JP3298343B2 - Calibration device for wind tunnel balance - Google Patents

Calibration device for wind tunnel balance

Info

Publication number
JP3298343B2
JP3298343B2 JP32910294A JP32910294A JP3298343B2 JP 3298343 B2 JP3298343 B2 JP 3298343B2 JP 32910294 A JP32910294 A JP 32910294A JP 32910294 A JP32910294 A JP 32910294A JP 3298343 B2 JP3298343 B2 JP 3298343B2
Authority
JP
Japan
Prior art keywords
displacement
wind tunnel
carry body
tunnel balance
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32910294A
Other languages
Japanese (ja)
Other versions
JPH08184527A (en
Inventor
裕也 三田
輝次 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP32910294A priority Critical patent/JP3298343B2/en
Publication of JPH08184527A publication Critical patent/JPH08184527A/en
Application granted granted Critical
Publication of JP3298343B2 publication Critical patent/JP3298343B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、航空機モデルの風洞実
験に使用される風洞天秤の較正装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for calibrating a wind tunnel balance used for wind tunnel experiments on an aircraft model.

【0002】[0002]

【従来の技術】風洞天秤は、航空機モデルの重心付近に
設置され、航空機モデルに働く力やモーメントを測定す
るものである。従来、この種の風洞天秤の較正は、分銅
を較正装置本体から吊るして所定の力やモーメントを較
正装置本体に与え、そのときの風洞天秤からの出力を計
測して行なわれる。
2. Description of the Related Art A wind tunnel balance is installed near the center of gravity of an aircraft model and measures forces and moments acting on the aircraft model. Conventionally, calibration of this type of wind tunnel balance is performed by suspending a weight from the calibration device main body, applying a predetermined force or moment to the calibration device main body, and measuring the output from the wind tunnel balance at that time.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上述し
た従来の較正方法では、分銅により較正装置本体に力や
モーメントを与えたとき、風洞天秤と較正装置本体との
相対位置関係がずれてしまう。そのため、風洞天秤と航
空機モデルとの位置関係を所定値に保持しつつ航空機モ
デルに力やモーメントを与える実験を想定すると、較正
条件が実験の場合と異なり、精度の高い較正ができない
おそれがある。
However, in the above-described conventional calibration method, when a force or moment is applied to the calibration device main body by a weight, the relative positional relationship between the wind tunnel balance and the calibration device main body is shifted. Therefore, assuming an experiment in which a force and a moment are applied to the aircraft model while maintaining the positional relationship between the wind tunnel balance and the aircraft model at a predetermined value, the calibration conditions may be different from those in the experiment, and highly accurate calibration may not be performed.

【0004】本発明の目的は、キャリボディを介して較
正のための力を風洞天秤に与えたときのキャリボディの
変位を検出し、風洞天秤の一端が接続されたステイング
取り付けフレームとキャリボディとの相対位置を所定範
囲内に保持しながら較正することができる風洞天秤の較
正装置を提供することにある。
An object of the present invention is to detect a displacement of a carry body when a force for calibration is applied to the wind tunnel balance via the carry body, and to detect a displacement of the carry body with one end of the wind tunnel balance, the carrying frame, It is an object of the present invention to provide a wind tunnel balance calibration device capable of performing calibration while maintaining the relative position of the wind tunnel balance within a predetermined range.

【0005】[0005]

【課題を解決するための手段】本発明に係る風洞天秤の
較正装置は、風洞天秤の一端がスティングを介して接続
されたスティング取付けフレームと、風洞天秤の他端を
内挿するキャリボディと、このキャリボディにX,Y,
Z軸方向の力とこれら各軸回りのモーメントMx,M
y,Mzを与える負荷機構と、前記キャリボディの変位
を検出する変位検出手段と、前記キャリボディと相対的
に前記スティング取付けフレームをX,Y,Z軸方向に
移動するとともに前記各軸回りに回転する復元機構と、
前記負荷機構で前記キャリボディを駆動するとき、前記
変位検出手段の出力に基づいて、前記キャリボディに対
する前記スティング取付けフレームのX,Y,Z軸方向
の変位量とこれら各軸回りの変位角が所定範囲内に収る
ように前記復元機構を制御する制御手段とを具備するこ
とにより、上記目的を達成する。
According to the present invention, there is provided an apparatus for calibrating a wind tunnel balance, comprising: a sting mounting frame to which one end of the wind tunnel balance is connected via a sting; a carry body into which the other end of the wind tunnel balance is inserted; X, Y,
Force in the Z-axis direction and moments Mx, M around these axes
a load mechanism for providing y and Mz; displacement detecting means for detecting displacement of the carry body; and moving the sting mounting frame in the X, Y, and Z directions relative to the carry body, and moving around the axes. A rotating restoration mechanism,
When the load body drives the carry body, the displacement amounts of the sting mounting frame in the X, Y, and Z directions with respect to the carry body and the displacement angles around these axes are determined based on the output of the displacement detection means. The above object is achieved by providing a control means for controlling the restoring mechanism so as to fall within a predetermined range.

