JP3137568B2 - Method of scrubbing filtration tower using hollow fiber membrane - Google Patents

Method of scrubbing filtration tower using hollow fiber membrane

Info

Publication number
JP3137568B2
JP3137568B2 JP07255637A JP25563795A JP3137568B2 JP 3137568 B2 JP3137568 B2 JP 3137568B2 JP 07255637 A JP07255637 A JP 07255637A JP 25563795 A JP25563795 A JP 25563795A JP 3137568 B2 JP3137568 B2 JP 3137568B2
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
scrubbing
flow rate
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07255637A
Other languages
Japanese (ja)
Other versions
JPH0972993A (en
Inventor
悟 津田
伸一 大橋
好夫 砂岡
利夫 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP07255637A priority Critical patent/JP3137568B2/en
Publication of JPH0972993A publication Critical patent/JPH0972993A/en
Application granted granted Critical
Publication of JP3137568B2 publication Critical patent/JP3137568B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は原子力発電所や火力
発電所の復水処理や産業廃水処理等において使用され
る、中空糸膜モジュールを用いるろ過塔のスクラビング
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for scrubbing a filtration tower using a hollow fiber membrane module, which is used in condensate treatment of nuclear power plants and thermal power plants, industrial wastewater treatment, and the like.

【0002】[0002]

【従来の技術】中空糸膜を用いるろ過塔は、微細孔を多
数有する中空糸膜を多本数束ねて中空糸膜モジュールを
形成し、当該中空糸膜モジュールの多本数をろ過塔内に
横設した仕切板に対し鉛直方向に懸架したもので、ろ過
工程は仕切板で区画した下室に原水を供給することによ
り、当該中空糸膜の外側から内側へ原水を通過させて各
中空糸膜の外側で原水中の不純物の微粒子を捕捉し、中
空糸膜の内側から得られるろ過水を仕切板で区画した上
室に集合させてろ過塔から流出させるものである。
2. Description of the Related Art A filtration tower using hollow fiber membranes forms a hollow fiber membrane module by bundling a plurality of hollow fiber membranes having a large number of micropores, and a large number of the hollow fiber membrane modules are provided horizontally in the filtration tower. In the filtration step, raw water is supplied to the lower chamber partitioned by the partition plate, whereby the raw water is passed from the outside to the inside of the hollow fiber membrane, and the filtration process is performed for each hollow fiber membrane. The fine particles of impurities in the raw water are trapped on the outside, and the filtered water obtained from the inside of the hollow fiber membrane is collected in the upper chamber partitioned by the partition plate and discharged from the filtration tower.

【0003】このようなろ過工程を長期継続して行うこ
とにより中空糸膜外面に微粒子が蓄積することによりろ
過塔の差圧が上昇してしまう。そこで従来より水中に存
する各中空糸膜の近傍の水に気体を供給して各中空糸膜
を振動させて、各中空糸膜の外側で捕捉した前記微粒子
を剥離するスクラビング工程を行い、次いで剥離した微
粒子を含む洗浄廃液を下室から排出するブロー工程を行
い、前記ろ過工程とスクラビング工程とブロー工程を順
次くり返して処理を行っていた。なお、スクラビング工
程の前あるいは後あるいはスクラビング工程中に、中空
糸膜の内側から外側に洗浄水を逆流する逆洗工程を行う
こともある。
[0003] By performing such a filtration step continuously for a long time, fine particles accumulate on the outer surface of the hollow fiber membrane, so that the pressure difference in the filtration tower increases. Therefore, a scrubbing step of supplying gas to water in the vicinity of each hollow fiber membrane conventionally existing in water and vibrating each hollow fiber membrane to peel off the fine particles captured outside each hollow fiber membrane is performed, and then peeling. A blow step of discharging the cleaning waste liquid containing the fine particles from the lower chamber is performed, and the filtration step, the scrubbing step, and the blow step are sequentially repeated to perform the treatment. Note that, before or after the scrubbing step or during the scrubbing step, a backwashing step of backwashing water from inside to outside of the hollow fiber membrane may be performed.

【0004】このように中空糸膜を用いるろ過塔は基本
的にはろ過工程とスクラビング工程とブロー工程をくり
返し行って操作するものである為、ろ過工程で中空糸膜
に捕捉された微粒子が蓄積してろ過塔の差圧が上昇し、
ろ過の継続が不能にならないように充分な配慮をする必
要がある。このため、従来から微粒子の蓄積を防止する
為に、中空糸膜モジュールの構造、塔構造、スクラビン
グ方法を含む中空糸膜の洗浄方法等の検討、試験、開発
が進められている。
As described above, since the filtration tower using the hollow fiber membrane is basically operated by repeating the filtration step, the scrubbing step and the blowing step, the fine particles trapped in the hollow fiber membrane in the filtration step are accumulated. And the differential pressure of the filtration tower rises,
Great care must be taken to ensure that continuation of filtration is not impossible. For this reason, in order to prevent accumulation of fine particles, studies, tests, and developments of a hollow fiber membrane module structure, a tower structure, a method of cleaning a hollow fiber membrane including a scrubbing method, and the like have been conventionally performed.

【0005】[0005]

【発明が解決しようとする課題】本発明者等も上述のよ
うに、より効果的な中空糸膜の洗浄方法を開発すべく努
力してきた。しかし、原水不純物としての微粒子として
主に酸化鉄を含む、例えば沸騰水型原子力発電所の復水
(一次冷却水)などを原水とした場合、ろ過工程によっ
て差圧が上昇した中空糸膜モジュールに対して前記スク
ラビング工程や逆洗工程を実施しても差圧が元に戻ら
ず、さらに、酸で中空糸膜を洗浄して膜外面に付着して
いる酸化鉄を溶解、除去しても差圧が元に戻らないケー
スがあることが判明した。
As described above, the present inventors have also endeavored to develop a more effective method for cleaning hollow fiber membranes. However, in the case where the raw water contains mainly iron oxide as fine particles as raw water impurities, such as condensate (primary cooling water) of a boiling water nuclear power plant, the hollow fiber membrane module whose differential pressure has increased due to the filtration process On the other hand, even if the scrubbing step or the backwashing step is performed, the pressure difference does not return to its original value. Further, even if the hollow fiber membrane is washed with an acid to dissolve and remove iron oxide adhering to the outer surface of the membrane, It turned out that there were cases where the pressure did not return.

