JPH0972993A - Scrubbing method for filter tower using hollow fiber membrane - Google Patents
Scrubbing method for filter tower using hollow fiber membraneInfo
- Publication number
- JPH0972993A JPH0972993A JP25563795A JP25563795A JPH0972993A JP H0972993 A JPH0972993 A JP H0972993A JP 25563795 A JP25563795 A JP 25563795A JP 25563795 A JP25563795 A JP 25563795A JP H0972993 A JPH0972993 A JP H0972993A
- Authority
- JP
- Japan
- Prior art keywords
- hollow fiber
- fiber membrane
- scrubbing
- flow rate
- fine particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は原子力発電所や火力
発電所の復水処理や産業廃水処理等において使用され
る、中空糸膜モジュールを用いるろ過塔のスクラビング
方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for scrubbing a filtration tower using a hollow fiber membrane module, which is used in condensate treatment of nuclear power plants and thermal power plants, industrial wastewater treatment and the like.
【0002】[0002]
【従来の技術】中空糸膜を用いるろ過塔は、微細孔を多
数有する中空糸膜を多本数束ねて中空糸膜モジュールを
形成し、当該中空糸膜モジュールの多本数をろ過塔内に
横設した仕切板に対し鉛直方向に懸架したもので、ろ過
工程は仕切板で区画した下室に原水を供給することによ
り、当該中空糸膜の外側から内側へ原水を通過させて各
中空糸膜の外側で原水中の不純物の微粒子を捕捉し、中
空糸膜の内側から得られるろ過水を仕切板で区画した上
室に集合させてろ過塔から流出させるものである。2. Description of the Related Art In a filtration tower using a hollow fiber membrane, a plurality of hollow fiber membranes having a large number of fine holes are bundled to form a hollow fiber membrane module, and a large number of the hollow fiber membrane modules are horizontally installed in the filtration tower. In the filtration step, the raw water is supplied to the lower chamber partitioned by the partition plate, so that the raw water is passed from the outside to the inside of the hollow fiber membrane in the filtration step. Fine particles of impurities in the raw water are captured on the outer side, and the filtered water obtained from the inner side of the hollow fiber membrane is collected in the upper chamber partitioned by a partition plate and discharged from the filtration tower.
【0003】このようなろ過工程を長期継続して行うこ
とにより中空糸膜外面に微粒子が蓄積することによりろ
過塔の差圧が上昇してしまう。そこで従来より水中に存
する各中空糸膜の近傍の水に気体を供給して各中空糸膜
を振動させて、各中空糸膜の外側で捕捉した前記微粒子
を剥離するスクラビング工程を行い、次いで剥離した微
粒子を含む洗浄廃液を下室から排出するブロー工程を行
い、前記ろ過工程とスクラビング工程とブロー工程を順
次くり返して処理を行っていた。なお、スクラビング工
程の前あるいは後あるいはスクラビング工程中に、中空
糸膜の内側から外側に洗浄水を逆流する逆洗工程を行う
こともある。When such a filtration process is continuously carried out for a long period of time, fine particles are accumulated on the outer surface of the hollow fiber membrane, so that the differential pressure in the filtration tower is increased. Therefore, conventionally, a gas is supplied to water in the vicinity of each hollow fiber membrane existing in water to vibrate each hollow fiber membrane, and a scrubbing step of peeling the fine particles captured outside each hollow fiber membrane is performed, and then peeling is performed. The blow process of discharging the cleaning waste liquid containing the fine particles from the lower chamber is performed, and the filtration process, the scrubbing process, and the blow process are sequentially repeated to perform the treatment. In addition, before or after the scrubbing step or during the scrubbing step, a backwashing step may be performed in which wash water is backflowed from the inside to the outside of the hollow fiber membrane.
【0004】このように中空糸膜を用いるろ過塔は基本
的にはろ過工程とスクラビング工程とブロー工程をくり
返し行って操作するものである為、ろ過工程で中空糸膜
に捕捉された微粒子が蓄積してろ過塔の差圧が上昇し、
ろ過の継続が不能にならないように充分な配慮をする必
要がある。このため、従来から微粒子の蓄積を防止する
為に、中空糸膜モジュールの構造、塔構造、スクラビン
グ方法を含む中空糸膜の洗浄方法等の検討、試験、開発
が進められている。Since the filtration tower using the hollow fiber membrane is basically operated by repeating the filtration step, the scrubbing step and the blowing step, the fine particles trapped in the hollow fiber membrane in the filtration step are accumulated. Then the differential pressure of the filtration tower rises,
It is necessary to give sufficient consideration so that the filtration cannot be continued. Therefore, in order to prevent the accumulation of fine particles, studies, tests, and developments have been made on the hollow fiber membrane module structure, tower structure, hollow fiber membrane cleaning method including scrubbing method, and the like.
【0005】[0005]
【発明が解決しようとする課題】本発明者等も上述のよ
うに、より効果的な中空糸膜の洗浄方法を開発すべく努
力してきた。しかし、原水不純物としての微粒子として
主に酸化鉄を含む、例えば沸騰水型原子力発電所の復水
(一次冷却水)などを原水とした場合、ろ過工程によっ
て差圧が上昇した中空糸膜モジュールに対して前記スク
ラビング工程や逆洗工程を実施しても差圧が元に戻ら
ず、さらに、酸で中空糸膜を洗浄して膜外面に付着して
いる酸化鉄を溶解、除去しても差圧が元に戻らないケー
スがあることが判明した。As described above, the present inventors have made efforts to develop a more effective method for cleaning a hollow fiber membrane. However, when raw water is mainly condensate (primary cooling water) of a boiling water nuclear power plant that contains iron oxide as fine particles as raw water impurities, the hollow fiber membrane module whose differential pressure has increased due to the filtration process On the other hand, even if the scrubbing step or the backwashing step is performed, the differential pressure does not return to the original value, and even if the hollow fiber membrane is washed with an acid to dissolve and remove the iron oxide adhering to the outer surface of the membrane, the difference in pressure remains. It turned out that there are cases where the pressure does not return to the original level.
【0006】この原因として以下のことが明らかとなっ
た。即ち、差圧が元に戻らない理由は、膜自体の透水性
が低下している為であり、膜の内外間の差圧により膜が
圧密化したものでも、膜がつぶれたものでもなく、膜の
外表面の、極めて表面のみが肌荒れ状態になっており、
当該肌荒れ部分にもともと存在していた微細孔が閉塞さ
れており、その結果中空糸膜全体の微細孔が少なくなっ
た為であり、その状態は酸、酸化剤、還元剤等の洗浄剤
を用いて洗浄しても変化がなく、中空糸膜の引張り強
度、引張り伸度、破裂強度等の機械的強度の低下として
現れる物性劣化ではないことが判明した。The following has been clarified as the cause of this. That is, the reason why the differential pressure does not return to the original is that the water permeability of the membrane itself is reduced, and the membrane is neither consolidated nor crushed due to the differential pressure between the inside and outside of the membrane, Only the surface of the outer surface of the membrane is rough,
This is because the fine pores that were originally present in the rough skin area were blocked, and as a result, the fine pores in the entire hollow fiber membrane were reduced, and the condition was to use a cleaning agent such as an acid, an oxidizing agent, or a reducing agent. It was found that there was no change even after washing with water, and it was not a physical property deterioration that appears as a decrease in mechanical strength such as tensile strength, tensile elongation and burst strength of the hollow fiber membrane.
【0007】即ち、膜外表面の肌荒れは、膜表面に酸化
鉄等の微粒子が衝突することで発生し、中空糸膜が振動
しているときに前記微粒子が中空糸膜相互の間に存在す
るときに発生し、中空糸膜のスクラビング工程中に最も
発生しやすいものであることが判明した。また、スクラ
ビング時の気体流量及びスクラビング時間長さに伴い促
進されることが判明した。That is, roughening of the outer surface of the membrane is caused by collision of fine particles such as iron oxide with the surface of the membrane, and the fine particles exist between the hollow fiber membranes while the hollow fiber membrane is vibrating. It was found that this occurs occasionally and is most likely to occur during the scrubbing process of the hollow fiber membrane. It was also found that it is promoted with the gas flow rate during scrubbing and the scrubbing time length.
【0008】従って、上述のような膜の外面肌荒れを防
止する為には、スクラビング工程における中空糸膜と酸
化鉄微粒子の接触時の気体流量の最小化、及びスクラビ
ング時間の短縮化、極端な例としてはスクラビングを実
施しないことが効果的と考えられるが、ろ過工程で膜に
捕捉された微粒子の蓄積を容認すると、ろ過器本来の使
用方法から逸脱し、膜外面での微粒子蓄積による差圧上
昇を引き起こし、ろ過工程の継続が不能となる。Therefore, in order to prevent the roughening of the outer surface of the membrane as described above, the gas flow rate at the time of contact between the hollow fiber membrane and the iron oxide fine particles in the scrubbing step is minimized, and the scrubbing time is shortened. As a result, it is considered effective not to perform scrubbing, but if the accumulation of fine particles trapped in the membrane during the filtration process is allowed, the filter will deviate from the original usage and the differential pressure will increase due to the accumulation of fine particles on the outer surface of the membrane. And the filtration process cannot be continued.
【0009】本発明はこのような背景のもとになされた
ものであり、膜の透水性能低下を引き起こす膜面の肌荒
れを極力抑制し、しかも中空糸膜に捕捉された微粒子を
剥離できる、中空糸膜を用いたろ過塔の最適スクラビン
グ方法を提案することを目的としたものである。The present invention has been made on the basis of such a background, and it is possible to suppress the roughening of the surface of the membrane which causes a decrease in the water permeability of the membrane as much as possible, and to exfoliate the fine particles trapped in the hollow fiber membrane. The purpose is to propose an optimum scrubbing method for a filtration tower using a thread membrane.
【0010】[0010]
【課題を解決するための手段】上記目的を達成する為に
なされた本発明よりなる中空糸膜を用いるろ過塔のスク
ラビング方法は、ろ過塔内を上室と下室とに区画する仕
切板に保護筒内に中空糸膜を多本数束ね、中空糸膜の両
端を固定し、且、中空糸膜と、中空糸膜を保護する外筒
が一体型として構成された中空糸膜モジュールを、仕切
板と鉛直方向に懸架してなるろ過塔の前記下室内に、不
純物として主に酸化鉄からなる微粒子を含む原水を流入
して、各中空糸膜の外側から内側に原水を通過させるこ
とにより、各中空糸膜の外側で当該微粒子を捕捉すると
共に、各中空糸膜の内側に得られるろ過水を前記上室か
ら流出させるろ過工程と、中空糸膜が液体内に浸漬した
状態で中空糸膜モジュール下部から保護筒内に気体を導
入して、保護筒内に気液混合状態を形成し、中空糸膜を
振動させることにより中空糸膜の外側に付着した前記微
粒子を剥離するスクラビング工程と、剥離した微粒子を
含む洗浄廃液を下室から排出するブロー工程を含む中空
糸膜を用いるろ過方法において、上記のスクラビング工
程における中空糸膜モジュール保護筒内に導入する気体
流量を、保護筒内の有効断面積に対して 290〜 700m/
hに設定することを特徴とするものであり、前記のスク
ラビング操作を最適化するものである。A method for scrubbing a filtration tower using a hollow fiber membrane according to the present invention, which has been made to achieve the above object, comprises a partition plate for partitioning the inside of the filtration tower into an upper chamber and a lower chamber. Multiple hollow fiber membranes are bundled in a protective cylinder, both ends of the hollow fiber membranes are fixed, and a hollow fiber membrane module in which the hollow fiber membrane and an outer cylinder for protecting the hollow fiber membrane are integrally formed is partitioned. Into the lower chamber of the filtration tower suspended vertically with the plate, raw water containing fine particles mainly composed of iron oxide as impurities is caused to flow, and the raw water is passed from the outside to the inside of each hollow fiber membrane, A filtration step of capturing the fine particles on the outside of each hollow fiber membrane and causing the filtered water obtained on the inside of each hollow fiber membrane to flow out from the upper chamber; and the hollow fiber membrane in a state where the hollow fiber membrane is immersed in a liquid. Gas is introduced into the protective cylinder from the bottom of the module to It includes a scrubbing step of forming a gas-liquid mixed state and separating the fine particles adhering to the outside of the hollow fiber membrane by vibrating the hollow fiber membrane, and a blowing step of discharging the cleaning waste liquid containing the separated fine particles from the lower chamber. In the filtration method using the hollow fiber membrane, the gas flow rate introduced into the hollow fiber membrane module protective cylinder in the above scrubbing step is 290 to 700 m / m with respect to the effective sectional area in the protective cylinder.
The scrubbing operation is optimized by setting it to h.
【0011】ここで有効断面積とは、中空糸膜モジュー
ル保護筒内の中空糸膜の有効ろ過面が存する領域におい
て気体が通過可能な断面積を示し、保護筒の内側断面積
から保護筒内に設けられた中空糸膜等の構成部品の断面
積を除いたものをいう。また、気体流量は有効断面積1
m2 当たりに中空糸膜モジュールに導入した気体の流量
を示し、いわば中空糸膜モジュール保護筒内の通過可能
な空間を気体が上昇する平均的な流速である。尚、気体
には圧縮性がある為、液体内での深さにより流量が変化
するので、ここでいう気体流量は中空糸膜モジュール保
護筒内の中空糸膜の有効ろ過面が存する領域の上端部で
の流量を示す。Here, the effective cross-sectional area refers to a cross-sectional area through which a gas can pass in the region where the effective filtration surface of the hollow fiber membrane in the hollow fiber membrane module protective cylinder exists, and from the inner cross-sectional area of the protective cylinder to the inside of the protective cylinder. The cross-sectional area of the components such as the hollow fiber membrane provided in the above is excluded. In addition, the gas flow rate is 1 effective area
It shows the flow rate of the gas introduced into the hollow fiber membrane module per m 2, which is, so to speak, an average flow velocity at which the gas rises in the passable space in the hollow fiber membrane module protection cylinder. Since gas has compressibility and its flow rate changes depending on the depth in the liquid, the gas flow rate here is the upper end of the region where the effective filtration surface of the hollow fiber membrane in the hollow fiber membrane module protection tube exists. Indicates the flow rate in the section.
【0012】本発明の作用は、最適洗浄気体流量又は最
適洗浄流量と洗浄時間を規定することで、スクラビング
工程中の膜表面の肌荒れを極小化し、さらに膜表面に捕
捉された微粒子を効果的に剥離、除去するものである。The function of the present invention is to define the optimum cleaning gas flow rate or the optimum cleaning flow rate and cleaning time to minimize the roughening of the film surface during the scrubbing process, and to effectively remove the fine particles trapped on the film surface. It is to be peeled and removed.