【0006】[0006]

【作用】負荷機構は、風洞天秤の他端が内挿されている
キャリボディにX,Y,Z軸方向の力とこれら各軸回り
のモーメントMx,My,Mzを与える。これにより、
風洞天秤には較正のための力やモーメントが与えられ
る。このとき、変位検出手段はキャリボディの変位を検
出する。制御手段は、この変位検出手段の出力に基づい
て、キャリボディに対するスティング取付けフレームの
X,Y,Z軸方向の変位量とこれら各軸回りの変位角が
所定範囲内に収るように復元機構を制御する。
The load mechanism applies forces in the X, Y, and Z-axis directions and moments Mx, My, and Mz around these axes to the carry body in which the other end of the wind tunnel balance is inserted. This allows
The wind tunnel balance is provided with forces and moments for calibration. At this time, the displacement detecting means detects the displacement of the carry body. The control means controls the restoring mechanism based on the output of the displacement detecting means so that the displacement amounts of the sting mounting frame in the X, Y, and Z directions with respect to the carry body and the displacement angles around these axes fall within predetermined ranges. Control.

【0007】[0007]

【実施例】図1〜図10により本発明の一実施例を説明
する。まず本明細書では、図8に示すように、航空機モ
デル100に働く力とモーメントを定義する。したがっ
て、図1において、右方向がX正方向Fx(+)、左方
向がX負方向Fx(−)、下方向がY正方向Fy
(+)、上方向がY負方向Fy(−)である。また、図
2において、下方向がZ正方向Fz(+)、上方向がZ
負方向Fz(−)、左方向がY正方向Fy(+)、右方
向がY負方向Fy(−)である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to FIGS. First, in this specification, as shown in FIG. 8, the forces and moments acting on the aircraft model 100 are defined. Therefore, in FIG. 1, the right direction is the positive X direction Fx (+), the left direction is the negative X direction Fx (-), and the downward direction is the positive Y direction Fy.
(+), The upward direction is the Y negative direction Fy (−). In FIG. 2, the downward direction is the Z positive direction Fz (+), and the upward direction is the Z direction.
The negative direction Fz (-), the left direction is the Y positive direction Fy (+), and the right direction is the Y negative direction Fy (-).

【0008】図1および図2において、21はスティン
グ取付けフレーム、22はキャリボディ、23はスティ
ング、23Aは風洞天秤である。スティング23は円筒
状連結部23aでスティング取付けフレーム21に一端
が固定され、その他端に風洞天秤23Aの一端が固定さ
れている。風洞天秤23Aの他端はキャリボディ22の
中に内挿される。キャリボディ22に内挿された風洞天
秤23Aの他端はキャリボディ22に固定されているた
め、キャリボディ22の姿勢に応じて風洞天秤23Aの
検出部はキャリボディ22と相対的に変位し、キャリボ
ディ22に作用する力やモーメントに応じた検出信号を
出力し、これにより、キャリボディ22に作用するX,
Y,Z軸方向の力と各軸回りのモーメントを検出するこ
とができる。
In FIGS. 1 and 2, reference numeral 21 denotes a sting mounting frame, 22 denotes a carry body, 23 denotes a sting, and 23A denotes a wind tunnel balance. One end of the sting 23 is fixed to the sting mounting frame 21 by a cylindrical connecting portion 23a, and one end of the wind tunnel balance 23A is fixed to the other end. The other end of the wind tunnel balance 23A is inserted into the carry body 22. Since the other end of the wind tunnel balance 23A inserted into the carry body 22 is fixed to the carry body 22, the detection unit of the wind tunnel balance 23A is displaced relative to the carry body 22 according to the posture of the carry body 22, A detection signal corresponding to a force or a moment acting on the carry body 22 is output.
The force in the Y and Z axis directions and the moment around each axis can be detected.

【0009】スティング取付けフレーム21は、基台2
4に立設されたZ方向復元ジャッキ31a,31b,3
1cでZ方向の位置を調節可能に姿勢制御され、基台2
4に設置されたX方向復元ジャッキ32でX方向の位置
を調節可能に姿勢制御され、基台24に設置されたY方
向復元ジャッキ33a,33bでY方向の位置を調節可
能に姿勢制御される。各復元ジャッキは自在継手34a
〜34fを介してスティング取付けフレーム21に連結
され、これにより、スティング取付けフレーム21は
X,Y,Z軸方向に変位し、かつ、各軸回りに変位する
ことができる。
The sting mounting frame 21 is mounted on the base 2.
4, Z-direction restoration jacks 31a, 31b, 3
1c, the posture is controlled so that the position in the Z direction can be adjusted.
The posture is controlled so that the position in the X direction can be adjusted by the X-direction restoration jack 32 installed on the base 4, and the posture is controlled so that the position in the Y direction can be adjusted by the Y-direction restoration jacks 33 a and 33 b installed on the base 24. . Each restoration jack is a universal joint 34a
The sting attachment frame 21 can be displaced in the X, Y, and Z-axis directions, and can be displaced around each axis through .about.34f.

【0010】なお、図2では、復元ジャッキ31aの図
示を省略している。また、自在継手34aは図1および
図2のいずれからも図示を省略している。
In FIG. 2, the restoration jack 31a is not shown. The universal joint 34a is not shown in any of FIGS. 1 and 2.

【0011】図3にも示されるように、キャリボディ2
2はピアノ線35および連結ロッド36で負荷ジャッキ
1〜16に連結されて種々の荷重を発生する。負荷ジャ
ッキ1,2はZ負方向にキャリボディ22を負荷し、負
荷ジャッキ3,4はZ正方向にキャリボディ22を負荷
する。負荷ジャッキ5,6はX正方向にキャリボディ2
2を負荷し、負荷ジャッキ7,8はX負方向にキャリボ
ディ22を負荷する。負荷ジャッキ9,10はY正方向
にキャリボディ22を負荷し、負荷ジャッキ11,12
はY負方向にキャリボディ22を負荷する。図4に示す
ように負荷ジャッキ1〜16を選択的に動作させること
で、キャリボディ22を介して風洞天秤23AにX,
Y,Z軸方向の力と各軸回りのモーメントを与えること
ができる。また、図2において、符号58a〜58fは
連結ロッド36の軸力を測定するロードセルであり、さ
らに、図示はしていないが、ピアノ線35の軸力もロー
ドセル(図9に符号59a〜59hで示す)で検出され
て、後述する制御回路61に入力される。
As shown in FIG. 3, the carry body 2
2 is connected to load jacks 1 to 16 by a piano wire 35 and a connecting rod 36 to generate various loads. The load jacks 1 and 2 load the carry body 22 in the negative Z direction, and the load jacks 3 and 4 load the carry body 22 in the positive Z direction. Load jacks 5 and 6 carry body 2 in the positive X direction.
2, the load jacks 7, 8 load the carry body 22 in the negative X direction. The load jacks 9 and 10 load the carry body 22 in the positive Y direction, and the load jacks 11 and 12
Loads the carry body 22 in the Y negative direction. By selectively operating the load jacks 1 to 16 as shown in FIG.
A force in the Y and Z axis directions and a moment about each axis can be given. 2, reference numerals 58a to 58f denote load cells for measuring the axial force of the connecting rod 36. Further, although not shown, the axial force of the piano wire 35 is also indicated by a load cell (shown by reference numerals 59a to 59h in FIG. 9). ) And is input to a control circuit 61 described later.

【0012】図1および図2において水平方向に延在す
る負荷ジャッキに一端が連結されたピアノ線35は取り
付けフレーム21にあけられた円形孔37を通ってキャ
リボディ22にそれぞれ連結され、キャリボディ22の
姿勢が変ってもいずれのピアノ線35が取り付けフレー
ム21に接触しないようにされている。
1 and 2, a piano wire 35 having one end connected to a load jack extending in the horizontal direction is connected to the carry body 22 through a circular hole 37 formed in the mounting frame 21. Even if the posture of 22 changes, any piano wire 35 is prevented from contacting the mounting frame 21.

【0013】図1および図2において、41は、下部基
台24と上部架台25とを連結する支柱であり、図5お
よび図6に示すように、この支柱41には変位センサ取
り付け枠42が取り付けられている。この取り付け枠4
2には、変位センサ取り付け軸43が上下調節ナット4
4により位置決め固定され、この軸43の先端(図5お
よび図6では下端)にはキャリボディ22の種々の変位
を測定する変位測定装置51が設けられている。キャリ
ボディ22の上面に固定されたターゲット取り付けアー
ム52には、その上面にターゲット板53が接続され、
図7に模式的に示すように、変位測定装置51のそれぞ
れの変位センサ51a〜51fのそれぞれの先端がター
ゲット板53と係合し、変位センサ51a〜51fのそ
れぞれはキャリボディ22のX方向変位,Y方向変位,
Z方向変位に応じた変位信号を出力する。
In FIGS. 1 and 2, reference numeral 41 denotes a column connecting the lower base 24 and the upper frame 25. As shown in FIGS. 5 and 6, the column 41 has a displacement sensor mounting frame 42 attached thereto. Installed. This mounting frame 4
2, a displacement sensor mounting shaft 43 includes a vertical adjustment nut 4;
4, a displacement measuring device 51 for measuring various displacements of the carry body 22 is provided at the tip (the lower end in FIGS. 5 and 6) of the shaft 43. A target plate 53 is connected to the upper surface of the target mounting arm 52 fixed to the upper surface of the carry body 22,
As shown schematically in FIG. 7, each tip of each of the displacement sensors 51 a to 51 f of the displacement measuring device 51 engages with the target plate 53, and each of the displacement sensors 51 a to 51 f displaces the carry body 22 in the X direction. , Y direction displacement,
A displacement signal according to the Z-direction displacement is output.

【0014】図9は風洞天秤較正装置のブロック図を示
し、マイクロコンピュータなどからなる制御回路61に
は操作部62から較正信号が入力される。較正信号はキ
ャリボディ22を介して風洞天秤23Aに与えるX,
Y,Z軸方向の力と各軸回りのモーメントを示すもの
で、たとえば、キーボードから入力することができる。
操作部62はキーボードに限定されるわけではなく、ダ
イアル式など種々のものが使用できる。制御回路61
は、入力される較正信号に応じて負荷ジャッキ1〜16
を選択駆動し、所望の力あるいはモーメントをキャリボ
ディ22に与える。制御回路61には変位測定装置51
を構成する変位センサ51a〜51fの変位信号が入力
され、この変位信号に応じて復元ジャッキを選択駆動し
て、キャリボディ22と風洞天秤23Aの中心がほぼ一
致するように、また、両者の各軸回りの変位角がほぼゼ
ロとなるように風洞天秤取り付けフレーム21の姿勢を
制御する。さらに、制御回路61には、上述したロード
セル58a〜58fと図2では不図示のロードセル58
g,58hで検出されるロッド36の荷重信号と、風洞
天秤23Aからの検出信号と、上述した図2では不図示
のロードセル59a〜59hで検出されるロッド35の
荷重信号も入力される。
FIG. 9 is a block diagram of a wind tunnel balance calibrating device. A calibration signal is inputted from an operation unit 62 to a control circuit 61 including a microcomputer or the like. The calibration signal is given to the wind tunnel balance 23A through the carry body 22 by X,
It indicates the force in the Y and Z axis directions and the moment about each axis, and can be input from, for example, a keyboard.
The operation unit 62 is not limited to a keyboard, and various types such as a dial type can be used. Control circuit 61
Are load jacks 1 to 16 according to the input calibration signal.
Is selectively driven to apply a desired force or moment to the carry body 22. The control circuit 61 includes a displacement measuring device 51.
The displacement signals of the displacement sensors 51a to 51f are input, and the restoration jack is selectively driven in accordance with the displacement signals so that the centers of the carry body 22 and the wind tunnel balance 23A substantially coincide with each other. The attitude of the wind tunnel balance mounting frame 21 is controlled so that the displacement angle about the axis becomes substantially zero. Further, the control circuit 61 includes the load cells 58a to 58f described above and a load cell 58 not shown in FIG.
The load signal of the rod 36 detected by g and 58h, the detection signal from the wind tunnel balance 23A, and the load signal of the rod 35 detected by the load cells 59a to 59h not shown in FIG.

【0015】このように構成された風洞天秤の較正装置
の動作を説明する。図10は制御回路61で実行される
プログラムの処理手順例であり、ステップS1で較正信
号を読み込み、ステップS2において、読み込まれた較
正信号に応じて負荷ジャッキを駆動する信号を出力す
る。これにより、キャリボディ22には較正信号に応じ
た力やモーメントが働き、キャリボディ22はそれに応
じた姿勢をとる。たとえば、X正方向にFxなる力をキ
ャリボディ22に与える較正信号が入力されると、負荷
ジャッキ5,6はそれに連結されたロードセルからの荷
重信号がFxになるまでキャリボディ22を駆動する。
他の軸方向の力や各軸回りのモーメントが較正信号で与
えられたときも、同様に各ロードセルからの荷重信号に
より各軸の力や各軸回りのモーメントが所望の値となる
まで負荷ジャッキを駆動する。そして、ステップS3で
変位信号を読み込み、ステップS4で変位信号から取り
付けフレーム21の復元量を計算する。
The operation of the thus configured wind tunnel balance calibration device will be described. FIG. 10 shows an example of a processing procedure of a program executed by the control circuit 61. In step S1, a calibration signal is read, and in step S2, a signal for driving a load jack is output according to the read calibration signal. As a result, a force or moment corresponding to the calibration signal acts on the carry body 22, and the carry body 22 takes a posture corresponding thereto. For example, when a calibration signal for applying a force of Fx in the positive X direction to the carry body 22 is input, the load jacks 5 and 6 drive the carry body 22 until the load signal from the load cell connected thereto becomes Fx.
When other forces in the axial direction and moments around each axis are given by the calibration signal, the load jacks are similarly applied until the force of each axis and the moment around each axis reach a desired value by the load signal from each load cell. Drive. Then, the displacement signal is read in step S3, and the restoration amount of the mounting frame 21 is calculated from the displacement signal in step S4.

【0016】後述するように、この復元量は、X方向変
位量X、Y方向変位量Y、Z方向変位量Z、X軸に対す
る変位角φ、Y軸に対する変位角θ、Z軸に対する変位
角ψで表される。次いで、ステップS5において、計算
された復元量に基づいて復元ジャッキの駆動量を計算
し、復元ジャッキを徐々に変位させてステップS4で計
算された復元量だけ取り付けフレーム21を移動する。
たとえば、変位信号から計算された変位量をn等分し、
1/n変位量のランプ波を復元ジャッキにn回出力して
少しづつフレーム21を復元するような制御をかけるの
が望ましい。
As will be described later, this restoration amount includes a displacement amount X in the X direction, a displacement amount Y in the Y direction, a displacement amount Z in the Z direction, a displacement angle φ with respect to the X axis, a displacement angle θ with respect to the Y axis, and a displacement angle with respect to the Z axis. It is represented by ψ. Next, in step S5, the driving amount of the restoration jack is calculated based on the calculated restoration amount, the restoration jack is gradually displaced, and the mounting frame 21 is moved by the restoration amount calculated in step S4.
For example, the displacement calculated from the displacement signal is divided into n equal parts,
It is desirable to perform control such that a ramp wave having a 1 / n displacement amount is output to the restoration jack n times and the frame 21 is restored little by little.

【0017】風洞天秤の中心の座標をP(X,Y,Z)
とし、変位センサ51a〜51fの検出信号をxa,y
a,yb,za,zb,zcとし、測定開始時の検出信
号をそれぞれゼロとすると、風洞天秤の中心の座標P
(X,Y,Z)は、
Let the coordinates of the center of the wind tunnel balance be P (X, Y, Z)
And the detection signals of the displacement sensors 51a to 51f are xa, y
Let a, yb, za, zb, zc be the detection signals at the start of the measurement, respectively, and assume that the coordinates P at the center of the wind tunnel balance are P
(X, Y, Z) is

【数1】X方向変位量:X=xa Y方向変位量:Y=(ya+yb)/2 Z方向変位量:Z=(za+zb+zc)/3 で表すことができる。また、各軸に対する変位角は、## EQU1 ## X direction displacement: X = xa Y direction displacement: Y = (ya + yb) / 2 Z direction displacement: Z = (za + zb + zc) / 3 The displacement angle with respect to each axis is

【数2】 X軸に対する変位角:φ=tan-1{(zb−zc)/L1} Y軸に対する変位角:θ=tan-1{−(za+zb+zc)/2L2} Z軸に対する変位角:ψ=tan-1{(ya−yb)/L2} で表すことができる。なお、L1は図7に示すように、
変位yaを検出する変位センサ51bと変位ybを検出
する変位センサ51cとの間隔、L2は同様に、変位z
bを検出する変位センサ51eと変位zcを検出する変
位センサ51fとの間隔である。
## EQU2 ## Displacement angle with respect to X axis: φ = tan -1 {(zb-zc) / L1} Displacement angle with respect to Y axis: θ = tan -1 {-(za + zb + zc) / 2L2} Displacement angle with respect to Z axis: ψ = Tan -1 {(ya-yb) / L2}. Note that L1 is as shown in FIG.
Similarly, the distance L2 between the displacement sensor 51b for detecting the displacement ya and the displacement sensor 51c for detecting the displacement yb is the displacement z.
This is the distance between the displacement sensor 51e that detects b and the displacement sensor 51f that detects the displacement zc.

【0018】最後に、ステップS6において風洞天秤2
3Aからの出力を読み込み、ステップS1で与えた較正
信号に対応づけてその出力を記憶して較正を行なう。こ
のような制御により、較正作業中、X,Y,Z軸方向で
は風洞天秤23Aの中心がキャリボディ22の中心とほ
ぼ一致し、Mx,My,Mzモーメント方向では両者の
相対回転角度がほぼゼロとなる。したがって、実際の風
洞実験で航空機モデルに搭載したときと等価な条件で較
正を行なうことができ、信頼性の高い較正が可能とな
る。
Finally, in step S6, the wind tunnel balance 2
The output from 3A is read, the output is stored in association with the calibration signal given in step S1, and calibration is performed. By such control, during the calibration operation, the center of the wind tunnel balance 23A substantially coincides with the center of the carry body 22 in the X, Y, and Z axis directions, and the relative rotation angles of the two are substantially zero in the Mx, My, and Mz moment directions. Becomes Therefore, calibration can be performed under the same conditions as when mounted on an aircraft model in an actual wind tunnel experiment, and highly reliable calibration can be performed.

【0019】[0019]

【発明の効果】以上説明したように本発明によれば、風
洞天秤の他端を天秤中心が相対変位可能に内挿するキャ
リボディにX,Y,Z軸方向の力とこれら各軸回りのモ
ーメントMx,My,Mzを与えるとき、風洞天秤の一
端がスティングを介して固定されているスティング取り
付けフレームの変位を検出し、フレームとキャリボディ
との相対変位が所定範囲、好ましくはほぼゼロになるよ
うにフレームの位置を制御するようにしたので、風洞天
秤を実際の風洞実験で航空機モデルに搭載したときと等
価な較正を行なうことができ、信頼性の高い較正が可能
となる。
As described above, according to the present invention, the forces in the X, Y and Z-axis directions and the forces around these axes are applied to the carry body in which the other end of the wind tunnel balance is inserted so that the balance center can be relatively displaced. When moments Mx, My and Mz are applied, one end of the wind tunnel balance detects the displacement of the sting mounting frame, which is fixed via the sting, and the relative displacement between the frame and the carry body becomes a predetermined range, preferably substantially zero. Since the position of the frame is controlled as described above, calibration equivalent to mounting the wind tunnel balance on an aircraft model in an actual wind tunnel experiment can be performed, and highly reliable calibration can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る風洞天秤較正装置の平面図であ
る。
FIG. 1 is a plan view of a wind tunnel balance calibration device according to the present invention.

【図2】図1に示した風洞天秤較正装置のII方向から
見た側面図である。
FIG. 2 is a side view of the wind tunnel balance calibration device shown in FIG. 1 as viewed from a direction II.

【図3】図1に示した負荷ジャッキの配置を説明する斜
視図である。
FIG. 3 is a perspective view illustrating an arrangement of a load jack shown in FIG. 1;

【図4】負荷ジャッキの作動とそのときの負荷方向を示
す図である。
FIG. 4 is a diagram showing the operation of the load jack and the load direction at that time.

【図5】図1の風洞天秤装置に付設される変位測定装置
を示す図で、図1のV方向から見た側面図である。
5 is a view showing a displacement measuring device attached to the wind tunnel balance device of FIG. 1, and is a side view as viewed from a direction V in FIG. 1;

【図6】図5の変位測定装置の側面図である。FIG. 6 is a side view of the displacement measuring device of FIG.

【図7】図5および図6の変位測定装置を模式的に示す
斜視図である。
FIG. 7 is a perspective view schematically showing the displacement measuring device of FIGS. 5 and 6;

【図8】航空機モデルに作用する負荷を説明する図であ
る。
FIG. 8 is a diagram illustrating loads acting on an aircraft model.

【図9】本発明に係る風洞天秤較正装置のブロック図で
ある。
FIG. 9 is a block diagram of a wind tunnel balance calibration device according to the present invention.

【図10】図9の制御回路で実行されるプログラムの処
理手順例を示すフローチャートである。
FIG. 10 is a flowchart illustrating an example of a processing procedure of a program executed by the control circuit of FIG. 9;

【符号の説明】[Explanation of symbols]

1〜16 負荷ジャッキ 21 スティング取付けフレーム 22 キャリボディ 23 スティング 23A 風洞天秤 31a〜31c Z方向復元ジャッキ 32a X方向復元ジャッキ 33a,33b Y方向復元ジャッキ 34a〜34f 自在継手 35 ピアノ線 36 連結ロッド 42 変位測定装置取り付け枠 43 変位測定装置取り付け軸 51 変位測定装置 51a〜51f 変位センサ 52 ターゲット取り付けアーム 53 ターゲット 1-16 Load jack 21 Sting mounting frame 22 Carry body 23 Sting 23A Wind tunnel balance 31a-31c Z-direction restoration jack 32a X-direction restoration jack 33a, 33b Y-direction restoration jack 34a-34f Universal joint 35 Piano wire 36 Connecting rod 42 Displacement measurement Device mounting frame 43 Displacement measuring device mounting shaft 51 Displacement measuring device 51a to 51f Displacement sensor 52 Target mounting arm 53 Target

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01M 9/06 G01G 23/01 G01L 25/00 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) G01M 9/06 G01G 23/01 G01L 25/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 風洞天秤の一端がスティングを介して接
続されたスティング取付けフレームと、前記風洞天秤の
他端を内挿するキャリボディと、キャリボディにX,
Y,Z軸方向の力とこれら各軸回りのモーメントMx,
My,Mzを与える負荷機構と、キャリボディの変位を
検出する変位検出手段と、前記キャリボディと相対的に
前記スティング取付けフレームをX,Y,Z軸方向に移
動するとともに前記各軸回りに回転する復元機構と、前
記負荷機構で前記キャリボディを駆動するとき、前記変
位検出手段の出力に基づいて、前記キャリボディに対す
る前記スティング取付けフレームのX,Y,Z軸方向の
変位量とこれら各軸回りの変位角が所定範囲内に収るよ
うに前記復元機構を制御する制御手段とを具備すること
を特徴とする風洞天秤の較正装置。
1. A sting mounting frame in which one end of a wind tunnel balance is connected via a sting, a carry body in which the other end of the wind tunnel balance is inserted, and X,
Forces in the Y and Z axis directions and moments Mx,
A load mechanism for applying My and Mz, a displacement detecting means for detecting displacement of the carry body, and moving the Sting mounting frame in the X, Y, and Z directions relative to the carry body and rotating around the axes. When the carry body is driven by the load mechanism, the amount of displacement of the Sting mounting frame with respect to the carry body in the X, Y, and Z-axis directions and the respective axes are determined based on the output of the displacement detection means. Control means for controlling the restoring mechanism so that the peripheral displacement angle falls within a predetermined range.
JP32910294A 1994-12-28 1994-12-28 Calibration device for wind tunnel balance Expired - Fee Related JP3298343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32910294A JP3298343B2 (en) 1994-12-28 1994-12-28 Calibration device for wind tunnel balance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32910294A JP3298343B2 (en) 1994-12-28 1994-12-28 Calibration device for wind tunnel balance

Publications (2)

Publication Number Publication Date
JPH08184527A JPH08184527A (en) 1996-07-16
JP3298343B2 true JP3298343B2 (en) 2002-07-02

Family

ID=18217636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32910294A Expired - Fee Related JP3298343B2 (en) 1994-12-28 1994-12-28 Calibration device for wind tunnel balance

Country Status (1)

Country Link
JP (1) JP3298343B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010150506A1 (en) * 2009-06-22 2010-12-29 川崎重工業株式会社 Wind tunnel balance calibrator

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2272148B1 (en) * 2004-12-31 2008-04-16 Airbus España, S.L. SYSTEM TO COMPENSATE AERODYNAMIC MEASUREMENTS IN A WIND TUNNEL.
CN101832837B (en) * 2010-05-11 2012-01-04 东南大学 Decoupling method for multidimensional force sensor based on coupling error modeling
CN103616157B (en) * 2013-12-23 2016-03-02 中国航天空气动力技术研究院 The quiet calibration system of wind-tunnel balance body axle system and method
CN104316288B (en) * 2014-08-26 2018-02-23 中国直升机设计研究所 A kind of rotor model.test system large-tonnage rotor balances lift and moment of flexure caliberating device
CN106289715B (en) * 2016-07-26 2018-08-07 中国航天空气动力技术研究院 Elastic displacement modification method for wind tunnel model
CN106644365B (en) * 2016-12-29 2018-12-21 中国航天空气动力技术研究院 A kind of low speed wind tunnel thrust vector balance calibration device
CN106872139B (en) * 2016-12-31 2019-04-02 重庆大学 Six COMPONENT BALANCE of ultralow temperature calibrates the position and posture detection method in reseting procedure
CN109612680B (en) * 2019-01-24 2024-01-30 中国空气动力研究与发展中心高速空气动力研究所 Double-position rolling rotation derivative test device capable of rechecking
CN113740026A (en) * 2021-08-20 2021-12-03 中国航天空气动力技术研究院 Novel wind tunnel balance loading sleeve and wind tunnel balance calibration method
CN114993604B (en) * 2022-05-24 2023-01-17 中国科学院力学研究所 Wind tunnel balance static calibration and measurement method based on deep learning
CN115839818A (en) * 2023-02-27 2023-03-24 中国航空工业集团公司沈阳空气动力研究所 Balance loading verification device and method
CN116147881B (en) * 2023-04-04 2023-06-16 中国空气动力研究与发展中心设备设计与测试技术研究所 Reset method of reset mechanism in wind tunnel six-component Tian-bang correction system
CN117073970B (en) * 2023-10-16 2024-01-23 中国空气动力研究与发展中心高速空气动力研究所 Load holding, vibration suppressing and fast stabilizing method for large mass loading head
CN117091801B (en) * 2023-10-20 2024-01-02 中国空气动力研究与发展中心高速空气动力研究所 Balance calibration method based on two-degree-of-freedom calibration equipment
CN117451310B (en) * 2023-12-22 2024-02-23 中国空气动力研究与发展中心空天技术研究所 Distributed coupling force measuring system and method for large-scale heavy-load model of pulse wind tunnel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010150506A1 (en) * 2009-06-22 2010-12-29 川崎重工業株式会社 Wind tunnel balance calibrator
JP2011002435A (en) * 2009-06-22 2011-01-06 Kawasaki Heavy Ind Ltd Wind-tunnel balance calibrator
US8800346B2 (en) 2009-06-22 2014-08-12 Kawasaki Jukogyo Kabushiki Kaisha Wind tunnel balance calibrator
EP2447696A4 (en) * 2009-06-22 2017-06-07 Kawasaki Jukogyo Kabushiki Kaisha Wind tunnel balance calibrator

Also Published As

Publication number Publication date
JPH08184527A (en) 1996-07-16

Similar Documents

Publication Publication Date Title
JP3298343B2 (en) Calibration device for wind tunnel balance
JP3053606B2 (en) Method of calibrating force sensor mounted on robot and robot
CN100453970C (en) Method of error compensation in a coordinate measuring machine with an articulating probe head
CA1330363C (en) Robot system
EP0240150B1 (en) Workpiece position control
JP3792274B2 (en) Six-axis force sensor using multiple shear strain gauges
US6810738B2 (en) Acceleration measuring apparatus with calibration function
JP2001255216A (en) Digital load cell unit and load cell type scale
JPS62272186A (en) Device for conducting operation regarding workpiece
US5045745A (en) Spinning piezoelectric beam of a dual-axis angular rate sensor and method for its adjustment
JPH0442029A (en) Automatic inspecting apparatus for force sensor
JP3142444B2 (en) Moment of inertia measurement device
JPH07205075A (en) Weight compensation method of end effector at force control robot
US6560553B1 (en) Method of estimating an eccentric position of an acceleration sensor and acceleration generating apparatus with an eccentricity adjuster
KR20190027067A (en) Test apparatus of characteristic of wheel dynamometer
JP3187191B2 (en) Robot finger grip force detection device
JPH10115517A (en) Apparatus for correcting angle sensor of working machine
JPH08150580A (en) Industrial robot
CN113492398B (en) Calibration rod, calibration system for gravity acceleration direction and calibration method thereof
JPH01316186A (en) Ground simulation testing device for manipulator for space
US6742400B2 (en) Device and method for measuring cross-inertia-moment in limited angular rotary axis
JPH05281076A (en) Balancing method for rotating body and attaching device based on above method for balancing weight to tire wheel
CN213688223U (en) Precise testing device of IPMC flexible driver
JP2530862B2 (en) Posture control device for pile press-fitting machine
JPH0621834B2 (en) Verification device for load detector

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080419

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090419

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100419

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100419

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110419

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110419

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120419

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120419

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130419

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130419

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140419

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees