JP3137726B2 - Method for producing nitride magnetic powder - Google Patents

Method for producing nitride magnetic powder

Info

Publication number
JP3137726B2
JP3137726B2 JP04109894A JP10989492A JP3137726B2 JP 3137726 B2 JP3137726 B2 JP 3137726B2 JP 04109894 A JP04109894 A JP 04109894A JP 10989492 A JP10989492 A JP 10989492A JP 3137726 B2 JP3137726 B2 JP 3137726B2
Authority
JP
Japan
Prior art keywords
pulverization
magnetic powder
pulverized
nitride
coercive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04109894A
Other languages
Japanese (ja)
Other versions
JPH05304008A (en
Inventor
良一 三井
勉 勝又
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP04109894A priority Critical patent/JP3137726B2/en
Publication of JPH05304008A publication Critical patent/JPH05304008A/en
Application granted granted Critical
Publication of JP3137726B2 publication Critical patent/JP3137726B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は優れた磁気特性を有する
希土類−鉄系窒化物の磁粉製造方法に関する。該窒化物
磁粉は優れた磁気特性を有するため、小型モーター、ア
クチエーター等として家庭電化製品、音響機器、オフィ
ス機器、自動車分野等に利用されると同時に医療機器用
大型磁石として使用されるなどエレクトロニクスの種々
の分野で幅広い用途がある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing rare earth-iron nitride magnetic powder having excellent magnetic properties. Since the nitride magnetic powder has excellent magnetic properties, it is used as a small motor, an actuator, etc. in home appliances, audio equipment, office equipment, automobile field, etc. and also used as a large magnet for medical equipment. Has a wide range of applications in various fields.

【0002】[0002]

【従来の技術】該窒化物磁粉の製造方法はこれまでいろ
いろな粉砕方法が提案されているが、これまでの方法で
は微粉化することにより、保磁力の向上は計れるものの
飽和磁化は大きく低下し満足のいくものではなく、磁粉
をボンド磁石にする際充填密度が上がらない等の問題が
あった。また粉砕にかかるエネルギ−コストも大きいた
めより経済的な新しい微粉の製造方法が望まれている。
2. Description of the Related Art Various pulverizing methods have been proposed for producing the nitride magnetic powder. However, in the conventional methods, fine powder can improve coercive force, but greatly reduces saturation magnetization. It was not satisfactory, and there was a problem that the packing density did not increase when the magnetic powder was made into a bonded magnet. In addition, since the energy cost for pulverization is large, a more economical new method for producing fine powder is desired.

【0003】[0003]

【発明が解決しようとする課題】本発明は該窒化物を微
粉化するにあたり、飽和磁化の低下が少なく、保磁力の
向上を図れるだけでなく、かつジェット粉砕に用いるガ
ス量を少なくする粉砕方法を提供しようとするものであ
る。
SUMMARY OF THE INVENTION The present invention relates to a pulverizing method for reducing the amount of gas used for jet pulverization, in which the reduction of the saturation magnetization and the improvement of coercive force are reduced in pulverizing the nitride. It is intended to provide.

【0004】[0004]

【課題を解決するための手段】本発明は該窒化物を微粉
化するにあたり、飽和磁化の低下が少なく、保磁力の向
上を計れるだけでなく磁粉をボンド磁石にする際充填密
度を向上させ、ジェット粉砕に用いるガス量を少なくす
る粉砕方法を鋭意検討した結果、本発明に至った。
According to the present invention, when pulverizing the nitride, the reduction in saturation magnetization is small, not only the coercive force can be improved, but also the packing density when the magnetic powder is made into a bonded magnet is improved. As a result of intensive studies on a pulverization method for reducing the amount of gas used for jet pulverization, the present invention has been achieved.

【0005】すなわち、本発明は磁石材料である希土類
−鉄系窒化物材料を、機内酸素濃度Cが0.01≦C≦5vo
l%のジェット粉砕機で平均粒径2.5〜20μmに粉砕した
後、さらに湿式粉砕機を用いて平均粒径1〜3μmに
粉砕する事を特徴とする窒化物磁性粉の製造方法であ
る。本発明において希土類−鉄系窒化物とはR−Fe−
N−X−Z系で表される磁石材料である〔ここでRは希
土類元素(La,Ce,Pr,Nd,Sm,Eu,G
d,Tb,Dy,Ho,Er,Tm,Yb)およびYの
中から選ばれた1種以上の元素を言う。XはB,Ti,
Mo,Cr,Coの中から選ばれた1種以上の元素を言
うが、含有しない場合もある。ZはO,H、Cの中から
選ばれた1種以上の元素を言うが、含有しない場合もあ
る。〕。
That is, in the present invention, a rare earth-iron nitride material, which is a magnet material, is prepared by using an in- machine oxygen concentration C of 0.01 ≦ C ≦ 5 vo.
This is a method for producing a nitride magnetic powder, which is characterized by pulverizing to an average particle diameter of 2.5 to 20 μm with a l% jet pulverizer and then finely pulverizing to an average particle diameter of 1 to 3 μm using a wet pulverizer. In the present invention, the rare earth-iron-based nitride is R-Fe-
A magnet material represented by an N—X—Z system [where R is a rare earth element (La, Ce, Pr, Nd, Sm, Eu, G
d, Tb, Dy, Ho, Er, Tm, Yb) and one or more elements selected from Y. X is B, Ti,
One or more elements selected from Mo, Cr, and Co are mentioned, but may not be contained. Z means one or more elements selected from O, H and C, but may not contain. ].

【0006】Rは好ましくはSm,Nd、Pr,Ce,
Dy,Gd,Laであり、さらに好ましくはSm,N
d,Prである。XはB,Ti,Mo,Cr,Coを言
うが、好ましくはB,Cr,Co,であり、さらに好ま
しくはBである。好ましい具体例としては、R−Fe−
N系,R−Fe−N−H系,R−Fe−N−O系,R−
Fe−N−H−O系,R−Fe−B−N系,R−Fe−
Mo−N系,R−Fe−Ti−N系,R−Fe−Mo−
Ti−N系であり、さらに好ましくは、R−Fe−N
系,R−Fe−N−H系,R−Fe−N−O系,R−F
e−N−H−O系である。また、これらは結晶構造とし
て、六方晶系、菱面体系、正方晶系のいずれかである事
が望ましい。
R is preferably Sm, Nd, Pr, Ce,
Dy, Gd, La, more preferably Sm, N
d and Pr. X represents B, Ti, Mo, Cr, Co, but is preferably B, Cr, Co, and more preferably B. As a preferred specific example, R-Fe-
N system, R-Fe-NH system, R-Fe-NO system, R-
Fe-NHO, R-Fe-BN, R-Fe-
Mo-N system, R-Fe-Ti-N system, R-Fe-Mo-
Ti-N-based, more preferably R-Fe-N
System, R-Fe-NH system, R-Fe-NO system, RF
It is an e-NHO system. It is preferable that these have a crystal structure of any one of a hexagonal system, a rhombohedral system, and a tetragonal system.

【0007】ジェットミル粉砕機は、空気または、窒
素、ヘリウム、アルゴンなどの不活性ガス、好ましく
は、窒素および空気の混合気体の圧力流体によって、加
速された原料粒子が、粒子同士または、壁への衝突によ
って粉砕が進行していく機構である。この様な機構によ
ってのみ該窒化物の結晶構造に大きなストレスを与えず
粉砕することができるので、飽和磁化の低下が少なく、
保磁力の向上が計れる。
[0007] The jet mill pulverizer is a method in which raw material particles accelerated by air or an inert gas such as nitrogen, helium, argon, or the like, preferably a mixed gas of nitrogen and air, are applied to each other or to a wall. Is a mechanism in which pulverization progresses due to collision of particles. The pulverization can be performed only by such a mechanism without giving a large stress to the crystal structure of the nitride.
The coercive force can be improved.

【0008】このとき、粉砕時の酸素濃度Cは、 0<
C≦21vol %であることが好ましく、さらに好ましく
は0.001 ≦C≦10vol %、特に好ましくは0.01≦C≦
5vol %である。この酸素濃度範囲では、粉砕された該
窒化物粒子表面が安定な薄い酸化膜に覆われるため、凝
集性の低い微粒子が得られる。酸素を含まない雰囲気中
での粉砕では、粉砕され表面が活性になった粒子が、粒
子同士または、壁面に付着して粉砕の進行が遅くなる。
酸素濃度が高い雰囲気中では、活性な粒子表面の急激な
酸化が起こり易く取扱いが難しくなる。また酸化により
表面に軟磁性層ができ物性が低下しやすい。
At this time, the oxygen concentration C at the time of pulverization is 0 <
It is preferable that C ≦ 21 vol%, more preferably 0.001 ≦ C ≦ 10 vol%, and particularly preferably 0.01 ≦ C ≦
5 vol%. In this oxygen concentration range, the surface of the crushed nitride particles is covered with a stable thin oxide film, so that fine particles having low cohesiveness can be obtained. In the pulverization in an atmosphere containing no oxygen, the pulverized particles whose surface is activated adhere to the particles or to the wall surface, and the progress of the pulverization is slowed.
In an atmosphere having a high oxygen concentration, rapid oxidation of the active particle surface is apt to occur, which makes handling difficult. In addition, a soft magnetic layer is formed on the surface by oxidation, and the physical properties are liable to deteriorate.

【0009】この時使用するガス流体の圧力Pは、1kg
/cm2≦Pが好ましく、さらに好まくは3kg/cm2≦P、特
に好ましくは5≦P≦10kg/cm2である。1kg/cm2 未満
の圧力では、粉子を加速する力が弱く、従って十分な粉
砕力が得られにくく高保磁力の微粉がえられにくくな
る。また10kg/cm2以上の圧力流体を使用した場合、容
器の耐圧や摩耗などの装置的な問題が発生し易く、また
物性の低い過粉砕品の発生が多くなる。5≦P≦10kg
/cm2の圧力流体を使用したときが工業的にも効率よく、
また物性の高い微粉をえることができる。
The pressure P of the gas fluid used at this time is 1 kg
/ cm 2 ≦ P, more preferably 3 kg / cm 2 ≦ P, particularly preferably 5 ≦ P ≦ 10 kg / cm 2 . At a pressure of less than 1 kg / cm < 2 >, the force for accelerating the powder is weak, so that it is difficult to obtain sufficient pulverizing force and to obtain fine powder having a high coercive force. In addition, when a pressure fluid of 10 kg / cm 2 or more is used, problems in equipment such as pressure resistance and abrasion of the container are liable to occur, and excessively pulverized products having low physical properties often occur. 5 ≦ P ≦ 10kg
/ cm 2 pressure fluid is industrially efficient,
In addition, fine powder having high physical properties can be obtained.

【0010】ジェット粉砕機で、該窒化物の粉砕を行う
と結晶構造に大きなストレスを与える事なく微粒子化が
可能になるが、一方粒子径が小さくなると粉砕効率が悪
くなり、特に該窒化物の場合、高価な不活性ガスを使用
する場合が多いため大きなコスト負担になる。本発明
は、まずジェット粉砕で適当な粒度まで粉砕し、それ以
降の粉砕は湿式粉砕機で行うと、飽和磁化の低下が少な
く、保磁力の向上を図れるだけでなく磁粉をボンド磁石
にする際充填密度を向上させ、粉砕にかかるエネルギ−
コストを少なくする事ができる。
[0010] When the nitride is pulverized by a jet pulverizer, fine particles can be formed without giving a large stress to the crystal structure. On the other hand, when the particle diameter is small, the pulverization efficiency deteriorates. In such a case, expensive inert gas is often used, which results in a large cost burden. According to the present invention, first, when the powder is pulverized to an appropriate particle size by jet pulverization, and the subsequent pulverization is performed by a wet pulverizer, the decrease in saturation magnetization is small, not only can the coercive force be improved, but also when the magnetic powder is made into a bonded magnet Improve packing density and energy for grinding
Costs can be reduced.

【0011】ジェット粉砕で行う粉砕粒度範囲は、必要
とされる特性、コスト等のバランスで変化するが、通常
ジェット粉砕でおこなう平均粒径は2. 5〜20μmま
でであり、好ましくは、2.5〜10μmである。この
後、湿式粉砕機を用いてさらに平均粒径で1〜3μmま
で微粉砕する。大きな粒径の粒子を湿式粉砕機にかける
と飽和磁化の低下が大きくなる。
[0011] The range of the particle size of the pulverization performed by the jet pulverization varies depending on the required properties, cost and the like, but the average particle size of the pulverization performed by the jet pulverization is usually up to 2.5 to 20 µm, preferably 2. 5 to 10 μm. Thereafter, the mixture is further pulverized using a wet pulverizer to an average particle diameter of 1 to 3 μm. When particles having a large particle diameter are subjected to a wet mill, the decrease in saturation magnetization becomes large.

【0012】操作温度範囲に特に制限はないが、室温
(ガス温度)で行うのが一般的である。以上のような条
件下で鋭意検討を進めた結果、従来の微粉砕法で製造さ
れた微粉に比べ、飽和磁化の低下が少なく、保磁力の向
上をはかれる粉砕方法を発明した。
Although the operating temperature range is not particularly limited, it is generally carried out at room temperature (gas temperature). As a result of intensive studies under the above-described conditions, a pulverization method in which the saturation magnetization is reduced and the coercive force is improved as compared with fine powder produced by a conventional pulverization method has been invented.

【0013】[0013]

【実施例】次に、実施例によって本発明をさらに説明す
る。飽和磁化および保磁力の測定は振動試料型磁力計
(VSM)〔東英工業(株)製、VSM−3〕を用いて
測定した。
Next, the present invention will be further described with reference to examples. The saturation magnetization and the coercive force were measured using a vibrating sample magnetometer (VSM) [VSM-3, manufactured by Toei Kogyo Co., Ltd.].

【0014】[0014]

【実施例1】平均粒径45μmのSm9.0 Fe76.9
13.60.1 0.4 の原料合金を壁面への衝突型のジェッ
トミルを用いて窒素ガスにて微粉砕した。粉砕圧を6kg
/cm2し機内の酸素濃度を1vol %に調整し、5μmまで
粉砕した。さらにこの磁粉をあらかじめ滑剤を含有した
シクロヘキサンとともに湿式のボ−ルミルへ投入し粉砕
し、平均粒径2μmの微粉を得た。このときジェットミ
ルで使用された窒素ガスは15Nm3 /kg(磁粉)で
あった。得られた微粉を振動試料型磁力計(VSM)を
用いて測定したところ、保磁力が500〔Oe〕から8300
〔Oe〕に向上した。このときの飽和磁化の低下率は5
%であった。
Example 1 Sm 9.0 Fe 76.9 N having an average particle size of 45 μm
The raw material alloy of 13.6 H 0.1 O 0.4 was finely pulverized with a nitrogen gas by using a collision type jet mill against a wall surface. 6kg crushing pressure
/ cm 2 , the oxygen concentration in the machine was adjusted to 1 vol%, and pulverized to 5 μm. Further, this magnetic powder was put into a wet ball mill together with cyclohexane containing a lubricant in advance and pulverized to obtain a fine powder having an average particle diameter of 2 μm. At this time, the nitrogen gas used in the jet mill was 15 Nm 3 / kg (magnetic powder). When the obtained fine powder was measured using a vibrating sample magnetometer (VSM), the coercive force was 500 [Oe] to 8300.
[Oe] improved. At this time, the decrease rate of the saturation magnetization is 5
%Met.

【0015】[0015]

【比較例1】平均粒径45μmのSm9.0 Fe76.9
13.60.1 0.4 の原料合金100gをステンレスのボ
ールミルポット(800cc)に入れ微粉砕した。その
ときポットの3分の1容量までステンレスボール(10
mm玉)を充填し、容器内を窒素ガスで置換した。12
5rpmの速さで6時間粉砕した後取り出し、ボールと
磁粉とを分離した。このとき得られた微粉を振動試料型
磁力計(VSM)を用いて測定したところ、保磁力が50
0〔Oe〕から7500〔Oe〕に向上した。このときの飽和
磁化の低下率は10%であった。
Comparative Example 1 Sm 9.0 Fe 76.9 N having an average particle size of 45 μm
100 g of a raw material alloy of 13.6 H 0.1 O 0.4 was placed in a stainless steel ball mill pot (800 cc) and pulverized. At that time, stainless steel balls (10
mm ball) and the inside of the container was replaced with nitrogen gas. 12
After crushing for 6 hours at a speed of 5 rpm, the ball was taken out, and the ball and the magnetic powder were separated. The fine powder obtained at this time was measured using a vibrating sample magnetometer (VSM).
From 0 [Oe] to 7500 [Oe] . At this time, the decrease rate of the saturation magnetization was 10%.

【0016】[0016]

【比較例2】平均粒径45μmのSm9.0 Fe76.9
13.60.1 0.4 の原料合金を壁面への衝突型のジェッ
トミルを用いて窒素ガスにて微粉砕した。粉砕圧を6kg
/cm2し機内の酸素濃度を1vol %に調整し、2μmまで
粉砕した。この間使用した窒素ガスは250Nm3 /k
g(磁粉)であった。得られた微粉を振動試料型磁力計
(VSM)を用いて測定したところ、保磁力が500〔O
e〕から8200〔Oe〕に向上した。このときの飽和磁化の
低下率は5%であった。
Comparative Example 2 Sm 9.0 Fe 76.9 N having an average particle size of 45 μm
The raw material alloy of 13.6 H 0.1 O 0.4 was finely pulverized with a nitrogen gas by using a collision type jet mill against a wall surface. 6kg crushing pressure
/ cm 2 , the oxygen concentration in the machine was adjusted to 1 vol%, and pulverized to 2 μm. The nitrogen gas used during this time was 250 Nm 3 / k
g (magnetic powder). When the obtained fine powder was measured using a vibrating sample magnetometer (VSM), the coercive force was 500 [O
e] to 8200 [Oe] . At this time, the decrease rate of the saturation magnetization was 5%.

【0017】[0017]

【発明の効果】本発明の製造方法によれば、飽和磁化の
低下が少なく、保磁力の向上が図れるだけでなく、ジェ
ット粉砕に用いるガス量を削減する事が出来る。
According to the manufacturing method of the present invention, not only can the saturation magnetization be reduced little and the coercive force can be improved, but also the amount of gas used for jet pulverization can be reduced.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01F 1/053 B02C 19/06 C01B 21/06 C22C 38/00 303 H01F 1/06 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01F 1/053 B02C 19/06 C01B 21/06 C22C 38/00 303 H01F 1/06

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 磁石材料である希土類−鉄系窒化物材料
を、機内酸素濃度Cが0.01≦C≦5vol%のジェット粉
砕機で平均粒径2.5〜20μmに粉砕した後、さらに湿式
粉砕機を用いて平均粒径1〜3μmに微粉砕する事を特
徴とする窒化物磁性粉の製造方法。
1. A rare earth-iron nitride material as a magnet material is pulverized to a mean particle size of 2.5 to 20 μm by a jet pulverizer having an in- machine oxygen concentration C of 0.01 ≦ C ≦ 5 vol% , and then a wet pulverizer is used. And pulverizing it to an average particle size of 1 to 3 [ mu] m .
JP04109894A 1992-04-28 1992-04-28 Method for producing nitride magnetic powder Expired - Lifetime JP3137726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04109894A JP3137726B2 (en) 1992-04-28 1992-04-28 Method for producing nitride magnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04109894A JP3137726B2 (en) 1992-04-28 1992-04-28 Method for producing nitride magnetic powder

Publications (2)

Publication Number Publication Date
JPH05304008A JPH05304008A (en) 1993-11-16
JP3137726B2 true JP3137726B2 (en) 2001-02-26

Family

ID=14521863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04109894A Expired - Lifetime JP3137726B2 (en) 1992-04-28 1992-04-28 Method for producing nitride magnetic powder

Country Status (1)

Country Link
JP (1) JP3137726B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5886077A (en) * 1994-12-16 1999-03-23 Matsushita Electric Industrial Co., Ltd. Rare-earth-iron-nitrogen based magnetic material and method of manufacturing the same
US5684076A (en) * 1994-12-16 1997-11-04 Matsushita Electric Industrial Co., Ltd. Rare earth-iron-nitrogen based magnetic material and method of manufacturing the same

Also Published As

Publication number Publication date
JPH05304008A (en) 1993-11-16

Similar Documents

Publication Publication Date Title
JP3317646B2 (en) Manufacturing method of magnet
JP2006100847A (en) R-t-b based rare earth permanent magnet
JP3762912B2 (en) R-T-B rare earth permanent magnet
JPH04133406A (en) Rare earth-fe-b permanent magnet powder and bonded magnet having excellent magnetic anisotropy and corrosion-resisting property
JP3137726B2 (en) Method for producing nitride magnetic powder
US4601754A (en) Rare earth-containing magnets
WO2004030000A1 (en) Method for producing r-t-b based rare earth element permanent magnet
JP3856869B2 (en) Resin-containing rolled sheet magnet and method for producing the same
JP3645312B2 (en) Magnetic materials and manufacturing methods
Tajima et al. Influence of milling conditions on magnetic properties of Sm/sub 2/Fe/sub 17/N/sub 3/particles
JPH0461041B2 (en)
JPH0645121A (en) Manufacture of nitride magnetic powder
JP3157659B2 (en) Manufacturing method of permanent magnet powder
JP3209291B2 (en) Magnetic material and its manufacturing method
JP2838173B2 (en) Method for producing RTNM alloy powder
JPH06124812A (en) Nitride magnet powder and its synthesizing method
JPH06112019A (en) Nitride magnetic material
JP3209292B2 (en) Magnetic material and its manufacturing method
JP3294645B2 (en) Nitride magnetic powder and its production method
JP2001217109A (en) Magnet composition and bonded magnet using the same
JPH1167511A (en) Magnetic material
JP2000114013A (en) Magnetic material and its manufacture
JPH10340806A (en) Rare earth-iron magnetic material and manufacture thereof
JPH03222304A (en) Manufacture of permanent magnet
JP3200201B2 (en) Nitride magnetic powder and method for producing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081208

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081208

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 10

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 12