【0013】[0013]
【発明の実施の形態】以下に本発明を図を用いて説明す
る図1は本発明に用いる中空糸膜モジュールを示す断面
図であり、図2は本発明に用いるろ過塔のフローを示す
説明図である。BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view showing a hollow fiber membrane module used in the present invention, and FIG. 2 is an explanation showing a flow of a filtration tower used in the present invention. It is a figure.
【0014】本発明に用いる中空糸膜モジュール(1)
を図1に示す実施例によって説明するが、本発明はこの
範囲に限定されるものではない。図1に示したごとく、
0.01μm〜 0.3μmの微細孔を有する外径 0.2〜7mm、
内径 0.2〜5mmの中空糸膜(2A,2B)を 100〜 500
00本前後、保護筒(3A)に収納したもので、当該中空
糸膜(2A,2B)の両端をその中空部を閉塞すること
なく接合部(4A,4B)で接着し、下部接合部には集
水室(5)を形成すべくキャップ(3B)を液密状態に
設け、また保護筒(3A)の下方部、上方部にそれぞれ
気体流入口(6A,6B)を設けると共に、下部接合部
(4A)近傍に気体流入口(7)を設け、さらに保護筒
(3A)の下方にスカート部(8)を設けたものであ
る。Hollow fiber membrane module used in the present invention (1)
Will be described with reference to the embodiment shown in FIG. 1, but the present invention is not limited to this range. As shown in Figure 1,
Outer diameter 0.2 to 7 mm with fine pores of 0.01 μm to 0.3 μm,
Hollow fiber membranes (2A, 2B) with an inner diameter of 0.2-5 mm are 100-500
Approximately 00 pieces, which are housed in a protective cylinder (3A), are bonded to both ends of the hollow fiber membranes (2A, 2B) at the joints (4A, 4B) without blocking the hollows, and are attached to the lower joints. Is provided with a cap (3B) in a liquid-tight state so as to form a water collecting chamber (5), and gas inlets (6A, 6B) are provided at a lower portion and an upper portion of the protective cylinder (3A), respectively, and a lower joint A gas inlet (7) is provided near the portion (4A), and a skirt portion (8) is further provided below the protective cylinder (3A).
【0015】当該中空糸膜(2A,2B)は専ら被処理
液のろ過を行う細い中空糸膜(2A)と被処理液のろ過
と同時に集水管としての作用も行う太い中空糸膜(2
B)で構成され、中空糸膜(2A)の外側よりろ過され
て中空糸内を流れた透過水の一部は上端面上に送られる
とともに、他部は下端面から集水室(5)に集り、次い
で中空糸膜(2B)の中空糸内を通って上端面上に送ら
れて、上端に流れた前記透過水と合流する。尚、中空糸
膜モジュールには、中空糸膜(2B)の替りに管状の取
水管を用いる場合や、取水管を中空糸膜モジュールの外
側に設ける場合や、中空糸膜(2A)の下端を閉止して
透過水を上端面のみから取水する場合など様々なタイプ
がある。また、使用する中空糸膜の材質もポリオレフィ
ン系の材質やポリスルホン等様々な材質がある。The hollow fiber membranes (2A, 2B) are thin hollow fiber membranes (2A) for exclusively filtering the liquid to be treated and thick hollow fiber membranes (2) for simultaneously filtering the liquid to be treated and also as a water collecting pipe.
B), a part of the permeated water that has been filtered from the outside of the hollow fiber membrane (2A) and has flowed in the hollow fiber is sent to the upper end surface, and the other part from the lower end surface to the water collection chamber (5). And then sent to the upper end surface through the hollow fibers of the hollow fiber membrane (2B) and joins with the permeated water that has flowed to the upper end. In the hollow fiber membrane module, a tubular water intake pipe is used instead of the hollow fiber membrane (2B), a water intake pipe is provided outside the hollow fiber membrane module, or the lower end of the hollow fiber membrane (2A) is installed. There are various types such as closing and taking permeated water only from the upper end surface. Further, the hollow fiber membrane to be used includes various materials such as polyolefin-based material and polysulfone.
【0016】当該中空糸膜モジュール(1)をろ過塔に
配置するにあたっては、図2に示したごとく、ろ過塔
(9)の上方部に仕切板(10)を設け、ろ過塔(9)内
を上室Fと下室Rに区画し、当該仕切板(10)に多数本
の中空糸膜モジュール(1)を仕切板(10)の下方に鉛
直方向に懸架する。またろ過塔(9)内に気泡分配機構
(11)を配置する。当該気泡分配機構(11)は気泡受け
(12)と当該気泡受け(12)を貫通する気泡分配管(1
3)より構成されるもので、中空糸膜モジュール(1)
のスカート(8)の直下に当該気泡分配管(13)を対応
させるものとする。When arranging the hollow fiber membrane module (1) in the filtration tower, a partition plate (10) is provided above the filtration tower (9) as shown in FIG. Is divided into an upper chamber F and a lower chamber R, and a large number of hollow fiber membrane modules (1) are vertically suspended below the partition plate (10) on the partition plate (10). Further, a bubble distribution mechanism (11) is arranged in the filtration tower (9). The bubble distribution mechanism (11) includes a bubble receiver (12) and a bubble distribution pipe (1) penetrating the bubble receiver (12).
Hollow fiber membrane module (1)
The bubble distribution pipe (13) is made to correspond directly below the skirt (8).
【0017】なお、ろ過塔(9)の上部にろ過水流出管
(14)の一端と圧縮空気流入管(15A)の一端を連通
し、またろ過塔(9)の下部に原水流入管(16)の一端
及び圧縮空気流入管(15B)の一端、及びドレン管(1
8)の一端をそれぞれ連通し、さらに前記仕切板(10)
の直下の側胴部に空気抜き管(17)の一端を連通する。
なお、(19)〜(24)はそれぞれ弁を示し、(25)はバ
ッフルプレートである。In addition, one end of the filtered water outflow pipe (14) and one end of the compressed air inflow pipe (15A) are connected to the upper part of the filtration tower (9), and the raw water inflow pipe (16) is connected to the lower part of the filtration tower (9). ), One end of the compressed air inflow pipe (15B), and the drain pipe (1
8) One end of each is connected, and further the partition plate (10)
One end of the air vent pipe (17) communicates with the side body portion immediately below.
In addition, (19)-(24) shows a valve, respectively (25) is a baffle plate.
【0018】当該ろ過塔(9)を用いて、本発明の処理
対象として酸化鉄を含む復水を例として説明する。ろ過
工程においては、原水は弁(19)及び(23)を開として
原水流入管(16)からろ過塔(9)の下室Rに流入し、
中空糸膜モジュール(1)により原水中の酸化鉄微粒子
をろ過し、ろ過水は上室Fで集合し、ろ過水流出管(1
4)から流出する。ろ過を継続することによりろ過塔
(9)の差圧は上昇し、規定の差圧に到達した時点でス
クラビング工程が実施される。Using the filtration tower (9), condensate containing iron oxide will be described as an example of the object of the present invention. In the filtration step, raw water flows into the lower chamber R of the filtration tower (9) from the raw water inflow pipe (16) by opening the valves (19) and (23),
The hollow fiber membrane module (1) filters iron oxide fine particles in the raw water, and the filtered water collects in the upper chamber F, and the filtered water outflow pipe (1
4) outflow. By continuing the filtration, the differential pressure of the filtration tower (9) rises, and the scrubbing step is carried out when the specified differential pressure is reached.
【0019】即ち、中空糸膜表面に付着した酸化鉄微粒
子を除去する為、弁(19)及び(23)を閉じ下室Rに原
水を、また上室Fにろ過水を満たしたまま、弁(21)及
び(22)を開弁し圧縮空気流入管(15B)から圧縮空気
を流入する。当該圧縮空気は気泡受け(12)の下面で一
端受けられ、次いで気泡分配管(13)の側部に設けられ
た孔(図示せず)から空気分配管(13)の内部を気泡と
なって中空糸膜モジュール(1)のスカート(8)内に
流入し、次いで気体流入口(7)を介して各中空糸膜モ
ジュール(1)内に流入する。当該気泡の上昇により各
中空糸膜(2A,2B)は振動すると共に中空糸膜モジ
ュール(1)内の水が攪拌され各中空糸膜(2A,2
B)の表面に捕捉された酸化鉄微粒子が剥離し、ろ過塔
(9)の下室R中に分散する。なお気泡は中空糸膜モジ
ュール(1)の流通口(6B)から当該中空糸膜モジュ
ール(1)外に流出し、ついで空気抜き管(17)からろ
過塔(9)外に排出する。That is, in order to remove the iron oxide fine particles adhering to the surface of the hollow fiber membrane, the valves (19) and (23) are closed and the lower chamber R is filled with raw water and the upper chamber F is filled with filtered water. The valves (21) and (22) are opened, and the compressed air flows in from the compressed air inflow pipe (15B). The compressed air is once received by the lower surface of the bubble receiver (12), and then forms air bubbles inside the air distribution pipe (13) through a hole (not shown) provided at the side of the bubble distribution pipe (13). It flows into the skirt (8) of the hollow fiber membrane module (1) and then into each hollow fiber membrane module (1) via the gas inlet (7). As the bubbles rise, the hollow fiber membranes (2A, 2B) vibrate and the water in the hollow fiber membrane module (1) is agitated, so that the hollow fiber membranes (2A, 2B) are stirred.
The iron oxide fine particles captured on the surface of B) are separated and dispersed in the lower chamber R of the filtration tower (9). The bubbles flow out of the hollow fiber membrane module (1) through the flow port (6B) of the hollow fiber membrane module (1), and then are discharged from the air vent pipe (17) to the outside of the filtration tower (9).
【0020】酸化鉄微粒子を剥離する為のスクラビング
空気流量は、その流量を大きくすると、剥離した酸化鉄
微粒子が中空糸膜(2A,2B)の膜表面に衝突する機
会が多くなり、膜外面肌荒れの原因となり、また少ない
と剥離した酸化鉄微粒子が中空糸膜(2A,2B)の膜
表面に衝突する機会が少なくなり、膜外面肌荒れは抑制
されるが、酸化鉄微粒子の剥離効果が低下する。本発明
の請求項1ないし4で示す最適洗浄空気流量スクラビン
グを実施すれば、スクラビング工程中の膜表面の肌荒れ
を極小化し、さらに膜表面に捕捉された酸化鉄微粒子を
効果的に剥離、除去することが可能となる。When the scrubbing air flow rate for separating the iron oxide fine particles is increased, the chances of the separated iron oxide fine particles colliding with the membrane surface of the hollow fiber membrane (2A, 2B) increase, and the outer surface of the membrane becomes rough. When the amount is small, the chances that the peeled iron oxide fine particles collide with the membrane surface of the hollow fiber membrane (2A, 2B) are reduced, and roughening of the outer surface of the membrane is suppressed, but the peeling effect of the iron oxide fine particles is reduced. . By carrying out the optimum cleaning air flow rate scrubbing according to claims 1 to 4 of the present invention, the roughening of the film surface during the scrubbing process is minimized, and further the iron oxide fine particles trapped on the film surface are effectively peeled and removed. It becomes possible.
【0021】以上のスクラビングにより剥離し、ろ過塔
(9)の下室R内の水中に分散した酸化鉄微粒子はスク
ラビング工程終了後、ろ過塔外にブローする。すなわち
弁(22)を開弁したまま弁(21)を閉弁し弁(20)を開
弁して酸化鉄微粒子が分散している洗浄廃液をドレン管
(18)から流出させる。なお、洗浄廃液を流出させる当
該工程は水頭差を用いるものであるが、空気抜き管(1
7)あるいは圧縮空気流入管(15B)から圧縮空気を流
入して当該空気圧を用いた急速流出を行うこともでき
る。なお上記ブローと同時に、又はブロー終了後圧縮空
気流入管(15A)から圧縮空気を流入し、上室Fに存在
する透過水を中空糸膜(2A,2B)内を逆流させる逆
洗工程を行うこともある。The iron oxide fine particles separated by the above scrubbing and dispersed in the water in the lower chamber R of the filtration tower (9) are blown out of the filtration tower after the scrubbing step. That is, the valve (21) is closed while the valve (22) is open, and the valve (20) is opened to allow the cleaning waste liquid in which the iron oxide fine particles are dispersed to flow out from the drain pipe (18). Although the process of flowing out the cleaning waste liquid uses a head difference, the air vent pipe (1
7) Alternatively, compressed air can be introduced from the compressed air inflow pipe (15B) for rapid outflow using the air pressure. At the same time as the above-mentioned blow or after the end of the blow, a backwashing step is performed in which compressed air is introduced from the compressed air inflow pipe (15A) and the permeated water existing in the upper chamber F is caused to flow back through the hollow fiber membranes (2A, 2B). Sometimes.
【0022】[0022]
【発明の効果】本発明はスクラビング工程でのスクラビ
ング空気流量の最適化により、中空糸膜の透水性能低下
防止及び中空糸膜の汚染蓄積防止をすることで、中空糸
膜モジュールの差圧上昇を極小化し、中空糸膜モジュー
ルの交換寿命延長効果を得るものである。INDUSTRIAL APPLICABILITY The present invention increases the differential pressure of the hollow fiber membrane module by optimizing the scrubbing air flow rate in the scrubbing step to prevent deterioration of the water permeability of the hollow fiber membrane and prevention of contamination accumulation of the hollow fiber membrane. The effect of extending the replacement life of the hollow fiber membrane module is minimized.
【0023】[0023]
【実施例】本発明の効果をより明確に説明する為に以下
に本発明例を示す。0.1μm前後の微細孔を有する外径
1.22mm、内径 0.7mm、長さ2200mmの中空糸膜4200本と外
径 5.4mm、内径4mm、長さ2200mmの中空糸膜75本を、内
径 123.4mmの保護筒内に束ねた図1に示したような中空
糸膜モジュールを、ろ過塔に1本配置して図2に示した
フローに準じて小型実験ろ過塔を形成し、以下の実験を
行った。尚中空糸膜の材質はポリエチレンであった。EXAMPLES In order to more clearly explain the effects of the present invention, examples of the present invention will be shown below. Outer diameter with fine pores of around 0.1 μm
Fig. 1 shows 4200 hollow fiber membranes with 1.22mm, inner diameter 0.7mm and length 2200mm and 75 hollow fiber membranes with outer diameter 5.4mm, inner diameter 4mm and length 2200mm bundled in a protective cylinder with inner diameter 123.4mm. One such hollow fiber membrane module was placed in the filtration tower to form a small-scale experimental filtration tower according to the flow shown in FIG. 2, and the following experiment was conducted. The material of the hollow fiber membrane was polyethylene.
【0024】まず、中空糸膜の外面肌荒れ、即ち膜透水
性能低下を極小化するスクラビング空気流量条件につい
て説明する。10〜20μmの粒子径のα−Fe2 O3 を主
成分とする酸化鉄微粒子を中空糸膜1m2 当たりの付着
量が10gとなるように調整した原水を中空糸膜モジュー
ル(1)でろ過させ、その後スクラビング工程に移行し
た。スクラビングは水温40℃で実施した。比較的大きな
粒径の酸化鉄微粒子を使用した理由はスクラビング工程
時に中空糸膜の外面肌荒れを確実に発生させ、実機を模
擬する為である。First, the scrubbing air flow rate condition for minimizing the roughness of the outer surface of the hollow fiber membrane, that is, the deterioration of the membrane water permeability will be described. Raw water in which iron oxide fine particles having a particle diameter of 10 to 20 μm and containing α-Fe 2 O 3 as a main component was adjusted to have an adhesion amount of 10 g per 1 m 2 of the hollow fiber membrane was filtered with a hollow fiber membrane module (1). After that, the scrubbing process was performed. Scrubbing was performed at a water temperature of 40 ° C. The reason for using the iron oxide fine particles having a relatively large particle size is that the outer surface of the hollow fiber membrane is surely roughened during the scrubbing process to simulate an actual machine.
【0025】図3にスクラビング空気流量と膜透水性低
下率の関係を示す。ここで、膜透水性低下率はろ過面積
の大部分を占める外径1.22mmの中空糸膜についての測定
結果で代表した。膜透水性低下率はスクラビング空気流
量の増加と共に 700m/h程度まではなだらかな勾配で
増大するものの、それ以上の空気流量範囲では膜透水性
低下率は空気流量の増加と共に急激に増加する。FIG. 3 shows the relationship between the scrubbing air flow rate and the membrane water permeability reduction rate. Here, the reduction rate of the membrane water permeability is represented by the measurement result of the hollow fiber membrane having an outer diameter of 1.22 mm that occupies most of the filtration area. The rate of decrease in membrane permeability increases gradually with increasing scrubbing air flow rate up to about 700 m / h, but in the range of air flow rate higher than that, the rate of decrease in membrane permeability increases rapidly with increase in air flow rate.
【0026】700m/h以上のスクラビング空気流量で
は膜透水性低下を加速し、スクラビング条件としては不
適当であることが示された。図3より、スクラビング空
気流量は 700m/h以下に設定する。It was shown that the scrubbing air flow rate of 700 m / h or more accelerates the decrease of the membrane water permeability and is not suitable as the scrubbing condition. From Fig. 3, the scrubbing air flow rate is set to 700 m / h or less.
【0027】次に中空糸膜表面に捕捉された主に酸化鉄
からなる微粒子を効果的に剥離、除去する為のスクラビ
ング空気流量条件について説明する。1〜3μmの粒子
径のα−Fe2 O3 を主成分とする酸化鉄微粒子を中空
糸膜1m2 当たりの付着量が50gとなるように調整した
原水を中空糸膜モジュール(1)でろ過させ、差圧上昇
を約 0.3kg/cm2 程度とし、その後スクラビング工程に
移行した。スクラビングは水温40℃で実施した。1〜3
μmの粒子径の酸化鉄を使用した理由は、スクラビング
中の膜外面肌荒れを発生しにくい粒径を選定し、スクラ
ビング洗浄後の差圧回復率を酸化鉄微粒子剥離効果とし
て認識する為である。Next, the scrubbing air flow rate condition for effectively peeling and removing the fine particles mainly composed of iron oxide captured on the surface of the hollow fiber membrane will be described. Raw water in which iron oxide fine particles containing α-Fe 2 O 3 having a particle diameter of 1 to 3 μm as a main component were adjusted so that the adhered amount was 50 g per 1 m 2 of the hollow fiber membrane was filtered by the hollow fiber membrane module (1). Then, the differential pressure rise was set to about 0.3 kg / cm 2 , and then the scrubbing process was performed. Scrubbing was performed at a water temperature of 40 ° C. 1-3
The reason why iron oxide having a particle diameter of μm is used is to select a particle diameter that does not easily cause roughening of the outer surface of the membrane during scrubbing and to recognize the differential pressure recovery rate after scrubbing cleaning as the iron oxide fine particle peeling effect.
【0028】図4に酸化鉄微粒子除去率と差圧回復率の
関係を示す。図4より、従来より一般的に差圧回復率良
好と判断される80%以上の差圧回復率を得るには酸化鉄
微粒子除去率70%を確保すればよいことが示された。FIG. 4 shows the relationship between the iron oxide fine particle removal rate and the differential pressure recovery rate. FIG. 4 shows that it is sufficient to secure the iron oxide fine particle removal rate of 70% in order to obtain the differential pressure recovery rate of 80% or more, which is generally considered to be good in the conventional differential pressure recovery rate.
【0029】図5に70%の酸化鉄除去率を得るスクラビ
ング空気流量とスクラビング時間の関係を示し(図5中
にBラインで示す)、以下に実験式(2)で示す。FIG. 5 shows the relationship between the scrubbing air flow rate and the scrubbing time for obtaining an iron oxide removal rate of 70% (shown by the line B in FIG. 5), which is shown below by the empirical formula (2).
【0030】実験式(2) Y=スクラビング時間(min) X=スクラビング空気流量(m/h) Y=600/(X−265)+3.5Empirical Formula (2) Y = Scrubbing time (min) X = Scrubbing air flow rate (m / h) Y = 600 / (X-265) +3.5
【0031】実験式(2)と図5からスクラビング空気
流量を 265m/h近傍に低下させると必要となるスクラ
ビング時間は顕著に増加することが示された。このた
め、実用上意味のあるスクラビング空気流量は余裕をみ
て 290m/h以上に設定する必要がある。そこで、最小
スクラビング空気流量を 290m/hに設定し、図5にラ
インCで示す。また、スクラビング空気流量が 290m/
h〜 700m/h(図3における上限流量設定値であり図
5にラインAで示す)の間で、酸化鉄微粒子除去率70%
以上を確保できる領域を図中にハッチングで示す。From the empirical formula (2) and FIG. 5, it was shown that the required scrubbing time is remarkably increased when the scrubbing air flow rate is reduced to around 265 m / h. For this reason, it is necessary to set the scrubbing air flow rate, which has practical significance, to 290 m / h or more with a margin. Therefore, the minimum scrubbing air flow rate was set to 290 m / h and is shown by line C in FIG. The scrubbing air flow rate is 290m /
70% of iron oxide fine particles removal rate between h and 700 m / h (the upper limit flow rate setting value in FIG. 3 and shown by line A in FIG. 5)
The area where the above can be secured is indicated by hatching in the figure.
【0032】図6に、従来のスクラビング条件:空気流
量 940m/h、時間5分と同等以下の透水性能低下とな
る範囲を示す。 まず、従来のスクラビング条件:空気流量 940m/h、
時間5分における膜透水性低下率と同じ値となるスクラ
ビング時間とスクラビング空気流量の関係を以下の実験
式(3)で示し、図6中にラインDで示す。FIG. 6 shows a conventional scrubbing condition: an air flow rate of 940 m / h, a time of 5 minutes and a range in which the permeation performance is reduced to the same level or less. First, conventional scrubbing conditions: air flow rate 940m / h,
The relationship between the scrubbing time and the scrubbing air flow rate, which has the same value as the membrane water permeability reduction rate at time 5 minutes, is shown by the following empirical formula (3), and is shown by line D in FIG.
【0033】実験式(3) Y=スクラビング時間(min) X=スクラビング空気流量(m/h) Y=2292.9X-0.7541 Empirical formula (3) Y = scrubbing time (min) X = scrubbing air flow rate (m / h) Y = 2292.9X -0.7541
【0034】従来技術よりも膜透水性低下率が抑制され
る範囲は図6のラインA、C、Dで包囲された範囲であ
る。The range in which the rate of decrease in membrane water permeability is suppressed more than in the prior art is the range surrounded by lines A, C and D in FIG.
【0035】図5、図6の条件により、図7を作図し
た。図7で示す領域Eは、酸化鉄除去率70%以上、即ち
差圧回復率80%以上が確保されるスクラビング空気流量
290〜 700m/hの範囲であり、かつ従来技術よりも膜
透水性低下率が抑制される範囲であり、ラインA、B、
C、Dで包囲される範囲である。FIG. 7 was drawn under the conditions of FIG. 5 and FIG. Region E shown in FIG. 7 is a scrubbing air flow rate at which the iron oxide removal rate is 70% or more, that is, the differential pressure recovery rate is 80% or more.
It is in the range of 290 to 700 m / h, and in the range in which the reduction rate of the membrane permeability is suppressed as compared with the prior art, lines A, B,
It is a range surrounded by C and D.
【0036】上述の実施例により、スクラビング工程で
の空気流量を 290〜 700m/hに設定し、設定スクラビ
ング空気流量や、処理水中の酸化鉄微粒子の剥離性の難
易度、装置運用上での停止時間の制約等に付随する形で
スクラビング工程時間を設定することで、中空糸膜の外
面肌荒れによる透水性能低下抑制及び膜面に付着した酸
化鉄微粒子除去効果を得ることが可能となる。According to the above-mentioned embodiment, the air flow rate in the scrubbing process is set to 290 to 700 m / h, the set scrubbing air flow rate, the difficulty of peeling iron oxide fine particles in the treated water, and the stoppage in operation of the apparatus. By setting the scrubbing process time in association with time constraints and the like, it becomes possible to obtain the effect of suppressing deterioration of water permeability due to roughening of the outer surface of the hollow fiber membrane and removing iron oxide fine particles adhering to the membrane surface.
【0037】<比較例>上記本発明例と同じろ過塔を使
用して10〜20μmの粒子径のα−Fe2 O3 を中空糸膜
1m2 当たりの付着量が10gとなるように調整した原水
を中空糸膜モジュール(1)でろ過させ、その後スクラ
ビング工程に移行した。スクラビングは水温40℃で実施
した。スクラビング空気流量を一方は最適スクラビング
流量範囲内の 560m/hで、他方は最適流量範囲外の 9
40m/hで10分間のスクラビングを10回実施した後の中
空糸膜モジュール差圧の変化を比較した。差圧上昇巾の
比較を図8に示す。最適スクラビング空気流量範囲内で
スクラビングを実施した方が差圧上昇が抑制されている
ことがわかる。<Comparative example> Using the same filtration tower as the above-mentioned example of the present invention, α-Fe 2 O 3 having a particle size of 10 to 20 μm was adjusted so that the adhered amount was 10 g per 1 m 2 of the hollow fiber membrane. Raw water was filtered by the hollow fiber membrane module (1), and then the scrubbing step was performed. Scrubbing was performed at a water temperature of 40 ° C. One scrubbing air flow rate is 560 m / h within the optimal scrubbing flow rate range, and the other is outside the optimal scrubbing flow rate range.
Changes in the differential pressure of the hollow fiber membrane modules after scrubbing for 10 minutes at 40 m / h for 10 times were compared. A comparison of the differential pressure rise widths is shown in FIG. It can be seen that the increase in differential pressure is suppressed when scrubbing is performed within the optimum scrubbing air flow rate range.
【図1】本発明に用いる中空糸膜モジュールを示す断面
図。FIG. 1 is a cross-sectional view showing a hollow fiber membrane module used in the present invention.
【図2】本発明に用いるろ過塔のフローを示す説明図。FIG. 2 is an explanatory diagram showing a flow of a filtration tower used in the present invention.
【図3】スクラビング空気流量と膜透水性低下率の関係
を示した線図。FIG. 3 is a diagram showing the relationship between the scrubbing air flow rate and the membrane water permeability reduction rate.
【図4】差圧回復率と酸化鉄微粒子除去率の関係を示し
た線図。FIG. 4 is a diagram showing the relationship between the differential pressure recovery rate and the iron oxide fine particle removal rate.
【図5】酸化鉄除去率有効範囲を示した線図。FIG. 5 is a diagram showing an effective range of iron oxide removal rate.
【図6】透水性能低下抑制範囲を示した線図。FIG. 6 is a diagram showing a range in which deterioration of water permeability is suppressed.
【図7】最適洗浄条件範囲を示した線図。FIG. 7 is a diagram showing an optimum cleaning condition range.
【図8】スクラビング空気流量設定による中空糸膜モジ
ュール差圧上昇の比較例を示した線図。FIG. 8 is a diagram showing a comparative example of the hollow fiber membrane module differential pressure increase due to scrubbing air flow rate setting.
1 中空糸膜モジュール 2A 細い中空糸膜 2B 太い中空糸膜 3A 保護筒 3B キャップ 4A 上部接合部 4B 下部接合部 5 集水室 6A 上部流通口 6B 下部流通口 7 気体流入口 8 スカート部 9 ろ過塔 10 仕切板 11 気泡分配機構 12 気泡受け 13 気泡分配管 14 ろ過水流出管 15 圧縮空気流入管 16 原水流入管 17 空気抜き管 18 ドレン管 19〜24 弁 25 バッフルプレート 1 Hollow Fiber Membrane Module 2A Thin Hollow Fiber Membrane 2B Thick Hollow Fiber Membrane 3A Protective Tube 3B Cap 4A Upper Joint 4B Lower Joint 5 Water Collection Chamber 6A Upper Flow Port 6B Lower Flow Port 7 Gas Inlet 8 Skirt 9 Filter Tower 10 Partition plate 11 Bubble distribution mechanism 12 Bubble receiver 13 Bubble distribution pipe 14 Filtered water outflow pipe 15 Compressed air inflow pipe 16 Raw water inflow pipe 17 Air vent pipe 18 Drain pipe 19 to 24 Valve 25 Baffle plate
───────────────────────────────────────────────────── フロントページの続き (72)発明者 森田 利夫 埼玉県戸田市川岸1丁目4番9号 オルガ ノ株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshio Morita 1-4-9 Kawagishi, Toda City, Saitama Prefecture Organo Corporation
Claims (4)
に、保護筒内に中空糸膜を多本数束ね、中空糸膜の両端
を固定し、且、中空糸膜と、中空糸膜を保護する外筒が
一体型として構成された中空糸膜モジュールを、仕切板
と鉛直方向に懸架してなるろ過塔の前記下室内に、不純
物として主に酸化鉄からなる微粒子を含む原水を流入し
て、各中空糸膜の外側から内側に原水を通過させること
により、各中空糸膜の外側で当該微粒子を捕捉すると共
に、各中空糸膜の内側に得られるろ過水を前記上室から
流出させるろ過工程と、中空糸膜が液体内に浸漬した状
態で中空糸膜モジュール下部から保護筒内に気体を導入
して、保護筒内に気液混合状態を形成し、中空糸膜を振
動させることにより中空糸膜の外側に付着した前記微粒
子を剥離するスクラビング工程を含む中空糸膜を用いた
ろ過方法において、上記のスクラビング工程における中
空糸膜モジュール保護筒内に導入する気体流量を、保護
筒内の有効断面積に対して 290〜 700m/hに設定する
ことを特徴とする中空糸膜を用いるろ過塔のスクラビン
グ方法。1. A plurality of hollow fiber membranes are bundled in a protective cylinder in a partition plate that divides the inside of a filtration tower into an upper chamber and a lower chamber, and both ends of the hollow fiber membranes are fixed, and the hollow fiber membranes and the hollow fibers are hollow. In the lower chamber of the filtration tower in which a hollow fiber membrane module in which an outer cylinder for protecting the fiber membrane is integrally configured is suspended in a vertical direction with a partition plate, raw water containing fine particles mainly composed of iron oxide as impurities. By flowing raw water from the outer side to the inner side of each hollow fiber membrane to capture the fine particles on the outer side of each hollow fiber membrane, and to obtain the filtered water obtained inside the hollow fiber membrane from the upper chamber. From the filtration step of flowing out from the hollow fiber membrane, the gas is introduced into the protective cylinder from the lower part of the hollow fiber membrane module in the state where the hollow fiber membrane is immersed in the liquid, and a gas-liquid mixed state is formed in the protective cylinder to form the hollow fiber membrane. A scrubber that separates the fine particles adhering to the outside of the hollow fiber membrane by vibrating In the filtration method using a hollow fiber membrane including a bubbling step, the gas flow rate introduced into the hollow fiber membrane module protective tube in the scrubbing step is set to 290 to 700 m / h with respect to the effective cross-sectional area in the protective tube. A method for scrubbing a filtration tower using a hollow fiber membrane.
該スクラビング時間(min) をYとしたとき、添付の図5
においてXとYの値を夫々 Y=600/(X−265)+3.5 (式I) で表わされる酸化鉄微粒子除去率70%以上の領域を示す
曲線Bより上方の斜線の範囲内に設定する請求項1記載
のスクラビング方法。2. The scrubbing air flow rate (m / h) is X,
When the scrubbing time (min) is Y, the attached FIG.
The values of X and Y are set within the range of the diagonal line above the curve B indicating the region where the iron oxide fine particle removal rate is 70% or more represented by Y = 600 / (X-265) +3.5 (Formula I). The scrubbing method according to claim 1.
該スクラビング時間(min) をYとしたとき、添付の図6
において、XとYの値を夫々 Y=2292.9X-0.7541 (式II) で表わされる膜透水性低下が抑制される領域を示す曲線
Dより下方の斜線の範囲内に設定する請求項1記載のス
クラビング方法。3. A scrubbing air flow rate (m / h) is X,
When the scrubbing time (min) is Y, the attached FIG.
2. In, the values of X and Y are each set within the range of the diagonal line below the curve D indicating the region in which the decrease in membrane permeability represented by Y = 2292.9X -0.7541 (Formula II) is suppressed. Scrubbing method.
該スクラビング時間(min) をYとしたとき、添付の図7
において、XとYの値を夫々 直線A(X=700) 直線C(X=290) 曲線B(式I … X=600/(X−265)+3.
5) 曲線D(式II … Y=2292.9X-0.7541 ) で囲まれた略斜線の領域E内に設定する請求項1記載の
スクラビング方法。4. The scrubbing air flow rate (m / h) is X,
When the scrubbing time (min) is Y, the attached FIG.
In X, the values of X and Y are respectively a straight line A (X = 700), a straight line C (X = 290), a curve B (equation I ... X = 600 / (X-265) +3.
5) The scrubbing method according to claim 1, wherein the scrubbing method is set in a substantially shaded area E surrounded by the curve D (formula II ... Y = 2292.9X -0.7541 ).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07255637A JP3137568B2 (en) | 1995-09-07 | 1995-09-07 | Method of scrubbing filtration tower using hollow fiber membrane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07255637A JP3137568B2 (en) | 1995-09-07 | 1995-09-07 | Method of scrubbing filtration tower using hollow fiber membrane |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0972993A true JPH0972993A (en) | 1997-03-18 |
JP3137568B2 JP3137568B2 (en) | 2001-02-26 |
Family
ID=17281515
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP07255637A Expired - Fee Related JP3137568B2 (en) | 1995-09-07 | 1995-09-07 | Method of scrubbing filtration tower using hollow fiber membrane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3137568B2 (en) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004050221A1 (en) * | 2002-12-05 | 2004-06-17 | U.S. Filter Wastewater Group, Inc. | Mixing chamber |
JP2009523062A (en) * | 2006-01-12 | 2009-06-18 | シーメンス・ウォーター・テクノロジーズ・コーポレーション | Improved operating methods in the filtration process. |
US8840783B2 (en) | 2007-05-29 | 2014-09-23 | Evoqua Water Technologies Llc | Water treatment membrane cleaning with pulsed airlift pump |
US8858796B2 (en) | 2005-08-22 | 2014-10-14 | Evoqua Water Technologies Llc | Assembly for water filtration using a tube manifold to minimise backwash |
US8956464B2 (en) | 2009-06-11 | 2015-02-17 | Evoqua Water Technologies Llc | Method of cleaning membranes |
US9023206B2 (en) | 2008-07-24 | 2015-05-05 | Evoqua Water Technologies Llc | Frame system for membrane filtration modules |
US9022224B2 (en) | 2010-09-24 | 2015-05-05 | Evoqua Water Technologies Llc | Fluid control manifold for membrane filtration system |
WO2016152336A1 (en) * | 2015-03-24 | 2016-09-29 | 住友電気工業株式会社 | Filtration unit |
US9533261B2 (en) | 2012-06-28 | 2017-01-03 | Evoqua Water Technologies Llc | Potting method |
US9604166B2 (en) | 2011-09-30 | 2017-03-28 | Evoqua Water Technologies Llc | Manifold arrangement |
US9675938B2 (en) | 2005-04-29 | 2017-06-13 | Evoqua Water Technologies Llc | Chemical clean for membrane filter |
US9764288B2 (en) | 2007-04-04 | 2017-09-19 | Evoqua Water Technologies Llc | Membrane module protection |
US9764289B2 (en) | 2012-09-26 | 2017-09-19 | Evoqua Water Technologies Llc | Membrane securement device |
US9815027B2 (en) | 2012-09-27 | 2017-11-14 | Evoqua Water Technologies Llc | Gas scouring apparatus for immersed membranes |
US9914097B2 (en) | 2010-04-30 | 2018-03-13 | Evoqua Water Technologies Llc | Fluid flow distribution device |
US9925499B2 (en) | 2011-09-30 | 2018-03-27 | Evoqua Water Technologies Llc | Isolation valve with seal for end cap of a filtration system |
US9962865B2 (en) | 2012-09-26 | 2018-05-08 | Evoqua Water Technologies Llc | Membrane potting methods |
US10322375B2 (en) | 2015-07-14 | 2019-06-18 | Evoqua Water Technologies Llc | Aeration device for filtration system |
US10427102B2 (en) | 2013-10-02 | 2019-10-01 | Evoqua Water Technologies Llc | Method and device for repairing a membrane filtration module |
JP2021137705A (en) * | 2020-03-03 | 2021-09-16 | 日東電工株式会社 | Hollow fiber membrane module |
-
1995
- 1995-09-07 JP JP07255637A patent/JP3137568B2/en not_active Expired - Fee Related
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004050221A1 (en) * | 2002-12-05 | 2004-06-17 | U.S. Filter Wastewater Group, Inc. | Mixing chamber |
US9675938B2 (en) | 2005-04-29 | 2017-06-13 | Evoqua Water Technologies Llc | Chemical clean for membrane filter |
US8858796B2 (en) | 2005-08-22 | 2014-10-14 | Evoqua Water Technologies Llc | Assembly for water filtration using a tube manifold to minimise backwash |
US8894858B1 (en) | 2005-08-22 | 2014-11-25 | Evoqua Water Technologies Llc | Method and assembly for water filtration using a tube manifold to minimize backwash |
JP2009523062A (en) * | 2006-01-12 | 2009-06-18 | シーメンス・ウォーター・テクノロジーズ・コーポレーション | Improved operating methods in the filtration process. |
US9764288B2 (en) | 2007-04-04 | 2017-09-19 | Evoqua Water Technologies Llc | Membrane module protection |
US10507431B2 (en) | 2007-05-29 | 2019-12-17 | Evoqua Water Technologies Llc | Membrane cleaning with pulsed airlift pump |
US9206057B2 (en) | 2007-05-29 | 2015-12-08 | Evoqua Water Technologies Llc | Membrane cleaning with pulsed airlift pump |
US9573824B2 (en) | 2007-05-29 | 2017-02-21 | Evoqua Water Technologies Llc | Membrane cleaning with pulsed airlift pump |
US8840783B2 (en) | 2007-05-29 | 2014-09-23 | Evoqua Water Technologies Llc | Water treatment membrane cleaning with pulsed airlift pump |
US9023206B2 (en) | 2008-07-24 | 2015-05-05 | Evoqua Water Technologies Llc | Frame system for membrane filtration modules |
US8956464B2 (en) | 2009-06-11 | 2015-02-17 | Evoqua Water Technologies Llc | Method of cleaning membranes |
US10441920B2 (en) | 2010-04-30 | 2019-10-15 | Evoqua Water Technologies Llc | Fluid flow distribution device |
US9914097B2 (en) | 2010-04-30 | 2018-03-13 | Evoqua Water Technologies Llc | Fluid flow distribution device |
US9022224B2 (en) | 2010-09-24 | 2015-05-05 | Evoqua Water Technologies Llc | Fluid control manifold for membrane filtration system |
US9630147B2 (en) | 2010-09-24 | 2017-04-25 | Evoqua Water Technologies Llc | Fluid control manifold for membrane filtration system |
US10391432B2 (en) | 2011-09-30 | 2019-08-27 | Evoqua Water Technologies Llc | Manifold arrangement |
US11065569B2 (en) | 2011-09-30 | 2021-07-20 | Rohm And Haas Electronic Materials Singapore Pte. Ltd. | Manifold arrangement |
US9604166B2 (en) | 2011-09-30 | 2017-03-28 | Evoqua Water Technologies Llc | Manifold arrangement |
US9925499B2 (en) | 2011-09-30 | 2018-03-27 | Evoqua Water Technologies Llc | Isolation valve with seal for end cap of a filtration system |
US9533261B2 (en) | 2012-06-28 | 2017-01-03 | Evoqua Water Technologies Llc | Potting method |
US9962865B2 (en) | 2012-09-26 | 2018-05-08 | Evoqua Water Technologies Llc | Membrane potting methods |
US9764289B2 (en) | 2012-09-26 | 2017-09-19 | Evoqua Water Technologies Llc | Membrane securement device |
US9815027B2 (en) | 2012-09-27 | 2017-11-14 | Evoqua Water Technologies Llc | Gas scouring apparatus for immersed membranes |
US10427102B2 (en) | 2013-10-02 | 2019-10-01 | Evoqua Water Technologies Llc | Method and device for repairing a membrane filtration module |
US11173453B2 (en) | 2013-10-02 | 2021-11-16 | Rohm And Haas Electronic Materials Singapores | Method and device for repairing a membrane filtration module |
WO2016152336A1 (en) * | 2015-03-24 | 2016-09-29 | 住友電気工業株式会社 | Filtration unit |
US10322375B2 (en) | 2015-07-14 | 2019-06-18 | Evoqua Water Technologies Llc | Aeration device for filtration system |
JP2021137705A (en) * | 2020-03-03 | 2021-09-16 | 日東電工株式会社 | Hollow fiber membrane module |
Also Published As
Publication number | Publication date |
---|---|
JP3137568B2 (en) | 2001-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3137568B2 (en) | Method of scrubbing filtration tower using hollow fiber membrane | |
JP2858913B2 (en) | Filtration method using hollow fiber membrane | |
JP2904564B2 (en) | Method of scrubbing filtration tower using hollow fiber membrane | |
JP3273665B2 (en) | Hollow fiber membrane filtration device and cleaning method thereof | |
JP3248611B2 (en) | Solid-liquid separation device | |
JP2000051669A (en) | Hollow fiber membrane module fitted with lower cap | |
JPS62163708A (en) | Method for backwashing hollow yarn filter | |
JP2008513187A (en) | Method and apparatus for removing solids from membrane modules | |
JPH0231200A (en) | Backwash method of hollow-string film filter | |
JPH11179171A (en) | Hollow fiber membrane filter and its operation method | |
JP2014024031A (en) | Membrane filtration apparatus | |
JP2599538B2 (en) | Inclined plate type sedimentation tank and method for preventing clogging thereof | |
JPH05285354A (en) | Washing and regenerating method for filter membrane | |
JP3147720B2 (en) | Cleaning method for down-flow filtration device | |
JP3303267B2 (en) | Precipitation filtration method and apparatus therefor | |
JP5768487B2 (en) | Filtration device | |
JPH01266809A (en) | Method for backwashing hollow yarn membrane filter | |
JP3601014B2 (en) | Method and apparatus for concentrating raw water in submerged membrane filtration equipment | |
JP2006007179A (en) | Membrane filtering arrangement and membrane filtration method | |
JP3282781B2 (en) | Hollow fiber membrane filtration device | |
JP3488410B2 (en) | Filtration device | |
JPS58183906A (en) | Method and apparatus for filtrating liquid containing suspended substance | |
JPS62201610A (en) | Hollow yarn membrane filter | |
CN109052508B (en) | Purification device and purification method for paint spraying process wastewater | |
JP2795287B2 (en) | Filtration method using hollow fiber membrane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 7 Free format text: PAYMENT UNTIL: 20071208 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081208 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081208 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20091208 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20091208 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101208 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101208 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111208 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111208 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121208 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121208 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 13 Free format text: PAYMENT UNTIL: 20131208 |
|
LAPS | Cancellation because of no payment of annual fees |