【0006】この原因として以下のことが明らかとなっ
た。即ち、差圧が元に戻らない理由は、膜自体の透水性
が低下している為であり、膜の内外間の差圧により膜が
圧密化したものでも、膜がつぶれたものでもなく、膜の
外表面の、極めて表面のみが肌荒れ状態になっており、
当該肌荒れ部分にもともと存在していた微細孔が閉塞さ
れており、その結果中空糸膜全体の微細孔が少なくなっ
た為であり、その状態は酸、酸化剤、還元剤等の洗浄剤
を用いて洗浄しても変化がなく、中空糸膜の引張り強
度、引張り伸度、破裂強度等の機械的強度の低下として
現れる物性劣化ではないことが判明した。
The following has been clarified as the cause. That is, the reason why the differential pressure does not return to the original is that the water permeability of the membrane itself is reduced, and even if the membrane is compacted by the differential pressure between the inside and outside of the membrane, it is not a collapsed membrane, Only the surface of the outer surface of the membrane is extremely rough,
The micropores originally present in the rough skin portion are closed, and as a result, the micropores of the entire hollow fiber membrane are reduced, and the state is determined by using a cleaning agent such as an acid, an oxidizing agent, and a reducing agent. It was found that there was no change even after washing, and that there was no deterioration in physical properties which appeared as a decrease in mechanical strength such as tensile strength, tensile elongation and burst strength of the hollow fiber membrane.

【0007】即ち、膜外表面の肌荒れは、膜表面に酸化
鉄等の微粒子が衝突することで発生し、中空糸膜が振動
しているときに前記微粒子が中空糸膜相互の間に存在す
るときに発生し、中空糸膜のスクラビング工程中に最も
発生しやすいものであることが判明した。また、スクラ
ビング時の気体流量及びスクラビング時間長さに伴い促
進されることが判明した。
That is, the rough surface of the outer surface of the membrane is generated by collision of fine particles such as iron oxide on the surface of the membrane, and the fine particles exist between the hollow fiber membranes when the hollow fiber membrane is vibrating. Occasionally, it has been found that it is most likely to occur during the hollow fiber membrane scrubbing process. Further, it was found that the acceleration was accompanied by the gas flow rate during scrubbing and the length of scrubbing time.

【0008】従って、上述のような膜の外面肌荒れを防
止する為には、スクラビング工程における中空糸膜と酸
化鉄微粒子の接触時の気体流量の最小化、及びスクラビ
ング時間の短縮化、極端な例としてはスクラビングを実
施しないことが効果的と考えられるが、ろ過工程で膜に
捕捉された微粒子の蓄積を容認すると、ろ過器本来の使
用方法から逸脱し、膜外面での微粒子蓄積による差圧上
昇を引き起こし、ろ過工程の継続が不能となる。
Therefore, in order to prevent the above-mentioned roughening of the outer surface of the membrane, the gas flow rate at the time of contact between the hollow fiber membrane and the iron oxide fine particles in the scrubbing step, and the scrubbing time are shortened. Although it is considered effective not to perform scrubbing, if the accumulation of fine particles trapped in the membrane in the filtration step is tolerated, it deviates from the original use of the filter and the differential pressure rises due to the accumulation of fine particles on the outer surface of the membrane And the continuation of the filtration process becomes impossible.

【0009】本発明はこのような背景のもとになされた
ものであり、膜の透水性能低下を引き起こす膜面の肌荒
れを極力抑制し、しかも中空糸膜に捕捉された微粒子を
剥離できる、中空糸膜を用いたろ過塔の最適スクラビン
グ方法を提案することを目的としたものである。
The present invention has been made in view of such a background, and it has been made possible to suppress the roughening of the membrane surface which causes a decrease in the water permeability of the membrane as much as possible, and to remove the fine particles captured by the hollow fiber membrane. An object of the present invention is to propose an optimal scrubbing method for a filtration tower using a yarn membrane.

【0010】[0010]

【課題を解決するための手段】上記目的を達成する為に
なされた本発明よりなる中空糸膜を用いるろ過塔のスク
ラビング方法は、ろ過塔内を上室と下室とに区画する仕
切板に保護筒内に中空糸膜を多本数束ね、中空糸膜の両
端を固定し、且、中空糸膜と、中空糸膜を保護する外筒
が一体型として構成された中空糸膜モジュールを、仕切
板と鉛直方向に懸架してなるろ過塔の前記下室内に、不
純物として主に酸化鉄からなる微粒子を含む原水を流入
して、各中空糸膜の外側から内側に原水を通過させるこ
とにより、各中空糸膜の外側で当該微粒子を捕捉すると
共に、各中空糸膜の内側に得られるろ過水を前記上室か
ら流出させるろ過工程と、中空糸膜が液体内に浸漬した
状態で中空糸膜モジュール下部から保護筒内に気体を導
入して、保護筒内に気液混合状態を形成し、中空糸膜を
振動させることにより中空糸膜の外側に付着した前記微
粒子を剥離するスクラビング工程と、剥離した微粒子を
含む洗浄廃液を下室から排出するブロー工程を含む中空
糸膜を用いるろ過方法において、上記のスクラビング工
程における中空糸膜モジュール保護筒内に導入する気体
流量を、保護筒内の有効断面積に対して 290〜 700m/
hに設定することを特徴とするものであり、前記のスク
ラビング操作を最適化するものである。
The scrubbing method for a filtration tower using a hollow fiber membrane according to the present invention, which has been made to achieve the above object, comprises a partition plate for dividing the interior of the filtration tower into an upper chamber and a lower chamber. A hollow fiber membrane module in which a plurality of hollow fiber membranes are bundled in a protective cylinder, both ends of the hollow fiber membrane are fixed, and the hollow fiber membrane and an outer cylinder for protecting the hollow fiber membrane are integrally formed. By flowing raw water containing fine particles mainly composed of iron oxide as impurities into the lower chamber of the filtration tower suspended vertically from the plate, by passing raw water from the outside to the inside of each hollow fiber membrane, A filtration step of trapping the microparticles on the outside of each hollow fiber membrane and allowing filtered water obtained inside each hollow fiber membrane to flow out of the upper chamber, and a hollow fiber membrane in a state where the hollow fiber membrane is immersed in the liquid. Gas is introduced into the protection cylinder from the bottom of the module, A scrubbing step of forming a gas-liquid mixed state and exfoliating the fine particles adhered to the outside of the hollow fiber membrane by vibrating the hollow fiber membrane, and a blowing step of discharging a washing waste liquid containing the separated fine particles from a lower chamber In the filtration method using a hollow fiber membrane, the flow rate of gas introduced into the hollow fiber membrane module protective cylinder in the scrubbing step is set to 290 to 700 m /
h to optimize the scrubbing operation.

【0011】ここで有効断面積とは、中空糸膜モジュー
ル保護筒内の中空糸膜の有効ろ過面が存する領域におい
て気体が通過可能な断面積を示し、保護筒の内側断面積
から保護筒内に設けられた中空糸膜等の構成部品の断面
積を除いたものをいう。また、気体流量は有効断面積1
2 当たりに中空糸膜モジュールに導入した気体の流量
を示し、いわば中空糸膜モジュール保護筒内の通過可能
な空間を気体が上昇する平均的な流速である。尚、気体
には圧縮性がある為、液体内での深さにより流量が変化
するので、ここでいう気体流量は中空糸膜モジュール保
護筒内の中空糸膜の有効ろ過面が存する領域の上端部で
の流量を示す。
Here, the effective sectional area means a sectional area through which gas can pass in a region where an effective filtration surface of the hollow fiber membrane in the hollow fiber membrane module protection cylinder exists. Means the cross-sectional area of the component parts such as the hollow fiber membrane provided in the above. The gas flow rate is the effective area 1
It indicates the flow rate of gas introduced into the hollow fiber membrane module per m 2, which is an average flow velocity at which gas rises in a space that can pass through the hollow fiber membrane module protection cylinder. Since the gas has compressibility, the flow rate changes depending on the depth in the liquid. Therefore, the gas flow rate here is the upper end of the region where the effective filtration surface of the hollow fiber membrane in the hollow fiber membrane module protection cylinder exists. Indicates the flow rate in the part.

【0012】本発明の作用は、最適洗浄気体流量又は最
適洗浄流量と洗浄時間を規定することで、スクラビング
工程中の膜表面の肌荒れを極小化し、さらに膜表面に捕
捉された微粒子を効果的に剥離、除去するものである。
The function of the present invention is to minimize the roughening of the film surface during the scrubbing process by defining the optimum cleaning gas flow rate or the optimum cleaning flow rate and the cleaning time, and to effectively remove the fine particles trapped on the film surface. Peeling and removing.

【0013】[0013]

【発明の実施の形態】以下に本発明を図を用いて説明す
る図1は本発明に用いる中空糸膜モジュールを示す断面
図であり、図2は本発明に用いるろ過塔のフローを示す
説明図である。
FIG. 1 is a sectional view showing a hollow fiber membrane module used in the present invention. FIG. 2 is a flow chart of a filtration tower used in the present invention. FIG.

【0014】本発明に用いる中空糸膜モジュール(1)
を図1に示す実施例によって説明するが、本発明はこの
範囲に限定されるものではない。図1に示したごとく、
0.01μm〜 0.3μmの微細孔を有する外径 0.2〜7mm、
内径 0.2〜5mmの中空糸膜(2A,2B)を 100〜 500
00本前後、保護筒(3A)に収納したもので、当該中空
糸膜(2A,2B)の両端をその中空部を閉塞すること
なく接合部(4A,4B)で接着し、下部接合部には集
水室(5)を形成すべくキャップ(3B)を液密状態に
設け、また保護筒(3A)の下方部、上方部にそれぞれ
気体流入口(6A,6B)を設けると共に、下部接合部
(4A)近傍に気体流入口(7)を設け、さらに保護筒
(3A)の下方にスカート部(8)を設けたものであ
る。
The hollow fiber membrane module (1) used in the present invention
Will be described with reference to the embodiment shown in FIG. 1, but the present invention is not limited to this range. As shown in FIG.
An outer diameter of 0.2 to 7 mm with micropores of 0.01 μm to 0.3 μm,
100 to 500 hollow fiber membranes (2A, 2B) with an inner diameter of 0.2 to 5 mm
Before and after this, the hollow fiber membranes (2A, 2B) are adhered at the joints (4A, 4B) without closing the hollow portions, and housed in the protective cylinder (3A). Is provided with a cap (3B) in a liquid-tight state to form a water collecting chamber (5), and gas inlets (6A, 6B) are provided at a lower portion and an upper portion of the protective tube (3A), respectively, and a lower joint is provided. A gas inlet (7) is provided in the vicinity of the portion (4A), and a skirt portion (8) is provided below the protective tube (3A).

【0015】当該中空糸膜(2A,2B)は専ら被処理
液のろ過を行う細い中空糸膜(2A)と被処理液のろ過
と同時に集水管としての作用も行う太い中空糸膜(2
B)で構成され、中空糸膜(2A)の外側よりろ過され
て中空糸内を流れた透過水の一部は上端面上に送られる
とともに、他部は下端面から集水室(5)に集り、次い
で中空糸膜(2B)の中空糸内を通って上端面上に送ら
れて、上端に流れた前記透過水と合流する。尚、中空糸
膜モジュールには、中空糸膜(2B)の替りに管状の取
水管を用いる場合や、取水管を中空糸膜モジュールの外
側に設ける場合や、中空糸膜(2A)の下端を閉止して
透過水を上端面のみから取水する場合など様々なタイプ
がある。また、使用する中空糸膜の材質もポリオレフィ
ン系の材質やポリスルホン等様々な材質がある。
The hollow fiber membranes (2A, 2B) are mainly a thin hollow fiber membrane (2A) for filtering the liquid to be treated and a thick hollow fiber membrane (2A) for filtering the liquid to be treated and simultaneously acting as a water collecting tube.
B), a part of the permeated water filtered from the outside of the hollow fiber membrane (2A) and flowing through the hollow fiber is sent to the upper end face, and the other part is collected from the lower end face to the water collecting chamber (5). To the upper end face through the hollow fiber of the hollow fiber membrane (2B), and merges with the permeated water flowing to the upper end. The hollow fiber membrane module uses a tubular intake pipe instead of the hollow fiber membrane (2B), a case where the intake pipe is provided outside the hollow fiber membrane module, or the lower end of the hollow fiber membrane (2A). There are various types, such as when closing and taking in permeate only from the upper end surface. Also, the material of the hollow fiber membrane to be used includes various materials such as a polyolefin material and polysulfone.

【0016】当該中空糸膜モジュール(1)をろ過塔に
配置するにあたっては、図2に示したごとく、ろ過塔
(9)の上方部に仕切板(10)を設け、ろ過塔(9)内
を上室Fと下室Rに区画し、当該仕切板(10)に多数本
の中空糸膜モジュール(1)を仕切板(10)の下方に鉛
直方向に懸架する。またろ過塔(9)内に気泡分配機構
(11)を配置する。当該気泡分配機構(11)は気泡受け
(12)と当該気泡受け(12)を貫通する気泡分配管(1
3)より構成されるもので、中空糸膜モジュール(1)
のスカート(8)の直下に当該気泡分配管(13)を対応
させるものとする。
In arranging the hollow fiber membrane module (1) in the filtration tower, as shown in FIG. 2, a partition plate (10) is provided above the filtration tower (9), and the inside of the filtration tower (9) is installed. Is divided into an upper chamber F and a lower chamber R, and a large number of hollow fiber membrane modules (1) are suspended vertically below the partition plate (10) on the partition plate (10). In addition, a bubble distribution mechanism (11) is arranged in the filtration tower (9). The bubble distribution mechanism (11) includes a bubble receiver (12) and a bubble distribution pipe (1) penetrating the bubble receiver (12).
3) Hollow fiber membrane module (1)
The bubble distribution pipe (13) is made to correspond directly below the skirt (8).

【0017】なお、ろ過塔(9)の上部にろ過水流出管
(14)の一端と圧縮空気流入管(15A)の一端を連通
し、またろ過塔(9)の下部に原水流入管(16)の一端
及び圧縮空気流入管(15B)の一端、及びドレン管(1
8)の一端をそれぞれ連通し、さらに前記仕切板(10)
の直下の側胴部に空気抜き管(17)の一端を連通する。
なお、(19)〜(24)はそれぞれ弁を示し、(25)はバ
ッフルプレートである。
One end of the filtered water outflow pipe (14) and one end of the compressed air inflow pipe (15A) communicate with the upper part of the filtration tower (9), and the raw water inflow pipe (16) is connected to the lower part of the filtration tower (9). ), One end of the compressed air inlet pipe (15B), and the drain pipe (1
8) communicate with one end of each, and further with the partition plate (10)
One end of the air vent pipe (17) communicates with the side trunk just below the airbag.
(19) to (24) indicate valves, and (25) indicates a baffle plate.

【0018】当該ろ過塔(9)を用いて、本発明の処理
対象として酸化鉄を含む復水を例として説明する。ろ過
工程においては、原水は弁(19)及び(23)を開として
原水流入管(16)からろ過塔(9)の下室Rに流入し、
中空糸膜モジュール(1)により原水中の酸化鉄微粒子
をろ過し、ろ過水は上室Fで集合し、ろ過水流出管(1
4)から流出する。ろ過を継続することによりろ過塔
(9)の差圧は上昇し、規定の差圧に到達した時点でス
クラビング工程が実施される。
Using the filtration tower (9), a condensate containing iron oxide will be described as an example of a treatment target of the present invention. In the filtration step, the raw water flows into the lower chamber R of the filtration tower (9) from the raw water inlet pipe (16) by opening the valves (19) and (23),
The hollow fiber membrane module (1) filters the iron oxide fine particles in the raw water, the filtered water is collected in the upper chamber F, and the filtered water outflow pipe (1)
4) spill out. By continuing the filtration, the pressure difference in the filtration tower (9) rises, and the scrubbing step is performed when the pressure difference reaches the specified pressure difference.

【0019】即ち、中空糸膜表面に付着した酸化鉄微粒
子を除去する為、弁(19)及び(23)を閉じ下室Rに原
水を、また上室Fにろ過水を満たしたまま、弁(21)及
び(22)を開弁し圧縮空気流入管(15B)から圧縮空気
を流入する。当該圧縮空気は気泡受け(12)の下面で一
端受けられ、次いで気泡分配管(13)の側部に設けられ
た孔(図示せず)から空気分配管(13)の内部を気泡と
なって中空糸膜モジュール(1)のスカート(8)内に
流入し、次いで気体流入口(7)を介して各中空糸膜モ
ジュール(1)内に流入する。当該気泡の上昇により各
中空糸膜(2A,2B)は振動すると共に中空糸膜モジ
ュール(1)内の水が攪拌され各中空糸膜(2A,2
B)の表面に捕捉された酸化鉄微粒子が剥離し、ろ過塔
(9)の下室R中に分散する。なお気泡は中空糸膜モジ
ュール(1)の流通口(6B)から当該中空糸膜モジュ
ール(1)外に流出し、ついで空気抜き管(17)からろ
過塔(9)外に排出する。
That is, in order to remove the iron oxide fine particles adhering to the surface of the hollow fiber membrane, the valves (19) and (23) are closed, and the lower chamber R is filled with raw water and the upper chamber F is filled with filtered water. (21) and (22) are opened and compressed air flows in from the compressed air inflow pipe (15B). The compressed air is received once at the lower surface of the bubble receiver (12), and then becomes bubbles inside the air distribution pipe (13) through a hole (not shown) provided on the side of the bubble distribution pipe (13). It flows into the skirt (8) of the hollow fiber membrane module (1) and then into each hollow fiber membrane module (1) via the gas inlet (7). Each of the hollow fiber membranes (2A, 2B) vibrates due to the rise of the air bubbles, and the water in the hollow fiber membrane module (1) is agitated, and each of the hollow fiber membranes (2A, 2B) is stirred.
The iron oxide fine particles trapped on the surface of B) are peeled off and dispersed in the lower chamber R of the filtration tower (9). The air bubbles flow out of the hollow fiber membrane module (1) through the flow port (6B) of the hollow fiber membrane module (1), and are then discharged out of the filtration tower (9) through the air vent pipe (17).

【0020】酸化鉄微粒子を剥離する為のスクラビング
空気流量は、その流量を大きくすると、剥離した酸化鉄
微粒子が中空糸膜(2A,2B)の膜表面に衝突する機
会が多くなり、膜外面肌荒れの原因となり、また少ない
と剥離した酸化鉄微粒子が中空糸膜(2A,2B)の膜
表面に衝突する機会が少なくなり、膜外面肌荒れは抑制
されるが、酸化鉄微粒子の剥離効果が低下する。本発明
の請求項1ないし4で示す最適洗浄空気流量スクラビン
グを実施すれば、スクラビング工程中の膜表面の肌荒れ
を極小化し、さらに膜表面に捕捉された酸化鉄微粒子を
効果的に剥離、除去することが可能となる。
When the flow rate of the scrubbing air for separating the iron oxide fine particles is increased, the chance that the separated iron oxide fine particles collide with the membrane surface of the hollow fiber membranes (2A, 2B) increases, and the outer surface of the membrane becomes rough. When the amount is small, the chance of the peeled iron oxide fine particles colliding with the membrane surface of the hollow fiber membrane (2A, 2B) is reduced, and the roughening of the outer surface of the membrane is suppressed, but the peeling effect of the iron oxide fine particles is reduced. . By carrying out the optimum cleaning air flow rate scrubbing according to claims 1 to 4 of the present invention, the surface roughness of the film surface during the scrubbing process is minimized, and the iron oxide fine particles trapped on the film surface are effectively peeled off and removed. It becomes possible.

【0021】以上のスクラビングにより剥離し、ろ過塔
(9)の下室R内の水中に分散した酸化鉄微粒子はスク
ラビング工程終了後、ろ過塔外にブローする。すなわち
弁(22)を開弁したまま弁(21)を閉弁し弁(20)を開
弁して酸化鉄微粒子が分散している洗浄廃液をドレン管
(18)から流出させる。なお、洗浄廃液を流出させる当
該工程は水頭差を用いるものであるが、空気抜き管(1
7)あるいは圧縮空気流入管(15B)から圧縮空気を流
入して当該空気圧を用いた急速流出を行うこともでき
る。なお上記ブローと同時に、又はブロー終了後圧縮空
気流入管(15A)から圧縮空気を流入し、上室Fに存在
する透過水を中空糸膜(2A,2B)内を逆流させる逆
洗工程を行うこともある。
The iron oxide fine particles separated by the above scrubbing and dispersed in the water in the lower chamber R of the filtration tower (9) are blown out of the filtration tower after the completion of the scrubbing step. That is, while the valve (22) is kept open, the valve (21) is closed and the valve (20) is opened to discharge the washing waste liquid in which the iron oxide fine particles are dispersed from the drain pipe (18). The process of draining the washing waste liquid uses a head difference.
7) Alternatively, compressed air can be introduced from the compressed air inflow pipe (15B) to perform rapid outflow using the air pressure. At the same time as or after the blowing, a backwashing step of flowing compressed air from the compressed air inflow pipe (15A) and backflowing the permeated water present in the upper chamber F through the hollow fiber membranes (2A, 2B) is performed. Sometimes.

【0022】[0022]

【発明の効果】本発明はスクラビング工程でのスクラビ
ング空気流量の最適化により、中空糸膜の透水性能低下
防止及び中空糸膜の汚染蓄積防止をすることで、中空糸
膜モジュールの差圧上昇を極小化し、中空糸膜モジュー
ルの交換寿命延長効果を得るものである。
According to the present invention, the differential pressure of the hollow fiber membrane module can be increased by optimizing the scrubbing air flow rate in the scrubbing process to prevent the water permeability of the hollow fiber membrane from lowering and prevent the hollow fiber membrane from accumulating contamination. It is intended to minimize the size and obtain an effect of extending the replacement life of the hollow fiber membrane module.

【0023】[0023]

【実施例】本発明の効果をより明確に説明する為に以下
に本発明例を示す。0.1μm前後の微細孔を有する外径
1.22mm、内径 0.7mm、長さ2200mmの中空糸膜4200本と外
径 5.4mm、内径4mm、長さ2200mmの中空糸膜75本を、内
径 123.4mmの保護筒内に束ねた図1に示したような中空
糸膜モジュールを、ろ過塔に1本配置して図2に示した
フローに準じて小型実験ろ過塔を形成し、以下の実験を
行った。尚中空糸膜の材質はポリエチレンであった。
EXAMPLES Examples of the present invention will be shown below to more clearly explain the effects of the present invention. Outer diameter with fine pores around 0.1μm
Fig. 1 shows 4200 hollow fiber membranes of 1.22mm, 0.7mm inner diameter and 2200mm length and 75 hollow fiber membranes of 5.4mm outer diameter, 4mm inner diameter and 2200mm length bundled in a 123.4mm inner diameter protective cylinder. One such hollow fiber membrane module was placed in a filtration tower to form a small experimental filtration tower according to the flow shown in FIG. 2, and the following experiment was performed. The material of the hollow fiber membrane was polyethylene.

【0024】まず、中空糸膜の外面肌荒れ、即ち膜透水
性能低下を極小化するスクラビング空気流量条件につい
て説明する。10〜20μmの粒子径のα−Fe2 3 を主
成分とする酸化鉄微粒子を中空糸膜1m2 当たりの付着
量が10gとなるように調整した原水を中空糸膜モジュー
ル(1)でろ過させ、その後スクラビング工程に移行し
た。スクラビングは水温40℃で実施した。比較的大きな
粒径の酸化鉄微粒子を使用した理由はスクラビング工程
時に中空糸膜の外面肌荒れを確実に発生させ、実機を模
擬する為である。
First, the scrubbing air flow rate conditions for minimizing the roughening of the outer surface of the hollow fiber membrane, that is, the decrease in membrane permeability, will be described. Raw water obtained by adjusting iron oxide fine particles mainly composed of α-Fe 2 O 3 having a particle diameter of 10 to 20 μm so as to have an adhesion amount of 10 g per 1 m 2 of the hollow fiber membrane is filtered by the hollow fiber membrane module (1). After that, the process was shifted to a scrubbing step. Scrubbing was performed at a water temperature of 40 ° C. The reason for using the iron oxide fine particles having a relatively large particle size is to surely generate the rough surface of the hollow fiber membrane during the scrubbing step and to simulate an actual machine.

【0025】図3にスクラビング空気流量と膜透水性低
下率の関係を示す。ここで、膜透水性低下率はろ過面積
の大部分を占める外径1.22mmの中空糸膜についての測定
結果で代表した。膜透水性低下率はスクラビング空気流
量の増加と共に 700m/h程度まではなだらかな勾配で
増大するものの、それ以上の空気流量範囲では膜透水性
低下率は空気流量の増加と共に急激に増加する。
FIG. 3 shows the relationship between the scrubbing air flow rate and the rate of decrease in membrane permeability. Here, the reduction rate of the membrane water permeability was represented by a measurement result of a hollow fiber membrane having an outer diameter of 1.22 mm and occupying most of the filtration area. Although the decrease rate of the membrane permeability increases gradually with the increase of the scrubbing air flow up to about 700 m / h, the decrease rate of the membrane permeability rapidly increases with the increase of the air flow rate in the air flow rate range beyond that.

【0026】700m/h以上のスクラビング空気流量で
は膜透水性低下を加速し、スクラビング条件としては不
適当であることが示された。図3より、スクラビング空
気流量は 700m/h以下に設定する。
A scrubbing air flow rate of 700 m / h or more accelerated the decrease in membrane permeability, indicating that the scrubbing conditions were unsuitable. According to FIG. 3, the scrubbing air flow rate is set to 700 m / h or less.

【0027】次に中空糸膜表面に捕捉された主に酸化鉄
からなる微粒子を効果的に剥離、除去する為のスクラビ
ング空気流量条件について説明する。1〜3μmの粒子
径のα−Fe2 3 を主成分とする酸化鉄微粒子を中空
糸膜1m2 当たりの付着量が50gとなるように調整した
原水を中空糸膜モジュール(1)でろ過させ、差圧上昇
を約 0.3kg/cm2 程度とし、その後スクラビング工程に
移行した。スクラビングは水温40℃で実施した。1〜3
μmの粒子径の酸化鉄を使用した理由は、スクラビング
中の膜外面肌荒れを発生しにくい粒径を選定し、スクラ
ビング洗浄後の差圧回復率を酸化鉄微粒子剥離効果とし
て認識する為である。
Next, the scrubbing air flow conditions for effectively exfoliating and removing fine particles mainly composed of iron oxide trapped on the surface of the hollow fiber membrane will be described. Raw water obtained by adjusting iron oxide fine particles mainly composed of α-Fe 2 O 3 having a particle diameter of 1 to 3 μm so as to have an adhesion amount of 50 g per 1 m 2 of the hollow fiber membrane is filtered by the hollow fiber membrane module (1). Then, the pressure difference was increased to about 0.3 kg / cm 2 , and then the process was shifted to a scrubbing step. Scrubbing was performed at a water temperature of 40 ° C. 1-3
The reason why iron oxide having a particle diameter of μm was used is to select a particle diameter that does not easily cause roughening of the outer surface of the film during scrubbing, and to recognize the differential pressure recovery rate after scrubbing cleaning as an iron oxide fine particle peeling effect.

【0028】図4に酸化鉄微粒子除去率と差圧回復率の
関係を示す。図4より、従来より一般的に差圧回復率良
好と判断される80%以上の差圧回復率を得るには酸化鉄
微粒子除去率70%を確保すればよいことが示された。
FIG. 4 shows the relationship between the iron oxide fine particle removal rate and the differential pressure recovery rate. FIG. 4 shows that in order to obtain a differential pressure recovery rate of 80% or more, which is generally judged to be better than that of the related art, it is sufficient to secure a removal rate of iron oxide fine particles of 70%.

【0029】図5に70%の酸化鉄除去率を得るスクラビ
ング空気流量とスクラビング時間の関係を示し(図5中
にBラインで示す)、以下に実験式(2)で示す。
FIG. 5 shows the relationship between the scrubbing air flow rate and the scrubbing time to obtain a 70% iron oxide removal rate (shown by the B line in FIG. 5), and is shown by the following empirical formula (2).

【0030】実験式(2) Y=スクラビング時間(min) X=スクラビング空気流量(m/h) Y=600/(X−265)+3.5Eq. (2) Y = scrubbing time (min) X = scrubbing air flow rate (m / h) Y = 600 / (X-265) +3.5

【0031】実験式(2)と図5からスクラビング空気
流量を 265m/h近傍に低下させると必要となるスクラ
ビング時間は顕著に増加することが示された。このた
め、実用上意味のあるスクラビング空気流量は余裕をみ
て 290m/h以上に設定する必要がある。そこで、最小
スクラビング空気流量を 290m/hに設定し、図5にラ
インCで示す。また、スクラビング空気流量が 290m/
h〜 700m/h(図3における上限流量設定値であり図
5にラインAで示す)の間で、酸化鉄微粒子除去率70%
以上を確保できる領域を図中にハッチングで示す。
From the empirical formula (2) and FIG. 5, it was shown that when the scrubbing air flow rate was reduced to around 265 m / h, the required scrubbing time was significantly increased. For this reason, it is necessary to set the scrubbing air flow rate that is practically meaningful to 290 m / h or more in view of a margin. Therefore, the minimum scrubbing air flow rate was set to 290 m / h, and is shown by line C in FIG. The scrubbing air flow rate is 290m /
h to 700 m / h (the upper limit flow rate setting value in FIG. 3 and indicated by line A in FIG. 5), the iron oxide fine particle removal rate 70%
The area where the above can be secured is indicated by hatching in the figure.

【0032】図6に、従来のスクラビング条件:空気流
量 940m/h、時間5分と同等以下の透水性能低下とな
る範囲を示す。 まず、従来のスクラビング条件:空気流量 940m/h、
時間5分における膜透水性低下率と同じ値となるスクラ
ビング時間とスクラビング空気流量の関係を以下の実験
式(3)で示し、図6中にラインDで示す。
FIG. 6 shows a range in which the water permeation performance is reduced equal to or less than the conventional scrubbing condition: air flow rate of 940 m / h and time of 5 minutes. First, conventional scrubbing conditions: air flow rate 940m / h,
The relationship between the scrubbing time and the scrubbing air flow rate, which is the same value as the membrane water permeability decrease rate at the time of 5 minutes, is shown by the following empirical formula (3), and is shown by the line D in FIG.

【0033】実験式(3) Y=スクラビング時間(min) X=スクラビング空気流量(m/h) Y=2292.9X-0.7541 Experimental formula (3) Y = scrubbing time (min) X = scrubbing air flow rate (m / h) Y = 2292.9X -0.7541

【0034】従来技術よりも膜透水性低下率が抑制され
る範囲は図6のラインA、C、Dで包囲された範囲であ
る。
The range in which the rate of decrease in membrane water permeability is suppressed as compared with the prior art is the range surrounded by lines A, C and D in FIG.

【0035】図5、図6の条件により、図7を作図し
た。図7で示す領域Eは、酸化鉄除去率70%以上、即ち
差圧回復率80%以上が確保されるスクラビング空気流量
290〜 700m/hの範囲であり、かつ従来技術よりも膜
透水性低下率が抑制される範囲であり、ラインA、B、
C、Dで包囲される範囲である。
FIG. 7 is plotted under the conditions shown in FIGS. A region E shown in FIG. 7 is a scrubbing air flow rate at which an iron oxide removal rate of 70% or more, that is, a differential pressure recovery rate of 80% or more is secured.
Lines A, B, and 290-700 m / h, in which the rate of decrease in membrane permeability is suppressed more than in the prior art.
It is a range surrounded by C and D.

【0036】上述の実施例により、スクラビング工程で
の空気流量を 290〜 700m/hに設定し、設定スクラビ
ング空気流量や、処理水中の酸化鉄微粒子の剥離性の難
易度、装置運用上での停止時間の制約等に付随する形で
スクラビング工程時間を設定することで、中空糸膜の外
面肌荒れによる透水性能低下抑制及び膜面に付着した酸
化鉄微粒子除去効果を得ることが可能となる。
According to the above-described embodiment, the air flow rate in the scrubbing step is set to 290 to 700 m / h, the set scrubbing air flow rate, the difficulty of peeling off the iron oxide fine particles in the treated water, and the stoppage in operation of the apparatus. By setting the scrubbing process time in a manner associated with time constraints, etc., it is possible to suppress the decrease in water permeability due to roughening of the outer surface of the hollow fiber membrane and to remove iron oxide fine particles attached to the membrane surface.

【0037】<比較例>上記本発明例と同じろ過塔を使
用して10〜20μmの粒子径のα−Fe2 3 を中空糸膜
1m2 当たりの付着量が10gとなるように調整した原水
を中空糸膜モジュール(1)でろ過させ、その後スクラ
ビング工程に移行した。スクラビングは水温40℃で実施
した。スクラビング空気流量を一方は最適スクラビング
流量範囲内の 560m/hで、他方は最適流量範囲外の 9
40m/hで10分間のスクラビングを10回実施した後の中
空糸膜モジュール差圧の変化を比較した。差圧上昇巾の
比較を図8に示す。最適スクラビング空気流量範囲内で
スクラビングを実施した方が差圧上昇が抑制されている
ことがわかる。
<Comparative Example> Using the same filtration tower as in the present invention, α-Fe 2 O 3 having a particle diameter of 10 to 20 μm was adjusted so that the amount of adhesion per 1 m 2 of the hollow fiber membrane became 10 g. The raw water was filtered by the hollow fiber membrane module (1), and then the process was shifted to a scrubbing step. Scrubbing was performed at a water temperature of 40 ° C. One of the scrubbing air flows was 560 m / h within the optimum scrubbing flow range, and the other was outside the optimum scrubbing flow range.
Changes in the differential pressure of the hollow fiber membrane module after scrubbing 10 times at 40 m / h for 10 minutes were compared. FIG. 8 shows a comparison of the differential pressure increase width. It can be seen that when the scrubbing is performed within the optimum scrubbing air flow rate range, the increase in the differential pressure is suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に用いる中空糸膜モジュールを示す断面
図。
FIG. 1 is a sectional view showing a hollow fiber membrane module used in the present invention.

【図2】本発明に用いるろ過塔のフローを示す説明図。FIG. 2 is an explanatory diagram showing a flow of a filtration tower used in the present invention.

【図3】スクラビング空気流量と膜透水性低下率の関係
を示した線図。
FIG. 3 is a diagram showing a relationship between a scrubbing air flow rate and a rate of decrease in membrane permeability.

【図4】差圧回復率と酸化鉄微粒子除去率の関係を示し
た線図。
FIG. 4 is a diagram showing the relationship between the differential pressure recovery rate and the iron oxide fine particle removal rate.

【図5】酸化鉄除去率有効範囲を示した線図。FIG. 5 is a diagram showing an effective range of an iron oxide removal rate.

【図6】透水性能低下抑制範囲を示した線図。FIG. 6 is a diagram showing a water permeation performance reduction suppression range.

【図7】最適洗浄条件範囲を示した線図。FIG. 7 is a diagram showing an optimum cleaning condition range.

【図8】スクラビング空気流量設定による中空糸膜モジ
ュール差圧上昇の比較例を示した線図。
FIG. 8 is a diagram showing a comparative example of a rise in a differential pressure of a hollow fiber membrane module by setting a scrubbing air flow rate.

【符号の説明】[Explanation of symbols]

1 中空糸膜モジュール 2A 細い中空糸膜 2B 太い中空糸膜 3A 保護筒 3B キャップ 4A 上部接合部 4B 下部接合部 5 集水室 6A 上部流通口 6B 下部流通口 7 気体流入口 8 スカート部 9 ろ過塔 10 仕切板 11 気泡分配機構 12 気泡受け 13 気泡分配管 14 ろ過水流出管 15 圧縮空気流入管 16 原水流入管 17 空気抜き管 18 ドレン管 19〜24 弁 25 バッフルプレート DESCRIPTION OF SYMBOLS 1 Hollow fiber membrane module 2A Thin hollow fiber membrane 2B Thick hollow fiber membrane 3A Protective cylinder 3B Cap 4A Upper joint part 4B Lower joint part 5 Water collecting chamber 6A Upper circulation port 6B Lower circulation port 7 Gas inlet 8 Skirt part 9 Filtration tower 10 Partition plate 11 Bubble distribution mechanism 12 Bubble receiver 13 Bubble distribution pipe 14 Filtration water outflow pipe 15 Compressed air inflow pipe 16 Raw water inflow pipe 17 Air release pipe 18 Drain pipe 19 to 24 Valve 25 Baffle plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森田 利夫 埼玉県戸田市川岸1丁目4番9号 オル ガノ株式会社内 (56)参考文献 特開 昭62−87205(JP,A) (58)調査した分野(Int.Cl.7,DB名) G21F 9/06 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Toshio Morita 1-4-9, Kawagishi, Toda City, Saitama Prefecture Organo Corporation (56) References JP-A-62-87205 (JP, A) (58) Survey Field (Int.Cl. 7 , DB name) G21F 9/06

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ろ過塔内を上室と下室に区画する仕切板
に、保護筒内に中空糸膜を多本数束ね、中空糸膜の両端
を固定し、且、中空糸膜と、中空糸膜を保護する外筒が
一体型として構成された中空糸膜モジュールを、仕切板
と鉛直方向に懸架してなるろ過塔の前記下室内に、不純
物として主に酸化鉄からなる微粒子を含む原水を流入し
て、各中空糸膜の外側から内側に原水を通過させること
により、各中空糸膜の外側で当該微粒子を捕捉すると共
に、各中空糸膜の内側に得られるろ過水を前記上室から
流出させるろ過工程と、中空糸膜が液体内に浸漬した状
態で中空糸膜モジュール下部から保護筒内に気体を導入
して、保護筒内に気液混合状態を形成し、中空糸膜を振
動させることにより中空糸膜の外側に付着した前記微粒
子を剥離するスクラビング工程を含む中空糸膜を用いた
ろ過方法において、上記のスクラビング工程における中
空糸膜モジュール保護筒内に導入する気体流量を、保護
筒内の有効断面積に対して 290〜 700m/hに設定する
ことを特徴とする中空糸膜を用いるろ過塔のスクラビン
グ方法。
Claims: 1. A plurality of hollow fiber membranes are bundled in a protective tube, and both ends of a hollow fiber membrane are fixed to a partition plate that partitions the inside of a filtration tower into an upper chamber and a lower chamber. Raw water containing fine particles mainly composed of iron oxide as impurities is provided in the lower chamber of a filtration tower in which a hollow fiber membrane module in which an outer cylinder for protecting the fiber membrane is integrally formed is suspended in a vertical direction with a partition plate. By flowing the raw water from the outside to the inside of each hollow fiber membrane, thereby capturing the fine particles outside each hollow fiber membrane, and filtering the filtered water obtained inside each hollow fiber membrane into the upper chamber. And a filtration step of flowing out of the hollow fiber membrane is introduced into the protective cylinder from the lower part of the hollow fiber membrane module in a state where the hollow fiber membrane is immersed in the liquid to form a gas-liquid mixed state in the protective cylinder. A scrubber for removing the fine particles attached to the outside of the hollow fiber membrane by vibrating In the filtration method using a hollow fiber membrane including a bubbling step, the flow rate of gas introduced into the hollow fiber membrane module protection cylinder in the above scrubbing step is set to 290 to 700 m / h with respect to the effective cross-sectional area in the protection cylinder. A method for scrubbing a filtration tower using a hollow fiber membrane.
【請求項2】 スクラビング空気流量(m/h)をX、
該スクラビング時間(min) をYとしたとき、添付の図5
においてXとYの値を夫々 Y=600/(X−265)+3.5 (式I) で表わされる酸化鉄微粒子除去率70%以上の領域を示す
曲線Bより上方の斜線の範囲内に設定する請求項1記載
のスクラビング方法。
2. The scrubbing air flow rate (m / h) is X,
Assuming that the scrubbing time (min) is Y, FIG.
, The values of X and Y are respectively set within the range of the oblique line above the curve B indicating the region where the iron oxide fine particle removal rate represented by Y = 600 / (X-265) +3.5 (formula I) is 70% or more. The scrubbing method according to claim 1, wherein
【請求項3】 スクラビング空気流量(m/h)をX、
該スクラビング時間(min) をYとしたとき、添付の図6
において、XとYの値を夫々 Y=2292.9X-0.7541 (式II) で表わされる膜透水性低下が抑制される領域を示す曲線
Dより下方の斜線の範囲内に設定する請求項1記載のス
クラビング方法。
3. The scrubbing air flow rate (m / h) is X,
Assuming that the scrubbing time (min) is Y, FIG.
3. The method according to claim 1, wherein the values of X and Y are respectively set within a range of a diagonal line below a curve D indicating a region where a decrease in membrane permeability represented by Y = 2292.9X -0.7541 (formula II) is suppressed. Scrubbing method.
【請求項4】 スクラビング空気流量(m/h)をX、
該スクラビング時間(min) をYとしたとき、添付の図7
において、XとYの値を夫々 直線A(X=700) 直線C(X=290) 曲線B(式I … X=600/(X−265)+3.
5) 曲線D(式II … Y=2292.9X-0.7541 ) で囲まれた略斜線の領域E内に設定する請求項1記載の
スクラビング方法。
4. The scrubbing air flow rate (m / h) is X,
When the scrubbing time (min) is Y, FIG.
, The values of X and Y are respectively represented by a straight line A (X = 700), a straight line C (X = 290), and a curve B (formula I... X = 600 / (X-265) +3.
5) The scrubbing method according to claim 1, wherein the scrubbing method is set within a substantially hatched area E surrounded by a curve D (Equation II ... Y = 2292.9X- 0.7541 ).
JP07255637A 1995-09-07 1995-09-07 Method of scrubbing filtration tower using hollow fiber membrane Expired - Fee Related JP3137568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07255637A JP3137568B2 (en) 1995-09-07 1995-09-07 Method of scrubbing filtration tower using hollow fiber membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07255637A JP3137568B2 (en) 1995-09-07 1995-09-07 Method of scrubbing filtration tower using hollow fiber membrane

Publications (2)

Publication Number Publication Date
JPH0972993A JPH0972993A (en) 1997-03-18
JP3137568B2 true JP3137568B2 (en) 2001-02-26

Family

ID=17281515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07255637A Expired - Fee Related JP3137568B2 (en) 1995-09-07 1995-09-07 Method of scrubbing filtration tower using hollow fiber membrane

Country Status (1)

Country Link
JP (1) JP3137568B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002953111A0 (en) * 2002-12-05 2002-12-19 U. S. Filter Wastewater Group, Inc. Mixing chamber
JP2008539054A (en) 2005-04-29 2008-11-13 シーメンス・ウォーター・テクノロジーズ・コーポレイション Chemical cleaning for membrane filters
SG164499A1 (en) 2005-08-22 2010-09-29 Siemens Water Tech Corp An assembly for water filtration using a tube manifold to minimise backwash
JP2009523062A (en) * 2006-01-12 2009-06-18 シーメンス・ウォーター・テクノロジーズ・コーポレーション Improved operating methods in the filtration process.
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
KR20170092708A (en) 2007-05-29 2017-08-11 에보쿠아 워터 테크놀로지스 엘엘씨 Water treatment system
CN102112213B (en) 2008-07-24 2016-08-03 伊沃夸水处理技术有限责任公司 Frame system for film filter module
AU2010101488B4 (en) 2009-06-11 2013-05-02 Evoqua Water Technologies Llc Methods for cleaning a porous polymeric membrane and a kit for cleaning a porous polymeric membrane
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
CN103118766B (en) 2010-09-24 2016-04-13 伊沃夸水处理技术有限责任公司 The fluid of membrane filtration system controls manifold
SG11201401089PA (en) 2011-09-30 2014-04-28 Evoqua Water Technologies Llc Improved manifold arrangement
CA2850522C (en) 2011-09-30 2021-03-16 Evoqua Water Technologies Llc Shut-off valve for isolation of hollow fiber membrane filtration module
KR102108593B1 (en) 2012-06-28 2020-05-29 에보쿠아 워터 테크놀로지스 엘엘씨 A potting method
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
DE112013004713T5 (en) 2012-09-26 2015-07-23 Evoqua Water Technologies Llc Membrane safety device
EP2900356A1 (en) 2012-09-27 2015-08-05 Evoqua Water Technologies LLC Gas scouring apparatus for immersed membranes
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module
CN107206325A (en) * 2015-03-24 2017-09-26 住友电气工业株式会社 Filter element
EP3322511B1 (en) 2015-07-14 2022-09-07 Rohm & Haas Electronic Materials Singapore Pte. Ltd Aeration device for filtration system

Also Published As

Publication number Publication date
JPH0972993A (en) 1997-03-18

Similar Documents

Publication Publication Date Title
JP3137568B2 (en) Method of scrubbing filtration tower using hollow fiber membrane
JP2858913B2 (en) Filtration method using hollow fiber membrane
JP2904564B2 (en) Method of scrubbing filtration tower using hollow fiber membrane
JP4896025B2 (en) Method and apparatus for removing solids from membrane modules
US4756875A (en) Apparatus for filtering water containing radioactive substances in nuclear power plants
JP3273665B2 (en) Hollow fiber membrane filtration device and cleaning method thereof
US4540490A (en) Apparatus for filtration of a suspension
JP2000051669A (en) Hollow fiber membrane module fitted with lower cap
JPS62163708A (en) Method for backwashing hollow yarn filter
JPS624408A (en) Filtration device using hollow yarn membrane
JPH02277528A (en) Backwash device of filter having hollow fiber membrane
JPH0217924A (en) Method for backwashing hollow yarn membrane filter apparatus
JP2014024031A (en) Membrane filtration apparatus
JPS61181507A (en) Method for washing hollow yarn filter module
JPH09131517A (en) Hollow fiber membrane module and method for using the same
JPH05285354A (en) Washing and regenerating method for filter membrane
JP3349649B2 (en) Membrane filtration device
JPH01266809A (en) Method for backwashing hollow yarn membrane filter
JPS6043162B2 (en) Method and device for filtering liquids containing suspended matter
JP3601014B2 (en) Method and apparatus for concentrating raw water in submerged membrane filtration equipment
JP4596508B2 (en) Hollow fiber membrane module cleaning method
JP3094406B2 (en) Sludge concentration equipment
JP3282781B2 (en) Hollow fiber membrane filtration device
JPS62201610A (en) Hollow yarn membrane filter
JPH048988Y2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071208

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081208

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081208

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131208

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees