. In FIG. 1, the DC SQUID 1 is composed of a feedback modulation coil 10 and a DC SQUID ring 11, and the feedback modulation coil 10 and the DC SQUID ring 11 are magnetically coupled. The bias current circuit 8 is connected to the first DC power supply 1
2, a bias signal adjustment means 30, and a third voltage-current conversion circuit 14, and further includes a bias signal adjustment means 30.
is composed of a first D/A conversion circuit 13, a first switch 15, and a first variable resistor 16. The DC power supply 12, the first variable resistor 16, and the first switch 15 are such that when the first switch 15 is on the automatic side, the output signal of the first DC power supply 12 is directly output from the first switch 15, and the first When the switch 15 is on the manual side, the output of the first DC power source 12 is adjusted by the first variable resistor 16 and is connected to be output from the first switch 15. The output of the first switch 15 is connected to the first D/A conversion circuit 13 so as to be input as a reference signal during D/A conversion. 1st D
The analog output of the /A conversion circuit 13 is converted into a current by the third voltage-current conversion circuit 14, and the analog output is converted into a current as a bias current.
C SQUID ring 11.

【0007】自動調整手段24は、出力回路25と入力
回路26とデータ処理手段27と制御手段28とで構成
され、入力回路26から入力した信号をデータ処理手段
27で予め決められているプログラムにしたがって処理
し、出力回路25から出力される。制御手段28は、出
力回路25と入力回路26とデータ処理手段27とに接
続し、それらの動作を制御する。出力回路25の出力は
、第1のD/A変換回路13と、モジュレーション電流
回路9の一部を構成する第2のD/A変換回路23のデ
ジタル入力に接続している。増幅回路2は、DC  S
QUIDリング11に生じる電圧を検出し、増幅して出
力し、その出力は、位相検波回路3と入力回路26に接
続している。
The automatic adjustment means 24 is composed of an output circuit 25, an input circuit 26, a data processing means 27, and a control means 28. Therefore, it is processed and outputted from the output circuit 25. The control means 28 is connected to the output circuit 25, the input circuit 26, and the data processing means 27, and controls their operations. The output of the output circuit 25 is connected to the digital inputs of the first D/A conversion circuit 13 and the second D/A conversion circuit 23 forming part of the modulation current circuit 9. The amplifier circuit 2 is a DC S
The voltage generated in the QUID ring 11 is detected, amplified and outputted, and the output is connected to the phase detection circuit 3 and the input circuit 26.

【0008】モジュレーション電流回路9は、発振回路
5とモジュレーション信号調整手段31と第1の電圧電
流変換回路6で構成され、さらに、モジュレーション信
号調整手段31は第2のD/A変換回路23と第3のス
イッチ22と非反転アンプ17と反転アンプ18と第2
のスイッチ21と第2の可変抵抗20と第2のDC電源
19で構成されている。第2のDC電源19と第2の可
変抵抗20と第2のスイッチ21は、第2のスイッチ2
1が自動側の時第2のDC電源19の出力信号がそのま
ま第2のスイッチ21から出力され、第2のスイッチ2
1が手動側の時第2のDC電源19の出力は第2の可変
抵抗20で調整されて第2のスイッチ21から出力され
るように接続している。第2のスイッチ21の出力は、
非反転アンプ17の入力と反転アンプ18の入力に接続
している。発振回路5の出力の周波数基準信号は、第3
のスイッチ22切り替えをコントロールする入力に接続
し、非反転アンプ17の出力と反転アンプ18の出力を
、周波数基準信号の周波数で切り換えて、D/A変換の
際の基準信号として第2のD/A変換回路23に入力す
る。第2のD/A変換回路23のアナログ出力は、第1
の電圧電流変換回路6で電流に変換されて、モジュレー
ション信号として帰還変調コイル10に入力する。増幅
回路2の出力は、発振回路5からの基準信号を使い位相
検波回路3で検波され、第4のスイッチ29を通って積
分回路4に入力する。積分回路4の出力は、第2の電圧
電流変換回路7で電流に変換されて、帰還信号として帰
還変調コイル10に入力する。
The modulation current circuit 9 is composed of an oscillation circuit 5, a modulation signal adjustment means 31, and a first voltage-current conversion circuit 6. Furthermore, the modulation signal adjustment means 31 is composed of a second D/A conversion circuit 23 and a first voltage-current conversion circuit 6. 3, the switch 22, the non-inverting amplifier 17, the inverting amplifier 18, and the second
It is composed of a switch 21, a second variable resistor 20, and a second DC power supply 19. The second DC power supply 19, the second variable resistor 20, and the second switch 21
1 is on the automatic side, the output signal of the second DC power supply 19 is output as is from the second switch 21, and the second switch 2
1 is connected to the manual side so that the output of the second DC power source 19 is adjusted by the second variable resistor 20 and output from the second switch 21. The output of the second switch 21 is
It is connected to the input of the non-inverting amplifier 17 and the input of the inverting amplifier 18. The frequency reference signal output from the oscillation circuit 5 is the third
The output of the non-inverting amplifier 17 and the output of the inverting amplifier 18 are switched at the frequency of the frequency reference signal, and the second D/A is used as the reference signal during D/A conversion. The signal is input to the A conversion circuit 23. The analog output of the second D/A conversion circuit 23 is
It is converted into a current by the voltage-current conversion circuit 6, and is input to the feedback modulation coil 10 as a modulation signal. The output of the amplifier circuit 2 is detected by the phase detection circuit 3 using the reference signal from the oscillation circuit 5, and is input to the integration circuit 4 through the fourth switch 29. The output of the integrating circuit 4 is converted into a current by the second voltage-current conversion circuit 7, and inputted to the feedback modulation coil 10 as a feedback signal.

【0009】以上のような構成において、自動調整時の
動作について説明する。増幅回路2の出力は、制御手段
28からの入力要求信号にしたがって入力回路26を通
りデータ処理手段27に入力される。データ処理手段2
7では、制御手段28からの命令に従って、増幅信号を
解析し、DC  SQUID1の磁場の検出感度が最適
になるように、バイアス信号やモジュレーション信号の
大きさを決めるデジタルコードを、出力回路25を通し
て、第1のD/A変換回路13と第2のD/A変換回路
23のデジタル入力に供給する。そして、上述したよう
に最適のバイアス信号およびモジュレーション信号を、
DC  SQUID1に供給することが可能となる。
[0009] In the above configuration, the operation during automatic adjustment will be explained. The output of the amplifier circuit 2 is input to the data processing means 27 through the input circuit 26 in accordance with an input request signal from the control means 28. Data processing means 2
7, in accordance with the command from the control means 28, the amplified signal is analyzed and a digital code that determines the magnitude of the bias signal and modulation signal is sent through the output circuit 25 so that the detection sensitivity of the magnetic field of the DC SQUID 1 is optimized. It is supplied to the digital inputs of the first D/A conversion circuit 13 and the second D/A conversion circuit 23. Then, as mentioned above, the optimal bias signal and modulation signal are
It becomes possible to supply to DC SQUID1.

【0010】0010

【発明の効果】上記のような構成によれば、測定路と同
様の環境で、オシロスコ一プ等の他の測定機器を使用せ
ずに、自動でバイアス信号やモジュレーション信号の調
整を行なうことができる。また、多チャンネル化に際し
ても、調整は容易であり、迅速な測定が行える。
[Effects of the Invention] According to the above configuration, bias signals and modulation signals can be automatically adjusted in the same environment as the measurement path without using other measurement equipment such as an oscilloscope. can. Further, even when increasing the number of channels, adjustment is easy and quick measurements can be performed.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明による高感度磁場検出装置の第1の実施
例の構成を示すブロック図である。
FIG. 1 is a block diagram showing the configuration of a first embodiment of a highly sensitive magnetic field detection device according to the present invention.

【図2】従来の高感度磁場検出装置の構成を示すブロッ
ク図である。
FIG. 2 is a block diagram showing the configuration of a conventional high-sensitivity magnetic field detection device.

【符号の説明】[Explanation of symbols]

1  DC  SQUID 2  増幅回路 3  位相検波回路 4  積分回路 5  発振回路 6  第1の電圧電流変換回路 7  第2の電圧電流変換回路 8  バイアス電流回路 9  モジュレーション電流回路 12  第1のDC電源 14  第3の電圧電流変換回路 25  出力回路 26  入力回路 27  データ処理手段 28  制御手段 30  バイアス信号調整手段 1 DC SQUID 2 Amplifier circuit 3 Phase detection circuit 4 Integral circuit 5 Oscillation circuit 6 First voltage-current conversion circuit 7 Second voltage-current conversion circuit 8 Bias current circuit 9 Modulation current circuit 12 First DC power supply 14 Third voltage-current conversion circuit 25 Output circuit 26 Input circuit 27 Data processing means 28 Control means 30 Bias signal adjustment means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  直流駆動型超伝導量子干渉素子(DC
  SQUID)と、このDC  SQUIDを駆動す
るためのF.L.L.(Flux  LockedLo
op)回路装置とからなる高感度磁場検出装置において
、前記F.L.L.回路はDC電源とバイアス信号調整
手段と電圧電流変換回路からなるバイアス電流回路と、
発振回路とモジュレーション信号調整手段と電圧電流変
換回路からなるモジュレーション電流回路と、前記バイ
アス信号調整手段と前記モジュレーション信号調整手段
とに接続する出力回路と、前記DS  SQUIDの出
力を増幅する増幅回路と、前記増幅回路に接続する位相
検波回路と、前記増幅回路の出力信号と前記位相検波回
路の検波信号の、少なくともどちらか一方を入力とする
入力回路と、前記出力回路と前記入力回路に接続するデ
ータ処理手段と、前記データ処理手段と前記出力回路と
前記入力回路に接続する制御手段を有することを特徴と
する高感度磁場検出装置。
[Claim 1] Direct current driven superconducting quantum interference device (DC
SQUID) and an F.SQUID for driving this DC SQUID. L. L. (Flux LockedLo
op) A high-sensitivity magnetic field detection device comprising a circuit device, wherein the F.op. L. L. The circuit includes a bias current circuit consisting of a DC power supply, bias signal adjustment means, and a voltage-current conversion circuit;
a modulation current circuit comprising an oscillation circuit, a modulation signal adjustment means, and a voltage-current conversion circuit; an output circuit connected to the bias signal adjustment means and the modulation signal adjustment means; and an amplifier circuit that amplifies the output of the DS SQUID. a phase detection circuit connected to the amplifier circuit; an input circuit receiving at least one of the output signal of the amplifier circuit and the detection signal of the phase detection circuit; and data connected to the output circuit and the input circuit. A high-sensitivity magnetic field detection device comprising processing means, and control means connected to the data processing means, the output circuit, and the input circuit.
JP11354891A 1991-05-17 1991-05-17 Highly-sensitive apparatus for detecting magnetic field Pending JPH04340488A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11354891A JPH04340488A (en) 1991-05-17 1991-05-17 Highly-sensitive apparatus for detecting magnetic field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11354891A JPH04340488A (en) 1991-05-17 1991-05-17 Highly-sensitive apparatus for detecting magnetic field

Publications (1)

Publication Number Publication Date
JPH04340488A true JPH04340488A (en) 1992-11-26

Family

ID=14615099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11354891A Pending JPH04340488A (en) 1991-05-17 1991-05-17 Highly-sensitive apparatus for detecting magnetic field

Country Status (1)

Country Link
JP (1) JPH04340488A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1043597A2 (en) * 1999-04-09 2000-10-11 Sumitomo Electric Industries, Ltd. Device and method for adjusting the working point of a squid
EP1054262A2 (en) * 1999-05-13 2000-11-22 Sumitomo Electric Industries, Ltd. Magnetic field bias adjusting device for a SQUID modulation drive circuit
CN104698405A (en) * 2013-12-05 2015-06-10 中国科学院上海微系统与信息技术研究所 Readout circuit and two-level SQUI (superconducting quantum interference) sensor with same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1043597A2 (en) * 1999-04-09 2000-10-11 Sumitomo Electric Industries, Ltd. Device and method for adjusting the working point of a squid
EP1043597A3 (en) * 1999-04-09 2001-07-11 Sumitomo Electric Industries, Ltd. Device and method for adjusting the working point of a squid
EP1243937A2 (en) * 1999-04-09 2002-09-25 Sumitomo Electric Industries, Ltd. Superconducting magnetic sensor heater
EP1243936A2 (en) * 1999-04-09 2002-09-25 Sumitomo Electric Industries, Ltd. Squid Magnetometer
EP1243936A3 (en) * 1999-04-09 2002-11-13 Sumitomo Electric Industries, Ltd. Squid Magnetometer
EP1243937A3 (en) * 1999-04-09 2002-11-13 Sumitomo Electric Industries, Ltd. Superconducting magnetic sensor heater
US6498483B1 (en) 1999-04-09 2002-12-24 Sumitomo Electric Industries, Ltd. Device and method for easily adjusting working point of SQUID
EP1054262A2 (en) * 1999-05-13 2000-11-22 Sumitomo Electric Industries, Ltd. Magnetic field bias adjusting device for a SQUID modulation drive circuit
EP1054262A3 (en) * 1999-05-13 2001-04-11 Sumitomo Electric Industries, Ltd. Magnetic field bias adjusting device for a SQUID modulation drive circuit
US6388440B1 (en) 1999-05-13 2002-05-14 Sumitomo Electric Industries, Ltd. Magnetic field bias adjusting device for SQUID modulation drive circuit achieving easy adjustment
CN104698405A (en) * 2013-12-05 2015-06-10 中国科学院上海微系统与信息技术研究所 Readout circuit and two-level SQUI (superconducting quantum interference) sensor with same
CN104698405B (en) * 2013-12-05 2017-11-21 中国科学院上海微系统与信息技术研究所 The superconductive quantum interference sensor of reading circuit and the twin-stage being applicable

Similar Documents

Publication Publication Date Title
FI95628C (en) Method and apparatus for processing a low noise sensor output signal
JPH02257076A (en) System for controlling digital squid
EP0130706B1 (en) Electronic circuitry with self-calibrating feedback for use with an optical current sensor
JP2662903B2 (en) High sensitivity magnetic field detector
JPH04340488A (en) Highly-sensitive apparatus for detecting magnetic field
US5287058A (en) Digital magnetic flux measuring apparatus using superconducting quantum interference device with flux trapping prevention features
JP3789024B2 (en) SQUID magnetometer
JPH09171935A (en) Zero flux ct
JPH04269680A (en) High sensitivity magnetic field detector
EP0461742A2 (en) Digital magnetic flux measuring apparatus using superconducting quantum interference device
SU1045791A1 (en) Device for automatic measuring of critical current of technical superconductors
JP2929173B2 (en) Low noise SQUID magnetometer
JP2929172B2 (en) Multi-channel SQUID magnetometer
JP3291858B2 (en) Magnetic detector
JPH04268471A (en) Highly sensitive device for detecting magnetic field
JP3148479B2 (en) High sensitivity magnetic field detector
JP2869780B2 (en) Latch-free SQUID magnetometer
SU1583825A1 (en) Apparatus for checking ferromagnetic articles
SU1589192A1 (en) Apparatus for checking quality of ferromagnetic articles
JP2869781B2 (en) Variable SQUID magnetometer
SU623170A1 (en) Measuring apparatus for geoelectric survey
Tiemann Automatic Conductivity Plotting Machine
SU915128A1 (en) Device for continuous rcording of superconducting specimen characteristics
SU859903A1 (en) Elow detector for checking metal articles
Makie‐Fukuda et al. Automatic adjustment of bias current for direct current superconducting quantum interference device