JP3142444B2 - Moment of inertia measurement device - Google Patents
Moment of inertia measurement deviceInfo
- Publication number
- JP3142444B2 JP3142444B2 JP06196999A JP19699994A JP3142444B2 JP 3142444 B2 JP3142444 B2 JP 3142444B2 JP 06196999 A JP06196999 A JP 06196999A JP 19699994 A JP19699994 A JP 19699994A JP 3142444 B2 JP3142444 B2 JP 3142444B2
- Authority
- JP
- Japan
- Prior art keywords
- measuring
- moment
- inertia
- vehicle
- center
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Testing Of Balance (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は車両等の被測定物の慣性
モーメント測定に使用する慣性モーメント計測装置に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a moment of inertia measuring apparatus used for measuring moment of inertia of an object to be measured such as a vehicle.
【0002】[0002]
【従来の技術】従来、自動車等の被測定物の慣性モーメ
ントを測定する慣性モーメント計測装置においては、そ
の一例が自動車技術ハンドブック、試験・評価編、第5
章操縦安定性試験(発行日:1991年6月1日初版、
発行者:社団法人自動車技術会)に示されている。2. Description of the Related Art Conventionally, in a moment of inertia measuring apparatus for measuring a moment of inertia of an object to be measured such as an automobile, an example thereof is an automobile technology handbook, Test and Evaluation, Vol.
Chapter Maneuvering Stability Test (Issued date: June 1, 1991 first edition,
Publisher: Japan Society of Automotive Engineers of Japan).
【0003】図7に示される如く、この慣性モーメント
計測装置では、被測定物、例えば、車体70を載置する
測定台72を備えており、ピッチ方向の慣性モーメント
を測定する場合には、車体70を車幅方向に貫通する回
転軸70Aを設定する。また、図8に示される如く、ロ
ール方向の慣性モーメントを測定する場合には、車体7
0を車体前後方向に貫通する回転軸70Bを設定する。
また、図9に示される如く、ヨー方向の慣性モーメント
を測定する場合には、車体70を車体上下方向に貫通す
る回転軸70Cを設定する。これらの回転軸70A、7
0B、70Cを中心にして車体70と測定台72とを各
図に想像線で示される如く揺動させ、その周期から各慣
性モーメエントを計測している。As shown in FIG. 7, the apparatus for measuring moment of inertia includes a measuring table 72 on which an object to be measured, for example, a vehicle body 70 is mounted. A rotating shaft 70A that penetrates 70 in the vehicle width direction is set. As shown in FIG. 8, when measuring the moment of inertia in the roll direction,
A rotation axis 70B is set to pass through 0 in the vehicle longitudinal direction.
As shown in FIG. 9, when measuring the moment of inertia in the yaw direction, a rotating shaft 70C that penetrates the vehicle body 70 in the vehicle vertical direction is set. These rotating shafts 70A, 7
The vehicle body 70 and the measuring table 72 are oscillated around the points 0B and 70C as indicated by imaginary lines in the respective drawings, and the respective inertia moments are measured from the cycle.
【0004】また、振動周期を計測する場合には、図1
0に示される如く、振動周期が安定するまでは、計測待
ち時間T1 として計測は行わず、計測待ち時間T1 後か
ら振動周期の計測を開始している。When measuring a vibration cycle, FIG.
As shown in 0, until the oscillation period is stabilized, without the measurement as a measurement waiting time T 1, and starts measuring the vibration period after the measurement the waiting time T 1.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、この慣
性モーメント計測装置では、ピッチ方向の慣性モーメン
トの計測が完了した後、ロール方向の慣性モーメントを
測定する場合には、回転軸を回転軸70Aから回転軸7
0Bへ設定しなおす必要があり、計測に時間がかかると
いう不具合がある。これを改善した慣性モーメント計測
装置として、図11に示される如く、回転軸74を固定
しておいて、車両76をピッチ方向の慣性モーメントの
計測位置76Aから、ロール方向の慣性モーメント計測
位置76Bへ移動する装置がある。しかしこの装置の場
合には、回転軸を設定しなおすものに比べて計測時間は
短縮できるものの、測定台78へ車両76をセットする
際に人手を介するため、車両76のセット位置が変わっ
てしまい、計測値にばらつきが発生する恐れがある。However, in the moment of inertia measuring device, when the moment of inertia in the roll direction is measured after the measurement of the moment of inertia in the pitch direction is completed, the rotating shaft is rotated from the rotating shaft 70A. Axis 7
It is necessary to reset to 0B, and there is a problem that the measurement takes time. As an improved moment of inertia measuring device, as shown in FIG. 11, a rotating shaft 74 is fixed, and a vehicle 76 is moved from a moment of inertia measurement 76A in a pitch direction to a moment of inertia measurement 76B in a roll direction. There are devices that move. However, in the case of this device, although the measurement time can be shortened as compared with the case where the rotation axis is reset, the setting position of the vehicle 76 changes because the manual operation is required when the vehicle 76 is set on the measurement table 78. However, there is a possibility that the measured values may vary.
【0006】また、図10に示される如く、振動周期を
計測する場合に、振動周期が安定するまでは、計測待ち
時間T1 として計測を行わないため、計測時間が長くな
るという不具合がある。Further, as shown in FIG. 10, when the vibration cycle is measured, the measurement is not performed as the measurement waiting time T 1 until the vibration cycle is stabilized.
【0007】本発明は上記事実を考慮し、計測にかかる
時間を短縮することができる慣性モーメント計測装置を
得ることが目的である。An object of the present invention is to provide a moment of inertia measuring apparatus capable of reducing the time required for measurement in consideration of the above fact.
【0008】[0008]
【課題を解決するための手段】請求項1記載の本発明の
慣性モーメント計測装置は、被測定物を載置する測定台
と、ピッチ方向の慣性モーメント計測時に測定台を持ち
上げるとともに回転中心を設定し且つ慣性モーメント非
計測時に測定台から離間する第1の支持部材と、ロール
方向の慣性モーメント計測時に測定台を持ち上げるとと
もに回転中心を設定し且つ慣性モーメント非計測時に測
定台から離間する第2の支持部材と、を有することを特
徴としている。According to a first aspect of the present invention, there is provided an apparatus for measuring moment of inertia, comprising: a measuring table on which an object to be measured is placed; A first support member that separates from the measuring table when the inertia moment is not measured, and a second supporting member that lifts the measuring table when measuring the inertia moment in the roll direction, sets the center of rotation, and separates from the measuring table when the inertial moment is not measured. And a supporting member.
【0009】請求項2記載の本発明の慣性モーメント計
測装置は、慣性モーメント計測時の測定台の振幅と周期
との関係から振幅の漸近する点を予測し、この点に基づ
いて振動周期を求める周期演算装置を有することを特徴
としている。According to a second aspect of the present invention, the moment of inertia measuring device predicts a point at which the amplitude approaches asymptotically from the relationship between the amplitude and the period of the measuring table at the moment of inertia measurement, and obtains a vibration period based on this point. It is characterized by having a period calculation device.
【0010】[0010]
【作用】請求項1記載の本発明の慣性モーメント計測装
置では、ピッチ方向の慣性モーメント計測時に、第1の
支持部材が、測定台を持ち上げるとともに、回転中心を
設定する。また、第1の支持部材は、ピッチ方向の慣性
モーメントの非計測時には測定台から離間する。一方、
ロール方向の慣性モーメント計測時には、第2の支持部
材が、測定台を持ち上げるとともに、回転中心を設定す
る。また、第2の支持部材は、ロール方向の慣性モーメ
ントの非計測時には測定台から離間する。従って、測定
台上に載置された被測定物或いは被測定物を配置した測
定台を配置しなおすことなくピッチ方向の慣性モーメン
トとロール方向の慣性モーメントとを計測できる。In the inertial moment measuring apparatus according to the first aspect of the present invention, when measuring the inertial moment in the pitch direction, the first support member lifts the measuring table and sets the center of rotation. The first support member is separated from the measuring table when the moment of inertia in the pitch direction is not measured. on the other hand,
When measuring the moment of inertia in the roll direction, the second support member lifts the measurement table and sets the center of rotation. The second support member is separated from the measuring table when the inertia moment in the roll direction is not measured. Accordingly, the moment of inertia in the pitch direction and the moment of inertia in the roll direction can be measured without rearranging the object placed on the measuring table or the measuring table on which the measuring object is arranged.
【0011】請求項2記載の本発明の慣性モーメント計
測装置では、周期演算装置によって、慣性モーメント計
測時の測定台の振幅と周期との関係から振幅の漸近する
点を予測し、この点に基づいて振動周期を求める。この
ため、振幅が安定するまで計測ができなかった従来技術
と比べて、待ち時間が不要となる。In the inertia moment measuring apparatus according to the present invention, a point at which the amplitude asymptotically predicts from the relation between the amplitude and the period of the measuring table at the moment of inertia measurement by the period calculating device, and based on this point. To determine the oscillation period. For this reason, no waiting time is required as compared with the related art in which measurement cannot be performed until the amplitude is stabilized.
【0012】[0012]
【実施例】本発明の慣性モーメント計測装置の一実施例
を図1〜図6に従って説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the moment of inertia measuring apparatus according to the present invention will be described with reference to FIGS.
【0013】図1に示される如く、本実施例の慣性モー
メント計測装置10は、車両12を載置するための平面
視で略長方形状の測定台16を備えており、この測定台
16は、測定台16の下方の前後左右四隅近傍に配設さ
れた測定台昇降用シリンダ17によって昇降可能とされ
ている。測定台16には、車両12の各車輪12Aを支
持する部位に、エアベアリング18が配設されている。
これらのエアベアリング18は、重心位置を合わせる際
に使用するためのものであり、車両12を所定の方向へ
容易に移動させるためのものである。As shown in FIG. 1, the apparatus for measuring moment of inertia 10 of the present embodiment includes a substantially rectangular measuring table 16 for mounting a vehicle 12 thereon. The measuring table 16 can be moved up and down by a measuring table elevating cylinder 17 disposed in the vicinity of four front, rear, left and right corners below the measuring table 16. The measurement table 16 is provided with an air bearing 18 at a position supporting each wheel 12A of the vehicle 12.
These air bearings 18 are used for adjusting the position of the center of gravity, and are for easily moving the vehicle 12 in a predetermined direction.
【0014】測定台16の下方には、測定台16を支持
する支持台20が配設されており、また、測定台16の
下面四隅には、車両重心検出器を構成する荷重検出器2
4がそれぞれ配設されている。これらの荷重検出器24
には、測定台16が下降して、基準位置となった場合
に、支持台20の上面に形成された突部22が当接する
ようになっている。また、これらの荷重検出器24は、
車両重心検出器及び周期演算装置を構成するアンプ26
及びパソコン28に接続されており、作業者はパソコン
28のモニタ28Aを見ながら、車両12の重心位置を
揺動中心まで移動するようになっている。A support table 20 for supporting the measurement table 16 is disposed below the measurement table 16, and a load detector 2 constituting a vehicle center-of-gravity detector is provided at four corners on the lower surface of the measurement table 16.
4 are provided respectively. These load detectors 24
When the measuring table 16 is lowered to the reference position, the protrusion 22 formed on the upper surface of the supporting table 20 comes into contact with the measuring table 16. In addition, these load detectors 24
Amplifier 26 constituting vehicle center of gravity detector and period calculation device
The operator moves the center of gravity of the vehicle 12 to the swing center while watching the monitor 28A of the personal computer 28.
【0015】支持台20の外周部には枠体31が配設さ
れている。この枠体31は、四隅に脚部31Aを備えて
おり、支持台20の左右両側に位置する梁部31B上に
は、左右一対の左右支持リンク30が配設されている。
即ち、一対の左右支持リンク30は、車両12の車幅方
向両外側に設けられている。左右支持リンク30は、中
間部30Aで折曲可能とされており、梁部31B上に設
けられたシリンダ32によって、両端部30B、30C
が互いに接離する方向へ移動するようになっている。従
って、シリンダ32によって、両端部30B、30Cが
互いに接近する方向(図1の矢印A方向)へ所定量移動
させられると、左右支持リンク30は、中間部30Aが
折曲しながら上昇し、後述する方法で求めた(車両12
+測定台16)の重心高さ位置へ移動するようになって
いる。A frame 31 is provided on the outer periphery of the support base 20. The frame 31 has legs 31A at four corners, and a pair of left and right support links 30 is disposed on a beam 31B located on both left and right sides of the support base 20.
That is, the pair of left and right support links 30 are provided on both outer sides in the vehicle width direction of the vehicle 12. The left and right support links 30 are bendable at an intermediate portion 30A, and are provided at both ends 30B and 30C by a cylinder 32 provided on a beam portion 31B.
Move in the direction of coming and going with each other. Therefore, when the both ends 30B and 30C are moved by the cylinder 32 by a predetermined amount in the direction (the direction of the arrow A in FIG. 1) approaching each other, the left and right support links 30 rise while the intermediate portion 30A is bent, and will be described later. (Vehicle 12
+ To the height of the center of gravity of the measuring table 16).
【0016】この状態で、左右支持リンク30の中間部
30Aに配設された回転軸34と、測定台16とを、回
転軸34に頂点が固定された三角構造の連結部材36で
互いに連結する。その後、測定台昇降用シリンダ17を
下降させて、測定台16から離間させると、測定台16
は、回転軸34を中心に図1に想像線で示される如く揺
動可能となる。In this state, the rotating shaft 34 provided at the intermediate portion 30A of the left and right support link 30 and the measuring table 16 are connected to each other by a connecting member 36 having a triangular structure whose apex is fixed to the rotating shaft 34. . Thereafter, the measuring table lifting cylinder 17 is lowered to be separated from the measuring table 16, and the measuring table 16
Is swingable about the rotation shaft 34 as shown by the imaginary line in FIG.
【0017】図2に示される如く、枠体31の支持台2
0の前後両側に位置する梁部31C上には、前後一対の
前後支持リンク40が配設されている。即ち、一対の前
後支持リンク40は、車両12の車体前後方向両外側に
設けられている。前後支持リンク40は、中間部40A
で折曲可能とされており、梁部31C上に設けられたシ
リンダ42によって、両端部40B、40Cが互いに接
離する方向へ移動するようになっている。従って、シリ
ンダ42によって、両端部40B、40Cが互いに接近
する方向(図1の矢印B方向)へ所定量移動させられる
と、前後支持リンク40は、中間部40Aが折曲しなが
ら上昇し、後述する方法で求めた(車両12+測定台1
6)の重心位置へ移動するようになっている。As shown in FIG. 2, the support 2 of the frame 31
A pair of front and rear support links 40 is disposed on the beam portions 31C located on both front and rear sides of the zero. That is, the pair of front and rear support links 40 are provided on both outer sides in the vehicle front and rear direction of the vehicle 12. The front and rear support link 40 is an intermediate portion 40A.
, And both ends 40B, 40C are moved in a direction in which the both ends 40B, 40C come into contact with and separate from each other by a cylinder 42 provided on the beam portion 31C. Accordingly, when both ends 40B and 40C are moved by a predetermined amount in the direction (arrow B direction in FIG. 1) approaching each other by the cylinder 42, the front and rear support link 40 rises while the intermediate portion 40A is bent, and will be described later. (Vehicle 12 + measuring table 1)
6) It moves to the position of the center of gravity.
【0018】この状態で、前後支持リンク40の中間部
40Aに配設された回転軸44と、測定台16とを、回
転軸44に頂点が固定された三角構造の連結部材46で
互いに連結する。その後、ロッド46で連結し、測定台
昇降用シリンダ17を下降させて、測定台16から離間
させると、測定台16は、回転軸44を中心に図2に想
像線で示される如く揺動可能となる。In this state, the rotating shaft 44 provided at the intermediate portion 40A of the front and rear support link 40 and the measuring table 16 are connected to each other by a connecting member 46 having a triangular structure whose top is fixed to the rotating shaft 44. . Thereafter, the measuring table 16 is connected with the rod 46, and the measuring table elevating cylinder 17 is lowered to be separated from the measuring table 16, so that the measuring table 16 can swing about the rotary shaft 44 as shown by the imaginary line in FIG. Becomes
【0019】図3に示される如く、支持台20は上部2
0Aと下部20Bとの二層構造となっている。上部20
Aの後端の左右両側には、シリンダ50の一端50Aが
揺動可能に連結されており、このシリンダ50の他端5
0Bは基板52に揺動可能に連結されている。一方、上
部20Aの前端の左右両側には、シリンダ54の一端5
4Aが揺動可能に連結されており、このシリンダ54の
他端54Bは基板52に揺動可能に連結されている。従
って、シリンダ50のみを加圧すると、シリンダ50の
ロッドの伸長に伴って、上部20Aが前端縁部を回転中
心にして上方へ回転し、図3に示される状態になる。As shown in FIG. 3, the support 20 is
It has a two-layer structure of 0A and lower part 20B. Upper 20
One end 50A of a cylinder 50 is swingably connected to both left and right sides of the rear end of the cylinder A.
OB is swingably connected to the substrate 52. On the other hand, one end 5 of the cylinder 54 is provided on the left and right sides of the front end of the upper portion 20A.
4A is swingably connected, and the other end 54B of the cylinder 54 is swingably connected to the substrate 52. Therefore, when only the cylinder 50 is pressurized, the upper portion 20A rotates upward about the front end edge as the rod of the cylinder 50 extends, and the state shown in FIG. 3 is obtained.
【0020】図4に示される如く、支持台の中央部は回
転台55とされており、測定台16及び車両12は、こ
の回転台55の軸心55Aを回転中心として左右方向
(図4の矢印C方向)へ揺動可能となっている。As shown in FIG. 4, the center of the support table is a rotary table 55, and the measuring table 16 and the vehicle 12 move in the left-right direction with the axis 55A of the rotary table 55 as the center of rotation (FIG. 4). (In the direction of arrow C).
【0021】図1に示される如く、測定台16にはピッ
チング及びローリングの周期を計測するための加速度セ
ンサ60と、角度計61とが設けられおり、回転台54
には、ヨーイングの周期を計測するための角度計62が
設けられている。これらの加速度センサ60、角度計6
1及び角度計62は、アンプ26を介してパソコン28
に接続されており、加速度センサ60、角度計61及び
角度計62で測定されたデータはパソコン28に入力さ
れるようになっている。As shown in FIG. 1, the measuring table 16 is provided with an acceleration sensor 60 for measuring the pitching and rolling periods and a goniometer 61.
Is provided with a goniometer 62 for measuring the yaw cycle. These acceleration sensor 60 and goniometer 6
1 and the angle meter 62 are connected to the personal computer 28 via the amplifier 26.
The data measured by the acceleration sensor 60, the goniometer 61, and the goniometer 62 are input to the personal computer 28.
【0022】次に、本実施例の慣性モーメント計測装置
10による計測方法を説明する。ステップ1では、荷重
検出器24によって測定台16の質量Fp を計測する。
この計測は、作業者がコンピユータ28を操作すること
によって自動的に計測できる。次に、車両12を人手に
よって測定台16に載置する。この時、車両12の各車
輪12Aをエアベアリング18上に乗せる。次に、荷重
検出器24によって車両12+測定台16の質量Ftを
計測し、その結果から車両12の質量Fvを計測する。
なお、この計測も、作業者がコンピユータ28を操作す
ることによって自動的に計測できる。Next, a measuring method using the moment of inertia measuring device 10 of the present embodiment will be described. In step 1, the mass Fp of the measuring table 16 is measured by the load detector 24.
This measurement can be automatically performed by the operator operating the computer 28. Next, the vehicle 12 is manually placed on the measuring table 16. At this time, each wheel 12A of the vehicle 12 is put on the air bearing 18. Next, the mass Ft of the vehicle 12 + the measuring table 16 is measured by the load detector 24, and the mass Fv of the vehicle 12 is measured from the result.
This measurement can also be performed automatically by the operator operating the computer 28.
【0023】ステップ2では、作業者がコンピユータ2
8のモニター28Aに表示された車両12+測定台16
の重心位置Gv(x,y)が、揺動中心(測定台16の重心位
置)と一致するように、エアベアリング18上で車両1
2を人力により移動させる。In step 2, the operator operates the computer 2
8 and the measuring stand 16 displayed on the monitor 28A of No. 8
Of the vehicle 1 on the air bearing 18 so that the center of gravity Gv (x, y) of the vehicle 1 coincides with the swing center (the center of gravity of the measuring table 16).
2 is moved manually.
【0024】ステップ3では、作業者が車両12を測定
台16に固定する。この時、ジャッキにて、ロッカ下部
前端の車高Hj 、ロッカ下部後端の車高Hk をそれぞれ
基準高さに設定し、ロッカ下部をクランプし固定すると
共に布ベルトでボデーを固定する。In step 3, the operator fixes the vehicle 12 to the measuring table 16. At this time, the vehicle height Hj at the front end of the lower rocker and the vehicle height Hk at the rear end of the lower rocker are set to reference heights by the jacks, and the lower part of the rocker is clamped and fixed, and the body is fixed by the cloth belt.
【0025】ステップ4では、図3に示される如く、シ
リンダ50のみを加圧し、支持台20の上部20Aを前
端縁部を回転中心にして上方へ回転させる。この状態
で、パソコン28を操作して、角度計61により測定台
16の傾斜角θp を計測すると共に、荷重検出器24に
よって車両12+測定台16の質量を計測し、その結果
から、傾斜させたことによる荷重変化ΔFを算出し、傾
斜角θp と荷重変化ΔFとから、車両12+測定台16
の重心高さHt1を算出する。In step 4, as shown in FIG. 3, only the cylinder 50 is pressurized, and the upper part 20A of the support base 20 is rotated upward about the front edge. In this state, the personal computer 28 was operated to measure the inclination angle θp of the measuring table 16 by the goniometer 61, and the mass of the vehicle 12 + the measuring table 16 was measured by the load detector 24. And the load change ΔF are calculated from the inclination angle θp and the load change ΔF.
Calculating the center of gravity height Ht 1.
【0026】即ち、車両平面重心と装置平面重心が一致
している場合には、回転中心まわりのモーメントのつり
あいは、図5に示される如く、L/2を中心線から荷重
検出器24までの距離、F1を車両12の前部に対向す
る荷重検出器24の反力、F2を車両12の後部に対向
する荷重検出器24の反力とすると、(Ft×sinθ
p )×Ht1=(F1−F2)×(L/2)となるから Ht1=〔(F1−F2)×(L/2)〕/(Ft×si
nθp ) となり、車両12+測定台16の重心高さHt1を計測す
ることができる。That is, when the center of gravity of the vehicle and the center of gravity of the apparatus coincide with each other, the balance of the moment around the rotation center is represented by L / 2 from the center line to the load detector 24 as shown in FIG. If the distance and F1 are the reaction force of the load detector 24 facing the front part of the vehicle 12 and F2 is the reaction force of the load detector 24 facing the rear part of the vehicle 12, (Ft × sin θ
p) × Ht 1 = (F1−F2) × (L / 2) Ht 1 = [(F1−F2) × (L / 2)] / (Ft × si
nθp), and the height Ht 1 of the center of gravity of the vehicle 12 and the measuring stand 16 can be measured.
【0027】同様にして予め計測しておいた、測定台1
6の重心高さHt2から、車両12の重心高さHt3はHt3
=Ht1−Ht2で算出できる。The measuring table 1 previously measured in the same manner
The center of gravity from the height Ht 2 of 6, the center of gravity height Ht 3 of the vehicle 12 Ht 3
= It can be calculated by Ht 1 -Ht 2.
【0028】また、車両平面重心と装置平面重心がずれ
ている場合には、回転中心まわりのモーメントのつりあ
いは、図6に示される如く、ΔXを車両平面重心と装置
平面重心とのずれ量とすると、 Ft×(sinθp ×Ht1×ΔX×cosθp )=(F
1−F2)×(L/2) となるから Ht1=[(F1-F2)×(L/2)−Ft×ΔX×cosθp ]/(Ft
×sinθp )=[(F1-F2)×(L/2)]/(Ft×sinθp
)−ΔX/tanθp となり、車両12+測定台16の重心高さHt1を計測す
ることができる。When the center of gravity of the vehicle is shifted from the center of gravity of the apparatus, the balance of the moment about the rotation center is represented by ΔX, as shown in FIG. Then, Ft × (sin θp × Ht 1 × ΔX × cos θp) = (F
1−F2) × (L / 2) Ht 1 = [(F1−F2) × (L / 2) −Ft × ΔX × cos θp] / (Ft
× sin θp) = [(F1-F2) × (L / 2)] / (Ft × sin θp
) −ΔX / tan θp, and the height Ht 1 of the center of gravity of the vehicle 12 and the measuring stand 16 can be measured.
【0029】同様にして予め計測しておいた、測定台1
6の重心高さHt2から、車両12の重心高さHt3はHt3
=Ht1−Ht2で算出できる。The measuring table 1 previously measured in the same manner
The center of gravity from the height Ht 2 of 6, the center of gravity height Ht 3 of the vehicle 12 Ht 3
= It can be calculated by Ht 1 -Ht 2.
【0030】なお、シリンダ54のみを加圧し、支持台
20の上部20Aを後端縁部を回転中心にして上方へ回
転させた場合の重心高さを算出し、これらの重心高さ
と、シリンダ50のみを加圧した前記重心高との平均値
を重心高さとする。即ち、ここで平均値をとるため、Δ
Xをキャンセルすることができる。The height of the center of gravity is calculated when only the cylinder 54 is pressurized and the upper part 20A of the support base 20 is rotated upward with the rear edge as the center of rotation, and the height of the center of gravity and the height of the cylinder 50 are calculated. The average value of the height of the center of gravity and the height of the center of gravity alone is defined as the height of the center of gravity. That is, to take the average value here, Δ
X can be canceled.
【0031】ステップ5では、測定台昇降用シリンダ1
7のロックを解除し、測定台16を所定量、例えば40
0mm上昇させ、測定台昇降用シリンダ17を再度ロック
する。In step 5, the measuring table lifting cylinder 1
7 is unlocked, and the measuring table 16 is set to a predetermined amount, for example, 40
Then, the measuring table elevating cylinder 17 is locked again.
【0032】ステップ6では、図1に示される如く、シ
リンダ32によって、左右支持リンク30の両端部30
B、30Cを矢印A方向へ移動させ、左右支持リンク3
0の中間部30Aに設けられた回転軸34を重心高さへ
移動する。この時、回転軸34に固定された連結部材3
6も上昇するので、連結部材36を測定台16に固定す
る。In step 6, as shown in FIG. 1, both ends 30 of the left and right support links 30 are moved by the cylinders 32.
B, 30C are moved in the direction of arrow A, and the left and right support links 3
The rotation shaft 34 provided in the intermediate portion 30A of the zero is moved to the height of the center of gravity. At this time, the connecting member 3 fixed to the rotating shaft 34
6 rises, so that the connecting member 36 is fixed to the measuring table 16.
【0033】ステップ7では、前後の測定台昇降用シリ
ンダ17により、測定台16に初期傾斜角を与え自由振
動を開始させる。この状態で、車両12+測定台16の
自由振動周期Tt 、振動加速度α、車両12のピッチ方
向の慣性モーメントJy を求める。In step 7, the initial tilt angle is given to the measuring table 16 by the front and rear measuring table lifting cylinders 17 to start free vibration. In this state, the free vibration period Tt, the vibration acceleration α, and the moment of inertia Jy of the vehicle 12 in the pitch direction of the vehicle 12 and the measuring stand 16 are obtained.
【0034】即ち、That is,
【0035】[0035]
【数1】Iv =(It−Ip )−mv hv 2 ここで、Iv :車両の重心回りの慣性モーメント、 It:(車両+測定台)の回転中心回りの慣性モーメン
ト、 Ip:測定台のみの回転中心回りの慣性モーメント、 Tt :(車両+測定台)の自由振動周期、 Tp:測定台のみの自由振動周期、 K:戻りばね定数、 mv :車両の質量、 mp :測定台の質量、 hv :回転中心と車両重心との間の長さ、 hp :回転中心と測定台重心との間の長さ、である。[Number 1] Iv = (It-I p) -m v h v 2 where, Iv: around the center of gravity of the inertia moment of the vehicle, It :( vehicle + rotation around the center of inertia of the measuring table), Ip: Measurements rotation around the center of the moment of inertia only platform, T t free vibration period of :( vehicle + measuring table), Tp: free vibration period of the measurement table only, K: return spring constant, m v: mass of the vehicle, m p: measurement table of mass, h v: length between the rotational center and the center of gravity of the vehicle, h p: a length, between the rotation center and the measuring table centroid.
【0036】また、Itは数式2、Ipは数式3とな
る。In addition, It is represented by Expression 2 and Ip is represented by Expression 3.
【0037】[0037]
【数2】It=(Tt /2π)2 (K+mv ghv +m
p ghp )## EQU2 ## It = (T t / 2π) 2 (K + m v gh v + m)
p gh p )
【0038】[0038]
【数3】Ip =(Tp /2π)2 (K+mp ghp ) よって、Tt 、Tpを計測し数式2、3で補正してI
t、Ip を求め、数式1により、車両の重心回りの慣性
モーメントIv 、この場合には、ピッチング方向の慣性
モーメントを求める。[Equation 3] Ip = (Tp / 2π) 2 (K + m p gh p ) Therefore, T t and Tp are measured and corrected by equations 2 and 3 to obtain I
t, Ip are obtained, and the moment of inertia Iv around the center of gravity of the vehicle, in this case, the moment of inertia in the pitching direction, is obtained from Expression 1.
【0039】測定完了後、ブレーキをかけ測定台16の
自由振動を停止させ、測定台16の傾斜角度を0°に戻
す。この状態で、測定台昇降用シリンダ17により、測
定台16を支持してから、連結部材36を測定台16か
ら切離し、シリンダ32によって、両端部30B、30
Cを離間する方向へ移動させ、左右支持リンク30の中
間部30Aに設けられた回転軸34を下降させる。この
時、回転軸34に固定された連結部材36も下降する。After the measurement is completed, the brake is applied to stop the free vibration of the measuring table 16, and the inclination angle of the measuring table 16 is returned to 0 °. In this state, after the measuring table 16 is supported by the measuring table elevating cylinder 17, the connecting member 36 is separated from the measuring table 16, and the both ends 30 B, 30
C is moved in the separating direction, and the rotating shaft 34 provided at the intermediate portion 30A of the left and right support link 30 is lowered. At this time, the connecting member 36 fixed to the rotating shaft 34 also descends.
【0040】ステップ8では、図2に示される如く、シ
リンダ42によって、前後支持リンク40の両端部40
B、40Cを矢印B方向へ移動させ、前後支持リンク4
0の中間部40Aに設けられた回転軸44を重心高さ位
置Ht へ移動する。この時、回転軸44に固定された連
結部材46も上昇するので、連結部材46を測定台16
に固定する。In step 8, as shown in FIG.
B and 40C are moved in the direction of arrow B,
The rotation shaft 44 provided in the intermediate portion 40A of the zero is moved to the center of gravity height position Ht. At this time, the connecting member 46 fixed to the rotating shaft 44 also rises, so that the connecting member 46 is
Fixed to.
【0041】ステップ9では、左右の測定台昇降用シリ
ンダ17により、測定台16に初期傾斜角を与え自由振
動を開始させる。この状態で、車両12+測定台16の
自由振動振動周期Tt 、振動加速度α、車両12のロー
ル方向の慣性モーメントJxを求める。In step 9, the initial tilt angle is given to the measuring table 16 by the right and left measuring table lifting cylinders 17 to start free vibration. In this state, the free vibration period Tt, the vibration acceleration α, and the moment of inertia Jx of the vehicle 12 in the roll direction are obtained.
【0042】測定完了後、ブレーキをかけ測定台16の
自由振動を停止させ、測定台16の傾斜角度を0°に戻
す。この状態で、測定台昇降用シリンダ17により、測
定台16を支持してから、連結部材46を測定台16か
ら切離し、シリンダ42によって、両端部40B、40
Cを離間する方向へ移動させ、左右支持リンク40の中
間部40Aに設けられた回転軸44を下降させる。この
時、回転軸44に固定された連結部材46も下降する。After the measurement is completed, the brake is applied to stop the free vibration of the measuring table 16 and the inclination angle of the measuring table 16 is returned to 0 °. In this state, after the measuring table 16 is supported by the measuring table elevating cylinder 17, the connecting member 46 is separated from the measuring table 16 and both ends 40B, 40B are
C is moved in the separating direction, and the rotating shaft 44 provided at the intermediate portion 40A of the left and right support link 40 is lowered. At this time, the connecting member 46 fixed to the rotating shaft 44 also moves down.
【0043】ステップ10では、測定台昇降用シリンダ
17のロックを解除し、測定台16を基準位置へ下降さ
せ、下降後測定台昇降用シリンダ17を再度ロックす
る。In step 10, the lock of the measuring table elevating cylinder 17 is released, the measuring table 16 is lowered to the reference position, and after the descent, the measuring table elevating cylinder 17 is locked again.
【0044】ステップ11では、移動手段によって回転
台55に初期傾斜角を与え自由振動を開始させる。これ
によって、測定台16が自由振動を開始する。この状態
で、車両12+測定台16の自由振動振動周期Tt 、振
動加速度α、車両12のヨー方向の慣性モーメントJz
を求める。In step 11, an initial inclination angle is given to the turntable 55 by the moving means to start free vibration. As a result, the measuring table 16 starts free vibration. In this state, the free vibration vibration period Tt, the vibration acceleration α of the vehicle 12 + the measuring stand 16 and the inertia moment Jz of the vehicle 12 in the yaw direction are obtained.
Ask for.
【0045】測定完了後、ブレーキをかけ測定台16の
自由振動を停止させ、測定台16の角度を0°に戻す。After the measurement is completed, the brake is applied to stop the free vibration of the measuring table 16 and the angle of the measuring table 16 is returned to 0 °.
【0046】ステップ12では、測定台昇降用シリンダ
17により、測定台16を支持してから、人手によって
車両12と測定台16とを固定している治具の位置をマ
ーキングすると共に、車両12と測定台16とを固定を
解除し、車両12を測定台16から降ろす。In step 12, the measuring table 16 is supported by the measuring table elevating cylinder 17, and the position of the jig fixing the vehicle 12 and the measuring table 16 is manually marked. The fixing to the measuring table 16 is released, and the vehicle 12 is lowered from the measuring table 16.
【0047】ステップ13では、人手によって車両12
と測定台16とを固定していた治具をマーキングした位
置にセットし、荷重検出器24によって治具+測定台1
6の質量を計測する。In step 13, the vehicle 12 is manually operated.
The jig which fixed the measuring table 16 and the measuring table 16 is set at the marked position, and the load detector 24 sets the jig + the measuring table 1
Measure the mass of 6.
【0048】ステップ14では、車両12を降ろした状
態でステップ4〜ステップ11を繰り返す。In step 14, steps 4 to 11 are repeated with the vehicle 12 lowered.
【0049】次に本実施例の作用を説明する。本実施例
の慣性モーメント計測装置10では、前記ステップ3で
車両12を測定台16上に固定した後は、前記ステップ
12で車両12を測定台16から降ろすまで、車両12
を測定台16上に再セットする必要が無いため、再セッ
トに要する時間が無くなり測定時間が短縮されると共
に、車両12を測定台16上に再セットすることによる
計測値のばらつきを無くすことができる。また、前記各
ステップにみられるように、自動化により極力人の介在
を排除したため、従来に比べ人為的測定誤差を少なくで
きる。Next, the operation of this embodiment will be described. In the moment of inertia measuring apparatus 10 of the present embodiment, after the vehicle 12 is fixed on the measuring table 16 in the step 3, the vehicle 12 is fixed until the vehicle 12 is lowered from the measuring table 16 in the step 12.
Since it is not necessary to reset the vehicle 12 on the measurement table 16, the time required for the resetting is eliminated and the measurement time is shortened, and the dispersion of the measurement values due to the resetting of the vehicle 12 on the measurement table 16 is eliminated. it can. Further, as seen in the above steps, human intervention is eliminated as much as possible by automation, so that an artificial measurement error can be reduced as compared with the related art.
【0050】また、本実施例の慣性モーメント計測装置
10では、前記ステップ7、9、11で振動周期を測定
する場合に、減衰状態にある振幅θと、その時の周期T
のデータをパソコン28に取込み、数式4に最小2乗法
で近似させる。In the moment of inertia measuring apparatus 10 of this embodiment, when measuring the vibration period in the steps 7, 9, and 11, the amplitude θ in the damped state and the period T
Is taken into the personal computer 28, and approximated by the least squares method to Equation 4.
【0051】[0051]
【数4】 (Equation 4)
【0052】即ち、数式4を仮定し、数式4の両辺の対
数をとり数式5とする。That is, Equation 4 is assumed, and the logarithm of both sides of Equation 4 is taken as Equation 5.
【0053】[0053]
【数5】logT=Bθ0.7 +logA として、計測値T、θより係数A、Bを求める。## EQU5 ## As logT = Bθ 0.7 + logA, coefficients A and B are obtained from the measured values T and θ.
【0054】また、数式5を数式6とし、Equation 5 is replaced by Equation 6,
【0055】[0055]
【数6】y=ax+b ここで、y=logT、a=B、x=θ0.7 、b=lo
gAで、最小2乗法により、数式7〜9となる。Y = ax + b where y = logT, a = B, x = θ 0.7 , b = lo
In gA, Equations 7 to 9 are obtained by the least squares method.
【0056】[0056]
【数7】B=a=(Σxi yi −nxy)/(Σxi 2
−nx2 ) ここでx、yは平均値、nはデータ数。Equation 7] B = a = (Σx i y i -nxy) / (Σx i 2
−nx 2 ) where x and y are average values, and n is the number of data.
【0057】[0057]
【数8】logA=b=y−ax## EQU8 ## logA = b = y-ax
【0058】[0058]
【数9】A=eb =e(y-ax) 数式7〜9により、振幅が変化している場合、即ち、従
来技術の計測待期時間でも、振動周期を計測できる。な
お、数式4の0.7は既知慣性モーメントより実測して
求めた定数でる。A = e b = e (y-ax) According to Equations 7 to 9, the vibration cycle can be measured even when the amplitude is changing, that is, even in the measurement waiting time of the prior art. Note that 0.7 in Equation 4 is a constant obtained by actually measuring from a known moment of inertia.
【0059】このように、本実施例の慣性モーメント計
測装置では、パソコン28によって、振幅θと周期Tと
の関係から振幅の漸近する点を予測し、この点に基づい
て振動周期を求める。このため、振幅が安定するまで計
測ができなかった従来技術と比べて、待ち時間が不要と
なり計測にかかる時間を短縮することができる。As described above, in the moment of inertia measuring apparatus according to the present embodiment, the personal computer 28 predicts a point at which the amplitude approaches asymptotically from the relationship between the amplitude θ and the cycle T, and obtains the oscillation period based on this point. Therefore, as compared with the related art in which measurement cannot be performed until the amplitude is stabilized, a waiting time is not required, and the time required for measurement can be reduced.
【0060】また、本実施例の慣性モーメント計測装置
では、振幅θの減少が少ないうちに周期計測を行なうた
め、装置の機械的負荷による誤差の影響度が少なく、結
果として測定精度が向上する。In the moment of inertia measuring apparatus according to the present embodiment, the period is measured while the amplitude θ is small, so that the influence of an error due to the mechanical load on the apparatus is small, and as a result, the measuring accuracy is improved.
【0061】[0061]
【発明の効果】請求項1記載の本発明の慣性モーメント
計測装置は、被測定物を載置する測定台と、ピッチ方向
の慣性モーメント計測時に測定台を持ち上げるとともに
回転中心を設定し且つ慣性モーメント非計測時に測定台
から離間する第1の支持部材と、ロール方向の慣性モー
メント計測時に測定台を持ち上げるとともに回転中心を
設定し且つ慣性モーメント非計測時に測定台から離間す
る第2の支持部材と、を有する構成としたので、計測に
かかる時間を短縮できるという優れた効果を有する。According to a first aspect of the present invention, there is provided an apparatus for measuring moment of inertia, comprising: a measuring table on which an object to be measured is placed; lifting the measuring table when measuring the moment of inertia in the pitch direction; A first support member that is separated from the measurement table during non-measurement, a second support member that sets the rotation center while lifting the measurement table when measuring the inertia moment in the roll direction and separates from the measurement table when inertia moment is not measured, Has an excellent effect that the time required for measurement can be reduced.
【0062】請求項2記載の本発明の慣性モーメント計
測装置は、慣性モーメント計測時の測定台の振幅と周期
との関係から振幅の漸近する点を予測し、この点に基づ
いて振動周期を求める周期演算装置を有する構成とした
ので、計測にかかる時間を短縮できるという優れた効果
を有する。According to a second aspect of the present invention, the moment of inertia measuring device predicts a point at which the amplitude approaches asymptotically from the relationship between the amplitude and the period of the measuring table at the moment of inertia measurement, and obtains the vibration period based on this point. The configuration having the period calculation device has an excellent effect that the time required for measurement can be reduced.
【図1】本発明の一実施例に係る慣性モーメント計測装
置のピッチ方向の慣性モーメント測定時の状態を示す概
略側面図である。FIG. 1 is a schematic side view showing a state of a moment of inertia measurement in a pitch direction of a moment of inertia measuring apparatus according to one embodiment of the present invention.
【図2】本発明の一実施例に係る慣性モーメント計測装
置のロール方向の慣性モーメント測定時の状態を示す概
略正面図である。FIG. 2 is a schematic front view showing a state when measuring the inertia moment in the roll direction of the inertia moment measurement device according to one embodiment of the present invention.
【図3】本発明の一実施例に係る慣性モーメント計測装
置の重心高さ測定時の状態を示す概略側面図である。FIG. 3 is a schematic side view showing a state when measuring the height of the center of gravity of the moment of inertia measuring apparatus according to one embodiment of the present invention.
【図4】本発明の一実施例に係る慣性モーメント計測装
置のヨー方向の慣性モーメント測定時の状態を示す概略
平面図である。FIG. 4 is a schematic plan view showing a state when measuring the inertia moment in the yaw direction of the inertia moment measurement device according to one embodiment of the present invention.
【図5】車両平面重心と装置平面重心が一致している場
合の重心高さ測定の説明図である。FIG. 5 is an explanatory diagram of the center-of-gravity height measurement when the vehicle plane center of gravity and the apparatus plane center of gravity coincide with each other.
【図6】車両平面重心と装置平面重心がずれている場合
の重心高さ測定の説明図である。FIG. 6 is an explanatory diagram of the center-of-gravity height measurement when the vehicle plane center of gravity and the apparatus plane center of gravity are shifted.
【図7】従来例に係る慣性モーメント計測装置のピッチ
方向の慣性モーメント測定時の状態を示す概略側面図で
ある。FIG. 7 is a schematic side view showing a state of measuring a moment of inertia in a pitch direction of a moment of inertia measuring device according to a conventional example.
【図8】従来例に係る慣性モーメント計測装置のロール
方向の慣性モーメント測定時の状態を示す概略正面図で
ある。FIG. 8 is a schematic front view showing a state of measuring a moment of inertia in a roll direction of a moment of inertia measuring device according to a conventional example.
【図9】従来例に係る慣性モーメント計測装置のヨー方
向の慣性モーメント測定時の状態を示す概略平面図であ
る。FIG. 9 is a schematic plan view showing a state in which a moment of inertia in a yaw direction is measured by a moment of inertia measuring apparatus according to a conventional example.
【図10】従来例に係る周期測定時間と振幅との関係を
示すグラフである。FIG. 10 is a graph showing a relationship between a cycle measurement time and an amplitude according to a conventional example.
【図11】他の従来例に係る慣性モーメント計測装置の
概略平面図である。FIG. 11 is a schematic plan view of an inertial moment measuring device according to another conventional example.
10 慣性モーメント計測装置 12 車両 16 測定台 17 測定台昇降用シリンダ 20 支持台 24 荷重検出器(車両重心検出器) 26 アンプ(車両重心検出器) 28 パソコン(車両重心検出器、周期演算装置) 30 左右支持リンク 32 シリンダ 34 回転軸 40 前後支持リンク 42 シリンダ 44 回転軸 60 加速度センサ 61 角度計 62 角度計 DESCRIPTION OF SYMBOLS 10 Moment of inertia measuring device 12 Vehicle 16 Measuring table 17 Cylinder for elevating and lowering measuring table 20 Supporting stand 24 Load detector (Vehicle center of gravity detector) 26 Amplifier (Vehicle center of gravity detector) 28 Personal computer (Vehicle center of gravity detector, period arithmetic unit) 30 Left and right support link 32 Cylinder 34 Rotation axis 40 Front and back support link 42 Cylinder 44 Rotation axis 60 Accelerometer 61 Angle meter 62 Angle meter
───────────────────────────────────────────────────── フロントページの続き (72)発明者 飯塚 等 埼玉県狭山市笹井535 (56)参考文献 独国特許出願公開2717454(DE,A 1) (58)調査した分野(Int.Cl.7,DB名) G01M 1/10 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Iizuka et al. 535 Sasai, Sayama-shi, Saitama (56) References German Patent Application Publication 2717454 (DE, A1) (58) Fields investigated (Int. Cl. 7 , (DB name) G01M 1/10
Claims (2)
向の慣性モーメント計測時に測定台を持ち上げるととも
に回転中心を設定し且つピッチ方向の慣性モーメント非
計測時に測定台から離間する第1の支持部材と、ロール
方向の慣性モーメント計測時に測定台を持ち上げるとと
もに回転中心を設定し且つロール方向の慣性モーメント
非計測時に測定台から離間する第2の支持部材と、を有
することを特徴とする慣性モーメント計測装置。1. A measuring table on which an object to be measured is placed, and a first table which lifts the measuring table when measuring the moment of inertia in the pitch direction, sets the center of rotation, and separates from the measuring table when the moment of inertia in the pitch direction is not measured. An inertia comprising: a support member; and a second support member that lifts the measurement table when measuring the inertia moment in the roll direction, sets the center of rotation, and separates from the measurement table when the inertia moment in the roll direction is not measured. Moment measuring device.
周期との関係から振幅の漸近する点を予測し、この点に
基づいて振動周期を求める周期演算装置を有することを
特徴とする慣性モーメント計測装置。2. A moment of inertia comprising a period calculating device for predicting a point at which the amplitude approaches asymptotically from the relationship between the amplitude and the period of the measuring table at the moment of inertia measurement and obtaining a vibration period based on this point. Measuring device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06196999A JP3142444B2 (en) | 1994-08-22 | 1994-08-22 | Moment of inertia measurement device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06196999A JP3142444B2 (en) | 1994-08-22 | 1994-08-22 | Moment of inertia measurement device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0862083A JPH0862083A (en) | 1996-03-08 |
JP3142444B2 true JP3142444B2 (en) | 2001-03-07 |
Family
ID=16367142
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP06196999A Expired - Fee Related JP3142444B2 (en) | 1994-08-22 | 1994-08-22 | Moment of inertia measurement device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3142444B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012078317A (en) * | 2010-10-06 | 2012-04-19 | Yamato Scale Co Ltd | Hanging device and barycentric position measuring method |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100422424B1 (en) * | 2001-07-03 | 2004-03-12 | 한국항공우주연구원 | a |
KR100418798B1 (en) * | 2001-10-16 | 2004-02-18 | 현대자동차주식회사 | Apparatus for estimating moment of inertia of an object |
JP4523900B2 (en) * | 2005-09-13 | 2010-08-11 | 三菱重工業株式会社 | Mass characteristic measurement device |
JP5679731B2 (en) * | 2009-08-06 | 2015-03-04 | 大和製衡株式会社 | Center of gravity height measuring device |
EP2508861B1 (en) * | 2011-04-04 | 2018-11-07 | Resonic GmbH | System and method for determining inertia properties of a rigid body |
US9666093B2 (en) | 2012-12-04 | 2017-05-30 | Kabushiki Kaisha Saginomiya Seisakusho | Test device |
KR101373724B1 (en) * | 2013-02-08 | 2014-03-13 | 한국기계연구원 | Apparatus for testing sloshing and vibration |
CN103364140A (en) * | 2013-07-12 | 2013-10-23 | 重庆科技学院 | Method for testing rotational inertia of motor vehicle assembly in dynamic and reverse mode without lifting |
CN106289640B (en) * | 2016-07-21 | 2018-09-21 | 北京汽车研究总院有限公司 | A kind of vehicle Measurement System of " Moment of Inertia |
-
1994
- 1994-08-22 JP JP06196999A patent/JP3142444B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012078317A (en) * | 2010-10-06 | 2012-04-19 | Yamato Scale Co Ltd | Hanging device and barycentric position measuring method |
Also Published As
Publication number | Publication date |
---|---|
JPH0862083A (en) | 1996-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3142444B2 (en) | Moment of inertia measurement device | |
US5633467A (en) | Apparatus and method for non-destructive testing of structures | |
JP4523900B2 (en) | Mass characteristic measurement device | |
US9212964B2 (en) | Method and apparatus for determining geometrical dimensions of a wheel | |
KR101162975B1 (en) | Device and method for measuring center of gravity and moment of inertia | |
KR20070079355A (en) | Detecting method of a drop test and the device thereof | |
CN101297205A (en) | Methods and apparatuses for improved stabilization in a probing system | |
JP3298343B2 (en) | Calibration device for wind tunnel balance | |
JPS6244641A (en) | Balance testing method and device | |
JP3298806B2 (en) | Main axis direction moment of inertia measurement device | |
WO2003102528A1 (en) | Device for measuring the inertia tensor of a rigid body | |
JPH06265433A (en) | Measuring method for position of center of gravity of car body, etc. | |
JP4395307B2 (en) | How to correct lateral force measurements | |
US6560553B1 (en) | Method of estimating an eccentric position of an acceleration sensor and acceleration generating apparatus with an eccentricity adjuster | |
JP2004132975A (en) | Balance testing machine for rotary body, especially wheel of automobile | |
JP3518703B2 (en) | Weighing method, weighing device and garbage truck equipped with weighing device | |
JP4098429B2 (en) | Balance test machine and balance test method | |
US4858331A (en) | Method and apparatus for measurement of caster, king-pin-inclination, and camber on motor vehicles | |
JPH06123669A (en) | Centroid measuring apparatus | |
RU2332650C1 (en) | Method of determination of body static moment | |
US20220042803A1 (en) | Method for characterising an inertial measurement unit | |
JP2740232B2 (en) | Vehicle roll testing machine | |
JPH11230739A (en) | Flatness measurement device | |
KR102700179B1 (en) | Axial clearance measuring apparatus for increasing the precision of measuring the angle and angular velocity | |
JP3980976B2 (en) | Inspection device for passenger weight measuring device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20001114 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081222 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081222 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091222 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |