JPH0972993A - Scrubbing method for filter tower using hollow fiber membrane - Google Patents

Scrubbing method for filter tower using hollow fiber membrane

Info

Publication number
JPH0972993A
JPH0972993A JP25563795A JP25563795A JPH0972993A JP H0972993 A JPH0972993 A JP H0972993A JP 25563795 A JP25563795 A JP 25563795A JP 25563795 A JP25563795 A JP 25563795A JP H0972993 A JPH0972993 A JP H0972993A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
hollow fiber
fiber membrane
scrubbing
filtration
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25563795A
Other languages
Japanese (ja)
Other versions
JP3137568B2 (en )
Inventor
Toshio Morita
Shinichi Ohashi
Yoshio Sunaoka
Satoru Tsuda
伸一 大橋
利夫 森田
悟 津田
好夫 砂岡
Original Assignee
Japan Organo Co Ltd
オルガノ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

PROBLEM TO BE SOLVED: To eliminate the surface roughness of membrane to the utmost extent and effectively peel off and remove trapped fine particles by setting an optical flow rate of cleaning air and cleaning time. SOLUTION: Hollow fiber membranes 2A and 2B of 100 to 50000 pieces are housed in a protective cylinder 3A. Raw water including fine particles mainly comprised of iron oxide as impurities is allowed to pass through a filter tower provided with a hollow fiber membrane module 1 from the outside to inside of the fiber membranes 2A and 2B for filtration. Then, after forming a gas-liquid mixing state in the cylinder 3A, the membranes 2A and 2B are vibrated so as to peel of the fine particles adhered to the outside thereof. At this time, the flow rate of a gas to be introduced into the cylinder 3A is set to 290 to 700m/h. Thus, a decrease in permeability due to roughed outer surface of the membranes 2A and 2B can be suppressed and the fine particles of iron oxide adhered to the surface thereof be also removed effectively by setting a scrubbing air flow rate or processing time.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は原子力発電所や火力発電所の復水処理や産業廃水処理等において使用される、中空糸膜モジュールを用いるろ過塔のスクラビング方法に関するものである。 The present invention relates to relates to a scrubbing method filtration column used is used in condensate treatment and industrial wastewater treatment, etc. of nuclear power plants and thermal power plants, the hollow fiber membrane module.

【0002】 [0002]

【従来の技術】中空糸膜を用いるろ過塔は、微細孔を多数有する中空糸膜を多本数束ねて中空糸膜モジュールを形成し、当該中空糸膜モジュールの多本数をろ過塔内に横設した仕切板に対し鉛直方向に懸架したもので、ろ過工程は仕切板で区画した下室に原水を供給することにより、当該中空糸膜の外側から内側へ原水を通過させて各中空糸膜の外側で原水中の不純物の微粒子を捕捉し、中空糸膜の内側から得られるろ過水を仕切板で区画した上室に集合させてろ過塔から流出させるものである。 Filtration column using the Related Art Hollow fiber membrane, laterally disposed the micropores of hollow fiber membranes bundled multi number to form a hollow fiber membrane module having a large number, a multi-number of the hollow fiber membrane module in the filtration tower which it was suspended in a vertical direction with respect to the partition plate, and filtration step by supplying raw water to the lower chamber which is partitioned by a partition plate, from outside of the hollow fiber membrane of the hollow fiber membranes by passing the raw water to the inside the fine particles in raw water impurities captured outside, is intended to flow out filtered water obtained from the inside of the hollow fiber membrane from the filtration tower are assembled on top chamber which is partitioned by a partition plate.

【0003】このようなろ過工程を長期継続して行うことにより中空糸膜外面に微粒子が蓄積することによりろ過塔の差圧が上昇してしまう。 [0003] differential pressure filtration column rises by the fine particles accumulate in the hollow fiber membrane outer surface by performing long-term continuing such filtration step. そこで従来より水中に存する各中空糸膜の近傍の水に気体を供給して各中空糸膜を振動させて、各中空糸膜の外側で捕捉した前記微粒子を剥離するスクラビング工程を行い、次いで剥離した微粒子を含む洗浄廃液を下室から排出するブロー工程を行い、前記ろ過工程とスクラビング工程とブロー工程を順次くり返して処理を行っていた。 So by vibrating each hollow fiber membrane by supplying a gas to the water in the vicinity of each hollow fiber membrane exists than in water prior art performs scrubbing step of removing the fine particles captured at the outside of each hollow fiber membrane and then peeling the spent cleaning liquid followed by blow step of discharging from the lower chamber, it has been performed the filtering step and the scrubbing step and blowing step sequentially repeating the process comprising the microparticles. なお、スクラビング工程の前あるいは後あるいはスクラビング工程中に、中空糸膜の内側から外側に洗浄水を逆流する逆洗工程を行うこともある。 Incidentally, after, or before the scrubbing step or during the scrubbing process, sometimes performing backwashing step of backflow washing water from the inside of the hollow fiber membrane on the outside.

【0004】このように中空糸膜を用いるろ過塔は基本的にはろ過工程とスクラビング工程とブロー工程をくり返し行って操作するものである為、ろ過工程で中空糸膜に捕捉された微粒子が蓄積してろ過塔の差圧が上昇し、 [0004] Thus since the hollow fiber membrane filtration column using basically is intended to operate by performing repeated filtration step and scrubbing step and blowing step, the particulate matter collected in the hollow fiber membrane in the filtration step is accumulated and the differential pressure of the filtration tower rises,
ろ過の継続が不能にならないように充分な配慮をする必要がある。 Continuing need to sufficient care so as not disabled filtration. このため、従来から微粒子の蓄積を防止する為に、中空糸膜モジュールの構造、塔構造、スクラビング方法を含む中空糸膜の洗浄方法等の検討、試験、開発が進められている。 Therefore, in order to prevent the accumulation of particulates from the conventional structure of the hollow fiber membrane module, the study of the method for cleaning hollow fiber membrane comprising the tower structure, the scrubbing process, testing, has been developed.

【0005】 [0005]

【発明が解決しようとする課題】本発明者等も上述のように、より効果的な中空糸膜の洗浄方法を開発すべく努力してきた。 As described above also present inventors [0005] have been efforts to develop a method for cleaning more effective hollow fiber membrane. しかし、原水不純物としての微粒子として主に酸化鉄を含む、例えば沸騰水型原子力発電所の復水(一次冷却水)などを原水とした場合、ろ過工程によって差圧が上昇した中空糸膜モジュールに対して前記スクラビング工程や逆洗工程を実施しても差圧が元に戻らず、さらに、酸で中空糸膜を洗浄して膜外面に付着している酸化鉄を溶解、除去しても差圧が元に戻らないケースがあることが判明した。 However, including the predominantly iron oxide as fine particles of a raw water impurity, for example, when a like boiling water nuclear power plant condensate (primary cooling water) as a raw water, the hollow fiber membrane module differential pressure was increased by a filtration step differential pressure does not return to the original be carried out the scrubbing step and backwashing step for further dissolving the iron oxide adhering to the membrane outer surface was washed hollow fiber membranes with an acid, it is removed differences pressure has been found that there is a case that does not return to the original.

【0006】この原因として以下のことが明らかとなった。 [0006] it became clear that the following as the cause. 即ち、差圧が元に戻らない理由は、膜自体の透水性が低下している為であり、膜の内外間の差圧により膜が圧密化したものでも、膜がつぶれたものでもなく、膜の外表面の、極めて表面のみが肌荒れ状態になっており、 That is, why the differential pressure does not return to the original is because the water permeability of the film itself is reduced, even those films by the pressure difference between the inside and outside of the film is compacted, without any intended film is crushed, the outer surface of the membrane, and only a very surface becomes rough state,
当該肌荒れ部分にもともと存在していた微細孔が閉塞されており、その結果中空糸膜全体の微細孔が少なくなった為であり、その状態は酸、酸化剤、還元剤等の洗浄剤を用いて洗浄しても変化がなく、中空糸膜の引張り強度、引張り伸度、破裂強度等の機械的強度の低下として現れる物性劣化ではないことが判明した。 The rough portion being originally closed exists and have micropores, as a result is because the hollow fiber membranes across the micropores is low, the condition is used acid, oxidizing agent, a cleaning agent such as a reducing agent no change be washed Te, tensile strength of the hollow fiber membrane, tensile elongation, is not a physical property degradation appears as a decrease in mechanical strength such as rupture strength was found.

【0007】即ち、膜外表面の肌荒れは、膜表面に酸化鉄等の微粒子が衝突することで発生し、中空糸膜が振動しているときに前記微粒子が中空糸膜相互の間に存在するときに発生し、中空糸膜のスクラビング工程中に最も発生しやすいものであることが判明した。 Namely, the surface roughening outer surface of the membrane, caused by colliding fine particles such as iron oxide on the film surface, the fine particles are present between the hollow fiber membranes to each other when the hollow fiber membrane is vibrating It occurs when it is most common in the during the scrubbing process of the hollow fiber membrane was found. また、スクラビング時の気体流量及びスクラビング時間長さに伴い促進されることが判明した。 Further, it has been found to be accelerated with the gas flow and the scrubbing time length during scrubbing.

【0008】従って、上述のような膜の外面肌荒れを防止する為には、スクラビング工程における中空糸膜と酸化鉄微粒子の接触時の気体流量の最小化、及びスクラビング時間の短縮化、極端な例としてはスクラビングを実施しないことが効果的と考えられるが、ろ過工程で膜に捕捉された微粒子の蓄積を容認すると、ろ過器本来の使用方法から逸脱し、膜外面での微粒子蓄積による差圧上昇を引き起こし、ろ過工程の継続が不能となる。 Accordingly, in order to prevent the outer surface roughening of the film as described above, it minimizes the gas flow at the time of contact of the hollow fiber membrane and the iron oxide particles in the scrubbing process, and shortening of the scrubbing time, extreme as it is considered that it is effective not to implement the scrubbing and tolerate the accumulation of the particulate matter collected by membrane filtration step, filter deviate from the original use, the differential pressure rise due to particulate accumulation in the Makugaimen the cause, continuation of the filtration step becomes impossible.

【0009】本発明はこのような背景のもとになされたものであり、膜の透水性能低下を引き起こす膜面の肌荒れを極力抑制し、しかも中空糸膜に捕捉された微粒子を剥離できる、中空糸膜を用いたろ過塔の最適スクラビング方法を提案することを目的としたものである。 [0009] The present invention has been made on the basis of this background, the surface roughening of the film surface to cause water permeability reduction in the film suppressed as much as possible, yet can be stripped the collected particulate matter in a hollow fiber membrane, hollow it is intended to propose the optimum scrubbing method filtration column using the yarn layer.

【0010】 [0010]

【課題を解決するための手段】上記目的を達成する為になされた本発明よりなる中空糸膜を用いるろ過塔のスクラビング方法は、ろ過塔内を上室と下室とに区画する仕切板に保護筒内に中空糸膜を多本数束ね、中空糸膜の両端を固定し、且、中空糸膜と、中空糸膜を保護する外筒が一体型として構成された中空糸膜モジュールを、仕切板と鉛直方向に懸架してなるろ過塔の前記下室内に、不純物として主に酸化鉄からなる微粒子を含む原水を流入して、各中空糸膜の外側から内側に原水を通過させることにより、各中空糸膜の外側で当該微粒子を捕捉すると共に、各中空糸膜の内側に得られるろ過水を前記上室から流出させるろ過工程と、中空糸膜が液体内に浸漬した状態で中空糸膜モジュール下部から保護筒内に気体を導入して、保護筒内 Scrubbing method filtration column using a hollow fiber membrane made of the present invention has been made in order to achieve the above object, there is provided a means for solving] is the partition plate for partitioning into an upper chamber and a lower chamber in the filter tower bundled multi number of hollow fiber membranes in a protective tube, both ends of the hollow fiber membrane was fixed, 且, a hollow fiber membrane, a hollow fiber membrane module outer tube is configured as an integral protecting the hollow fiber membrane, the partition in the lower chamber of the filtration tower formed by suspended plate and vertically, by which flowing the raw water containing the fine particles of mainly iron oxide as an impurity, is passed through the raw water from the outside to the inside of the hollow fiber membranes, together to trap the fine particles on the outside of each hollow fiber membrane, a filtration step of discharging the filtered water obtained inside each hollow fiber membrane from the upper chamber, the hollow fiber membrane while the hollow fiber membrane was immersed in the liquid by introducing a gas into the protective tube from the lower module, the protecting cylinder 気液混合状態を形成し、中空糸膜を振動させることにより中空糸膜の外側に付着した前記微粒子を剥離するスクラビング工程と、剥離した微粒子を含む洗浄廃液を下室から排出するブロー工程を含む中空糸膜を用いるろ過方法において、上記のスクラビング工程における中空糸膜モジュール保護筒内に導入する気体流量を、保護筒内の有効断面積に対して 290〜 700m/ To form a gas-liquid mixed state, comprising a scrubbing step of removing the particles adhering to the outside of the hollow fiber membrane by vibrating the hollow fiber membranes, a blowing step for discharging the washing liquid waste containing exfoliated particles from the lower chamber in the filtration method using hollow fiber membranes, the gas flow to be introduced into the hollow fiber membrane module protective cylinder in the above scrubbing process, 290 to 700 meters the effective cross-sectional area of ​​the protective tube /
hに設定することを特徴とするものであり、前記のスクラビング操作を最適化するものである。 And characterized in that to set the h, it is to optimize the scrubbing operation.

【0011】ここで有効断面積とは、中空糸膜モジュール保護筒内の中空糸膜の有効ろ過面が存する領域において気体が通過可能な断面積を示し、保護筒の内側断面積から保護筒内に設けられた中空糸膜等の構成部品の断面積を除いたものをいう。 [0011] Here, the effective cross-sectional area, the hollow fiber membrane shows a cross-sectional area available through which gas in the effective filtration surface resides region of the hollow fiber membrane module in a protective tube, the protective cylinder from the inner cross-sectional area of ​​the protective tube It refers to excluding the cross-sectional area of ​​the component parts of the hollow fiber membrane or the like provided. また、気体流量は有効断面積1 Further, the gas flow effective sectional area 1
2当たりに中空糸膜モジュールに導入した気体の流量を示し、いわば中空糸膜モジュール保護筒内の通過可能な空間を気体が上昇する平均的な流速である。 m indicates the flow rate of the gas introduced into the second hollow fiber membrane module per, is so to speak a passable space of the hollow fiber membrane module in a protective tube and the average flow rate gas is increased. 尚、気体には圧縮性がある為、液体内での深さにより流量が変化するので、ここでいう気体流量は中空糸膜モジュール保護筒内の中空糸膜の有効ろ過面が存する領域の上端部での流量を示す。 Incidentally, since the gas is compressible, the change flow rate by the depth in the liquid, the upper end of where gas flow mentioned effective filtration surface of the hollow fiber membrane in the hollow fiber membrane module protecting cylinder resides region It shows the flow rate at the department.

【0012】本発明の作用は、最適洗浄気体流量又は最適洗浄流量と洗浄時間を規定することで、スクラビング工程中の膜表面の肌荒れを極小化し、さらに膜表面に捕捉された微粒子を効果的に剥離、除去するものである。 [0012] Operation of the present invention, by defining the optimum cleaning gas flow or optimal wash flow rate and cleaning time, scrubbing minimized skin roughness on the film surface during the process, fine particles effectively that trapped more membrane surface peeling, and removing.

【0013】 [0013]

【発明の実施の形態】以下に本発明を図を用いて説明する図1は本発明に用いる中空糸膜モジュールを示す断面図であり、図2は本発明に用いるろ過塔のフローを示す説明図である。 Figure 1 will be described with reference to the drawings the present invention in the following DETAILED DESCRIPTION OF THE INVENTION is a sectional view showing a hollow fiber membrane module for use in the present invention, Figure 2 shows a flow of a filtration column used in the present invention described it is a diagram.

【0014】本発明に用いる中空糸膜モジュール(1) [0014] The hollow fiber membrane module for use in the present invention (1)
を図1に示す実施例によって説明するが、本発明はこの範囲に限定されるものではない。 The examples will be described is shown in Figure 1, the present invention is not limited to this range. 図1に示したごとく、 As shown in FIG. 1,
0.01μm〜 0.3μmの微細孔を有する外径 0.2〜7mm、 Outer diameter 0.2~7mm having fine pores of 0.01 [mu] m to 0.3 [mu] m,
内径 0.2〜5mmの中空糸膜(2A,2B)を 100〜 500 100 hollow fiber membranes having an inner diameter 0.2~5mm (2A, 2B) 500
00本前後、保護筒(3A)に収納したもので、当該中空糸膜(2A,2B)の両端をその中空部を閉塞することなく接合部(4A,4B)で接着し、下部接合部には集水室(5)を形成すべくキャップ(3B)を液密状態に設け、また保護筒(3A)の下方部、上方部にそれぞれ気体流入口(6A,6B)を設けると共に、下部接合部(4A)近傍に気体流入口(7)を設け、さらに保護筒(3A)の下方にスカート部(8)を設けたものである。 00 present longitudinal, which was housed in the protective tube (3A), the hollow fiber membranes (2A, 2B) joint without ends closing the hollow portion of (4A, 4B) bonded with, the lower joint with the provided water collecting chamber (5) to form a cap (3B) in liquid-tight manner, also the lower part of the protective tube (3A), respectively the gas inlet (6A, 6B) in the upper part is provided, the lower joint part of providing (4A) gas inlet in the vicinity (7), in which further provided skirt portion (8) below the protecting cylinder (3A).

【0015】当該中空糸膜(2A,2B)は専ら被処理液のろ過を行う細い中空糸膜(2A)と被処理液のろ過と同時に集水管としての作用も行う太い中空糸膜(2 [0015] The hollow fiber membranes (2A, 2B) thick hollow fiber membrane also perform exclusively act as water collecting pipe at the same time narrow the hollow fiber membranes to perform filtering and (2A) and filtration of the liquid to be treated of the treatment liquid (2
B)で構成され、中空糸膜(2A)の外側よりろ過されて中空糸内を流れた透過水の一部は上端面上に送られるとともに、他部は下端面から集水室(5)に集り、次いで中空糸膜(2B)の中空糸内を通って上端面上に送られて、上端に流れた前記透過水と合流する。 Is composed of B), and filtered from the outside of the hollow fiber membranes (2A) in conjunction with some of the permeated water flows through the hollow fibers are sent to the upper end face, the other portion is water collecting chamber from the lower end surface (5) the collection, then sent to the upper end face through the hollow fibers of the hollow fiber membranes (2B), and merges with the permeate flowing to the upper end. 尚、中空糸膜モジュールには、中空糸膜(2B)の替りに管状の取水管を用いる場合や、取水管を中空糸膜モジュールの外側に設ける場合や、中空糸膜(2A)の下端を閉止して透過水を上端面のみから取水する場合など様々なタイプがある。 Incidentally, the hollow fiber membrane module, and the case of using the intake pipe instead of the tubular hollow fiber membrane (2B), and the case of providing the intake pipe on the outside of the hollow fiber membrane module, the lower end of the hollow fiber membranes (2A) closure to have various types such as when intake permeate from only the upper end face. また、使用する中空糸膜の材質もポリオレフィン系の材質やポリスルホン等様々な材質がある。 The material of the hollow fiber membrane to be used also on its material, polysulfone and the like various materials of polyolefin.

【0016】当該中空糸膜モジュール(1)をろ過塔に配置するにあたっては、図2に示したごとく、ろ過塔(9)の上方部に仕切板(10)を設け、ろ過塔(9)内を上室Fと下室Rに区画し、当該仕切板(10)に多数本の中空糸膜モジュール(1)を仕切板(10)の下方に鉛直方向に懸架する。 [0016] When placing the hollow fiber membrane module (1) to the filtration tower, as shown in FIG. 2, the partition plate (10) provided in the upper portion of the filtration column (9), filtration column (9) in was divided into upper chamber F and the lower chamber R, it is suspended vertically below the partition plate (10) to a large number of hollow fiber membrane module (1) the partition plate (10). またろ過塔(9)内に気泡分配機構(11)を配置する。 The placing bubble distribution mechanism (11) to the filtration column (9) in. 当該気泡分配機構(11)は気泡受け(12)と当該気泡受け(12)を貫通する気泡分配管(1 The bubble distribution mechanism (11) is the bubble distribution pipe (1 penetrating bubble receiving (12) receiving the air bubble (12)
3)より構成されるもので、中空糸膜モジュール(1) 3) those composed from a hollow fiber membrane module (1)
のスカート(8)の直下に当該気泡分配管(13)を対応させるものとする。 The bubble distribution pipe (13) is assumed to correspond to just below the skirt (8).

【0017】なお、ろ過塔(9)の上部にろ過水流出管(14)の一端と圧縮空気流入管(15A)の一端を連通し、またろ過塔(9)の下部に原水流入管(16)の一端及び圧縮空気流入管(15B)の一端、及びドレン管(1 [0017] Incidentally, water inlet pipe at the bottom of communicating the one end of the one end with the compressed air inlet pipe of the upper to the filtered water outlet pipe of the filtration column (9) (14) (15A), also filtered column (9) (16 one end and one end of the compressed air inlet pipe (15B), and a drain pipe) (1
8)の一端をそれぞれ連通し、さらに前記仕切板(10) One end of 8) each communicating further the partition plate (10)
の直下の側胴部に空気抜き管(17)の一端を連通する。 Communicating one end of the vent line (17) in the side body portion immediately below the.
なお、(19)〜(24)はそれぞれ弁を示し、(25)はバッフルプレートである。 Note that (19) - (24) show respectively valves, (25) is a baffle plate.

【0018】当該ろ過塔(9)を用いて、本発明の処理対象として酸化鉄を含む復水を例として説明する。 [0018] Using the filtration tower (9), it is described as an example condensate comprising iron oxide as a processing target of the present invention. ろ過工程においては、原水は弁(19)及び(23)を開として原水流入管(16)からろ過塔(9)の下室Rに流入し、 In the filtration step, the raw water flows into the lower chamber R of the valve (19) and the water inlet pipe (23) is opened (16) Kararo over the tower (9),
中空糸膜モジュール(1)により原水中の酸化鉄微粒子をろ過し、ろ過水は上室Fで集合し、ろ過水流出管(1 The hollow fiber membrane module (1) filtering the iron oxide particles in the raw water, the filtered water is gathered in the upper chamber F, filtered water outflow pipe (1
4)から流出する。 4) flows out from. ろ過を継続することによりろ過塔(9)の差圧は上昇し、規定の差圧に到達した時点でスクラビング工程が実施される。 Differential pressure filtration column (9) by continuing the filtration rises, scrubbing step is performed when reaching the differential pressure specified.

【0019】即ち、中空糸膜表面に付着した酸化鉄微粒子を除去する為、弁(19)及び(23)を閉じ下室Rに原水を、また上室Fにろ過水を満たしたまま、弁(21)及び(22)を開弁し圧縮空気流入管(15B)から圧縮空気を流入する。 [0019] That is, to remove the iron oxide fine particles attached on the surface of the hollow fiber membrane, while filled with filtered water raw water to the lower chamber R to close the valve (19) and (23), also in the upper chamber F, the valve (21) and (22) flows into the compressed air from the opening and the compressed air inlet pipe (15B) a. 当該圧縮空気は気泡受け(12)の下面で一端受けられ、次いで気泡分配管(13)の側部に設けられた孔(図示せず)から空気分配管(13)の内部を気泡となって中空糸膜モジュール(1)のスカート(8)内に流入し、次いで気体流入口(7)を介して各中空糸膜モジュール(1)内に流入する。 The compressed air to one end received is on the lower surface of the receiving cell (12), then turned through a hole provided in a side portion of the bubble distribution pipes (13) (not shown) and air bubbles inside the air delivery pipe (13) flows into the skirt (8) of the hollow fiber membrane module (1), and then flows into the gas inlet (7) in the hollow fiber membrane module via (1). 当該気泡の上昇により各中空糸膜(2A,2B)は振動すると共に中空糸膜モジュール(1)内の水が攪拌され各中空糸膜(2A,2 Each hollow fiber membrane due to the rise of the bubble (2A, 2B) hollow fiber membrane module (1) in water is stirred for the hollow fiber membranes while vibrating (2A, 2
B)の表面に捕捉された酸化鉄微粒子が剥離し、ろ過塔(9)の下室R中に分散する。 Peeled captured iron oxide particles on the surface of B), dispersed in the lower chamber R filtration column (9). なお気泡は中空糸膜モジュール(1)の流通口(6B)から当該中空糸膜モジュール(1)外に流出し、ついで空気抜き管(17)からろ過塔(9)外に排出する。 Note bubbles flows out to the flow port such from (6B) hollow fiber membrane module (1) outside of the hollow fiber membrane module (1), followed by vent line (17) Kararo over the tower (9) for discharging to the outside.

【0020】酸化鉄微粒子を剥離する為のスクラビング空気流量は、その流量を大きくすると、剥離した酸化鉄微粒子が中空糸膜(2A,2B)の膜表面に衝突する機会が多くなり、膜外面肌荒れの原因となり、また少ないと剥離した酸化鉄微粒子が中空糸膜(2A,2B)の膜表面に衝突する機会が少なくなり、膜外面肌荒れは抑制されるが、酸化鉄微粒子の剥離効果が低下する。 The scrubbing air flow for separating the fine iron oxide particles, increasing the flow rate, is increased opportunities exfoliated iron oxide fine particles collide with the membrane surface of the hollow fiber membranes (2A, 2B), Makugaimen rough cause and result in, also a small peeling iron oxide particles hollow fiber membranes (2A, 2B) less chance to collide with the surface of the film, but Makugaimen rough skin is suppressed, the peeling effect of the iron oxide particles is decreased . 本発明の請求項1ないし4で示す最適洗浄空気流量スクラビングを実施すれば、スクラビング工程中の膜表面の肌荒れを極小化し、さらに膜表面に捕捉された酸化鉄微粒子を効果的に剥離、除去することが可能となる。 By carrying out optimum cleaning air flow scrubbing shown in claims 1 to 4 of the present invention, to minimize the rough surface of the film during scrubbing process, more effectively stripping the captured fine iron oxide particles to the film surface, is removed it becomes possible.

【0021】以上のスクラビングにより剥離し、ろ過塔(9)の下室R内の水中に分散した酸化鉄微粒子はスクラビング工程終了後、ろ過塔外にブローする。 The stripped by more scrubbing, fine iron oxide particles dispersed in water in lower chamber R filtration column (9) is blown after the completion of the scrubbing step, outside the filtration column. すなわち弁(22)を開弁したまま弁(21)を閉弁し弁(20)を開弁して酸化鉄微粒子が分散している洗浄廃液をドレン管(18)から流出させる。 That is caused to flow out valve a waste wash liquid which open to the iron oxide particles are dispersed in the closed and valve while the valve was opened (22) (21) (20) from the drain pipe (18). なお、洗浄廃液を流出させる当該工程は水頭差を用いるものであるが、空気抜き管(1 Although the step of discharging the waste wash liquid is to use a water head difference, the air vent pipe (1
7)あるいは圧縮空気流入管(15B)から圧縮空気を流入して当該空気圧を用いた急速流出を行うこともできる。 7) or the air flows into the compressed air from the compressed air inlet pipe (15B) rapid outflow can also be performed using. なお上記ブローと同時に、又はブロー終了後圧縮空気流入管(15A)から圧縮空気を流入し、上室Fに存在する透過水を中空糸膜(2A,2B)内を逆流させる逆洗工程を行うこともある。 Note the blow at the same time, or flowing the compressed air from the blow after the end of the compressed air inlet pipe (15A), carries out a backwash step of flowing back transmitted water present in the upper chamber F hollow fiber membranes (2A, 2B) of the Sometimes.

【0022】 [0022]

【発明の効果】本発明はスクラビング工程でのスクラビング空気流量の最適化により、中空糸膜の透水性能低下防止及び中空糸膜の汚染蓄積防止をすることで、中空糸膜モジュールの差圧上昇を極小化し、中空糸膜モジュールの交換寿命延長効果を得るものである。 According to the present invention by optimizing the scrubbing air flow at scrubbing step, by the contamination accumulates prevention of water permeation performance degradation prevention and hollow fiber membranes of the hollow fiber membrane, a differential pressure rise of the hollow fiber membrane module minimized, thereby obtaining a replacement life extension effect of the hollow fiber membrane module.

【0023】 [0023]

【実施例】本発明の効果をより明確に説明する為に以下に本発明例を示す。 Illustrate the present invention Example The effect of the embodiment of the present invention to describe more clearly below. 0.1μm前後の微細孔を有する外径 An outer diameter having a 0.1μm around the micropores
1.22mm、内径 0.7mm、長さ2200mmの中空糸膜4200本と外径 5.4mm、内径4mm、長さ2200mmの中空糸膜75本を、内径 123.4mmの保護筒内に束ねた図1に示したような中空糸膜モジュールを、ろ過塔に1本配置して図2に示したフローに準じて小型実験ろ過塔を形成し、以下の実験を行った。 1.22 mm, an inner diameter of 0.7 mm, the hollow fiber membrane 4200 present to the outer diameter 5.4mm length 2200 mm, internal diameter 4 mm, the hollow fiber membranes 75 present a length 2200 mm, shown in FIG. 1 bundled within a protective tube having an inner diameter of 123.4mm the hollow fiber membrane module as, in accordance with the flow shown in FIG. 2 to form a small experimental filtration column arranged one for filtration column, the following experiment was performed. 尚中空糸膜の材質はポリエチレンであった。 Note the material of the hollow fiber membrane was polyethylene.

【0024】まず、中空糸膜の外面肌荒れ、即ち膜透水性能低下を極小化するスクラビング空気流量条件について説明する。 [0024] First, the outer surface roughening of the hollow fiber membrane, i.e. the membrane water permeability reduction for scrubbing air flow conditions to minimize explained. 10〜20μmの粒子径のα−Fe 23を主成分とする酸化鉄微粒子を中空糸膜1m 2当たりの付着量が10gとなるように調整した原水を中空糸膜モジュール(1)でろ過させ、その後スクラビング工程に移行した。 Filtering raw water adhesion amount of hollow fiber membranes 1 m 2 per iron oxide fine particle mainly comprising α-Fe 2 O 3 particle size was adjusted to be 10g of 10~20μm a hollow fiber membrane module (1) then, and then it migrated to the scrubbing process. スクラビングは水温40℃で実施した。 Scrubbing was carried out at a water temperature of 40 ℃. 比較的大きな粒径の酸化鉄微粒子を使用した理由はスクラビング工程時に中空糸膜の外面肌荒れを確実に発生させ、実機を模擬する為である。 Relatively large reason for using iron oxide particles having a particle size of reliably generate an outer surface roughening of the hollow fiber membrane during scrubbing step, is to simulate the real machine.

【0025】図3にスクラビング空気流量と膜透水性低下率の関係を示す。 [0025] FIG. 3 shows the relationship between the scrubbing air flow and film permeability decrease ratio. ここで、膜透水性低下率はろ過面積の大部分を占める外径1.22mmの中空糸膜についての測定結果で代表した。 Here, the film permeability reduction rate was represented by the measurement results for the hollow fiber membrane outer diameter 1.22mm occupying most of the filtration area. 膜透水性低下率はスクラビング空気流量の増加と共に 700m/h程度まではなだらかな勾配で増大するものの、それ以上の空気流量範囲では膜透水性低下率は空気流量の増加と共に急激に増加する。 Although membrane permeability decrease ratio is up to about 700 meters / h with increasing scrubbing air flow increases along a gentle slope, membrane permeability decrease ratio at higher air flow range sharply increases with increasing air flow.

【0026】700m/h以上のスクラビング空気流量では膜透水性低下を加速し、スクラビング条件としては不適当であることが示された。 [0026] In 700 meters / h or more scrubbing air flow accelerates the film permeability reduction, it was shown to be unsuitable as scrubbing conditions. 図3より、スクラビング空気流量は 700m/h以下に設定する。 Than 3, scrubbing air flow rate is set to less than 700 meters / h.

【0027】次に中空糸膜表面に捕捉された主に酸化鉄からなる微粒子を効果的に剥離、除去する為のスクラビング空気流量条件について説明する。 [0027] Next effectively stripping the fine particles of captured mainly iron oxide on the surface of the hollow fiber membrane will be described scrubbing air flow conditions for removal. 1〜3μmの粒子径のα−Fe 23を主成分とする酸化鉄微粒子を中空糸膜1m 2当たりの付着量が50gとなるように調整した原水を中空糸膜モジュール(1)でろ過させ、差圧上昇を約 0.3kg/cm 2程度とし、その後スクラビング工程に移行した。 Filtering raw water adhesion amount of hollow fiber membranes 1 m 2 per iron oxide fine particle mainly comprising α-Fe 2 O 3 particle size was adjusted to be 50g of 1~3μm a hollow fiber membrane module (1) is, the differential pressure increased to about 0.3 kg / cm 2 or so, and then proceeds to scrubbing step. スクラビングは水温40℃で実施した。 Scrubbing was carried out at a water temperature of 40 ℃. 1〜3 1 to 3
μmの粒子径の酸化鉄を使用した理由は、スクラビング中の膜外面肌荒れを発生しにくい粒径を選定し、スクラビング洗浄後の差圧回復率を酸化鉄微粒子剥離効果として認識する為である。 The reason for using the iron oxide particle diameter μm is to select the particle size hardly occurs the membrane outer surface roughening during scrubbing, it is for recognizing a pressure difference recovery rate after scrubbing washing as iron oxide fine particles peeled off effect.

【0028】図4に酸化鉄微粒子除去率と差圧回復率の関係を示す。 [0028] Figure 4 shows the relationship between the iron oxide particles removal rate and the differential pressure recovery rate. 図4より、従来より一般的に差圧回復率良好と判断される80%以上の差圧回復率を得るには酸化鉄微粒子除去率70%を確保すればよいことが示された。 From FIG. 4, to obtain a general differential pressure recovery rate better than 80% of the differential pressure recovery rate to be determined conventionally been shown that may be secured for 70% iron oxide particle removal rate.

【0029】図5に70%の酸化鉄除去率を得るスクラビング空気流量とスクラビング時間の関係を示し(図5中にBラインで示す)、以下に実験式(2)で示す。 [0029] FIG. 5 shows a scrubbing air flow and scrubbing time relationship to obtain an iron oxide removal rate of 70% (illustrated in Figure 5 by line B), shown below in empirical formula (2).

【0030】実験式(2) Y=スクラビング時間(min) X=スクラビング空気流量(m/h) Y=600/(X−265)+3.5 The empirical formula (2) Y = scrubbing time (min) X = scrubbing air flow rate (m / h) Y = 600 / (X-265) +3.5

【0031】実験式(2)と図5からスクラビング空気流量を 265m/h近傍に低下させると必要となるスクラビング時間は顕著に増加することが示された。 The empirical formula (2) and is required when lowering the scrubbing air flow in the vicinity of 265m / h from 5 scrubbing time was shown to increase significantly. このため、実用上意味のあるスクラビング空気流量は余裕をみて 290m/h以上に設定する必要がある。 Therefore, scrubbing air flow rate with a practical sense it is necessary to set a margin above 290 m / h. そこで、最小スクラビング空気流量を 290m/hに設定し、図5にラインCで示す。 Therefore, to set the minimum scrubbing air flow rate 290 m / h, indicated by line C in FIG. 5. また、スクラビング空気流量が 290m/ In addition, scrubbing air flow rate 290m /
h〜 700m/h(図3における上限流量設定値であり図5にラインAで示す)の間で、酸化鉄微粒子除去率70% h to 700 meters / h between (indicated by the upper limit be flow setpoint Figure 5 in the line A in FIG. 3), iron oxide particle removal 70%
以上を確保できる領域を図中にハッチングで示す。 It is shown by hatching in the figure the region can be secured more.

【0032】図6に、従来のスクラビング条件:空気流量 940m/h、時間5分と同等以下の透水性能低下となる範囲を示す。 [0032] FIG. 6, a conventional scrubbing conditions: shows the air flow 940m / h, for 5 minutes and range of equivalent or less of water permeability reduction. まず、従来のスクラビング条件:空気流量 940m/h、 First of all, the conventional scrubbing conditions: air flow rate 940m / h,
時間5分における膜透水性低下率と同じ値となるスクラビング時間とスクラビング空気流量の関係を以下の実験式(3)で示し、図6中にラインDで示す。 Shows the relationship between the same value as the film permeability decrease ratio scrubbing time and scrubbing the air flow rate at time 5 minutes the following empirical formula (3), indicated by line D in FIG.

【0033】実験式(3) Y=スクラビング時間(min) X=スクラビング空気流量(m/h) Y=2292.9X -0.7541 The empirical formula (3) Y = scrubbing time (min) X = scrubbing air flow rate (m / h) Y = 2292.9X -0.7541

【0034】従来技術よりも膜透水性低下率が抑制される範囲は図6のラインA、C、Dで包囲された範囲である。 The range membrane permeability decrease ratio than the prior art can be suppressed is line A, C, range surrounded by D in FIG.

【0035】図5、図6の条件により、図7を作図した。 [0035] FIG. 5, under the conditions shown in FIG. 6, was drawing to FIG. 図7で示す領域Eは、酸化鉄除去率70%以上、即ち差圧回復率80%以上が確保されるスクラビング空気流量 Region E shown in Figure 7, the iron oxide removal rate of 70% or more, i.e., scrubbing air flow rate of 80% or more differential pressure recovery rate can be secured
290〜 700m/hの範囲であり、かつ従来技術よりも膜透水性低下率が抑制される範囲であり、ラインA、B、 290 to a range of 700 meters / h, and a range of film permeability decrease ratio than the prior art can be suppressed, the line A, B,
C、Dで包囲される範囲である。 C, the range surrounded by the D.

【0036】上述の実施例により、スクラビング工程での空気流量を 290〜 700m/hに設定し、設定スクラビング空気流量や、処理水中の酸化鉄微粒子の剥離性の難易度、装置運用上での停止時間の制約等に付随する形でスクラビング工程時間を設定することで、中空糸膜の外面肌荒れによる透水性能低下抑制及び膜面に付着した酸化鉄微粒子除去効果を得ることが可能となる。 [0036] The above-described embodiment, to set the air flow in the scrubbing step 290 to 700 meters / h, and setting scrubbing air flow, peeling of difficulty of the iron oxide particles in the treated water, stopping on the apparatus operation by setting the scrubbing step time in a manner associated with time constraints and the like, it is possible to obtain iron oxide particles removing effect adhered to the water permeability decreases inhibition and film surface by the outer surface roughening of the hollow fiber membrane.

【0037】<比較例>上記本発明例と同じろ過塔を使用して10〜20μmの粒子径のα−Fe 23を中空糸膜1m 2当たりの付着量が10gとなるように調整した原水を中空糸膜モジュール(1)でろ過させ、その後スクラビング工程に移行した。 The amount of deposition of the hollow fiber membrane 1 m 2 per the α-Fe 2 O 3 having a particle size of <Comparative Example> 10 to 20 [mu] m using the same filtration column as described above the present invention example was adjusted to 10g was filtered raw water with the hollow fiber membrane module (1), and then proceeds to scrubbing step. スクラビングは水温40℃で実施した。 Scrubbing was carried out at a water temperature of 40 ℃. スクラビング空気流量を一方は最適スクラビング流量範囲内の 560m/hで、他方は最適流量範囲外の 9 The scrubbing air flow rate at 560 m / h in one optimum scrubbing flow range, the other is outside the optimum flow rate range 9
40m/hで10分間のスクラビングを10回実施した後の中空糸膜モジュール差圧の変化を比較した。 Comparing the change of the hollow fiber membrane module differential pressure after scrubbing for 10 minutes was performed 10 times at 40 m / h. 差圧上昇巾の比較を図8に示す。 A comparison of differential pressure increase width shown in FIG. 最適スクラビング空気流量範囲内でスクラビングを実施した方が差圧上昇が抑制されていることがわかる。 It can be seen that better to conduct scrubbing in optimum scrubbing air flow range differential pressure increase is suppressed.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明に用いる中空糸膜モジュールを示す断面図。 Sectional view showing a hollow fiber membrane module for use in the present invention; FIG.

【図2】本発明に用いるろ過塔のフローを示す説明図。 Explanatory view showing a flow of a filtration column used in the present invention; FIG.

【図3】スクラビング空気流量と膜透水性低下率の関係を示した線図。 [Figure 3] a line diagram showing the relationship of the scrubbing air flow and film permeability decrease ratio.

【図4】差圧回復率と酸化鉄微粒子除去率の関係を示した線図。 [4] diagram showing the relationship between the differential pressure recovery rate and the iron oxide particulate removal rate.

【図5】酸化鉄除去率有効範囲を示した線図。 [5] diagram showing the iron oxide removal rate coverage.

【図6】透水性能低下抑制範囲を示した線図。 [6] diagram showing a water permeability suppressing reduction range.

【図7】最適洗浄条件範囲を示した線図。 [7] diagram showing the optimum washing conditions range.

【図8】スクラビング空気流量設定による中空糸膜モジュール差圧上昇の比較例を示した線図。 [8] diagram showing a comparative example of a hollow fiber membrane module differential pressure rise due to scrubbing air flow setting.

【符号の説明】 DESCRIPTION OF SYMBOLS

1 中空糸膜モジュール 2A 細い中空糸膜 2B 太い中空糸膜 3A 保護筒 3B キャップ 4A 上部接合部 4B 下部接合部 5 集水室 6A 上部流通口 6B 下部流通口 7 気体流入口 8 スカート部 9 ろ過塔 10 仕切板 11 気泡分配機構 12 気泡受け 13 気泡分配管 14 ろ過水流出管 15 圧縮空気流入管 16 原水流入管 17 空気抜き管 18 ドレン管 19〜24 弁 25 バッフルプレート 1 hollow fiber membrane module 2A fine hollow fiber membranes 2B thick hollow fiber membranes 3A protecting cylinder 3B cap 4A upper junction 4B lower junction 5 water collecting chamber 6A upper flow port 6B bottom flow port 7 gas inlet 8 skirt portion 9 filtration column 10 the partition plate 11 bubble distributing mechanism 12 bubble receiving 13 bubble distribution pipe 14 filtrate water outlet pipe 15 compressed air inlet pipe 16 water inlet pipe 17 vent line 18 drain pipe 19 to 24 valve 25 a baffle plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森田 利夫 埼玉県戸田市川岸1丁目4番9号 オルガ ノ株式会社内 ────────────────────────────────────────────────── ─── of the front page continued (72) inventor Toshio Morita Toda City, Saitama Prefecture riverbank 1-chome, No. 4, No. 9 Olga Roh within Co., Ltd.

Claims (4)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 ろ過塔内を上室と下室に区画する仕切板に、保護筒内に中空糸膜を多本数束ね、中空糸膜の両端を固定し、且、中空糸膜と、中空糸膜を保護する外筒が一体型として構成された中空糸膜モジュールを、仕切板と鉛直方向に懸架してなるろ過塔の前記下室内に、不純物として主に酸化鉄からなる微粒子を含む原水を流入して、各中空糸膜の外側から内側に原水を通過させることにより、各中空糸膜の外側で当該微粒子を捕捉すると共に、各中空糸膜の内側に得られるろ過水を前記上室から流出させるろ過工程と、中空糸膜が液体内に浸漬した状態で中空糸膜モジュール下部から保護筒内に気体を導入して、保護筒内に気液混合状態を形成し、中空糸膜を振動させることにより中空糸膜の外側に付着した前記微粒子を剥離するスクラ The method according to claim 1 Filtration tower in the partition plate for partitioning the upper chamber and a lower chamber, the hollow fiber membranes in a protective tube bundle multi number, to secure the ends of the hollow fiber membrane, 且, a hollow fiber membrane, hollow the hollow fiber membrane module outer tube is configured as an integral protecting the fiber membrane, to the lower chamber of the filtration tower formed by suspended partition plate and the vertical direction, the raw water containing the fine particles of mainly iron oxide as an impurity and it flows to, by passing the raw water from the outside to the inside of each hollow fiber membrane, the capturing the particles on the outside of the hollow fiber membranes, the upper chamber of the filtration water obtained inside each hollow fiber membrane a filtration step of flowing out and the hollow fiber membrane is introduced into the gas within the protective tube from the hollow fiber membrane module lower while immersed in the liquid to form a gas-liquid mixed state in a protective tube, a hollow fiber membrane scrubber of removing the fine particles attached to the outside of the hollow fiber membrane by oscillating ビング工程を含む中空糸膜を用いたろ過方法において、上記のスクラビング工程における中空糸膜モジュール保護筒内に導入する気体流量を、保護筒内の有効断面積に対して 290〜 700m/hに設定することを特徴とする中空糸膜を用いるろ過塔のスクラビング方法。 In the filtration method using hollow fiber membranes containing Bing step, the gas flow to be introduced into the hollow fiber membrane module protective cylinder in the above scrubbing process, set to 290 to 700 meters / h with respect to the effective cross-sectional area of ​​the protective tube scrubbing method filtration column using the hollow fiber membrane, characterized by.
  2. 【請求項2】 スクラビング空気流量(m/h)をX、 Wherein the scrubbing air flow rate (m / h) X,
    該スクラビング時間(min) をYとしたとき、添付の図5 When the scrubbing time (min) and Y, the attached figures 5
    においてXとYの値を夫々 Y=600/(X−265)+3.5 (式I) で表わされる酸化鉄微粒子除去率70%以上の領域を示す曲線Bより上方の斜線の範囲内に設定する請求項1記載のスクラビング方法。 In the range from the curve B of the upper shaded showing the X and Y values ​​respectively Y = 600 / (X-265) +3.5 iron oxide particle removal ratio of 70% or more of the region represented by (Formula I) of the scrubbing method of claim 1 wherein the.
  3. 【請求項3】 スクラビング空気流量(m/h)をX、 3. A scrubbing air flow rate (m / h) X,
    該スクラビング時間(min) をYとしたとき、添付の図6 When the scrubbing time (min) was Y, the accompanying Figure 6
    において、XとYの値を夫々 Y=2292.9X -0.7541 (式II) で表わされる膜透水性低下が抑制される領域を示す曲線Dより下方の斜線の範囲内に設定する請求項1記載のスクラビング方法。 In claim 1, wherein the membrane permeability decreases represented the values of X and Y in each Y = 2292.9X -0.7541 (Formula II) is set within a range of the oblique line below the curve D indicating the area to be suppressed the method of scrubbing.
  4. 【請求項4】 スクラビング空気流量(m/h)をX、 4. The scrubbing air flow rate (m / h) X,
    該スクラビング時間(min) をYとしたとき、添付の図7 When the scrubbing time (min) was Y, the accompanying Figure 7
    において、XとYの値を夫々 直線A(X=700) 直線C(X=290) 曲線B(式I … X=600/(X−265)+3. In, X and Y values ​​respectively linear A (X = 700) straight C (X = 290) curve B (Formula I ... X = 600 / (X-265) +3.
    5) 曲線D(式II … Y=2292.9X -0.7541 ) で囲まれた略斜線の領域E内に設定する請求項1記載のスクラビング方法。 5) Curve D (Formula II ... Y = 2292.9X -0.7541) substantially scrubbing method according to claim 1, wherein the set within the cross-hatched area E enclosed by.
JP25563795A 1995-09-07 1995-09-07 Scrubbing method filtration column using the hollow fiber membranes Expired - Fee Related JP3137568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25563795A JP3137568B2 (en) 1995-09-07 1995-09-07 Scrubbing method filtration column using the hollow fiber membranes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25563795A JP3137568B2 (en) 1995-09-07 1995-09-07 Scrubbing method filtration column using the hollow fiber membranes

Publications (2)

Publication Number Publication Date
JPH0972993A true true JPH0972993A (en) 1997-03-18
JP3137568B2 JP3137568B2 (en) 2001-02-26

Family

ID=17281515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25563795A Expired - Fee Related JP3137568B2 (en) 1995-09-07 1995-09-07 Scrubbing method filtration column using the hollow fiber membranes

Country Status (1)

Country Link
JP (1) JP3137568B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004050221A1 (en) * 2002-12-05 2004-06-17 U.S. Filter Wastewater Group, Inc. Mixing chamber
JP2009523062A (en) * 2006-01-12 2009-06-18 シーメンス・ウォーター・テクノロジーズ・コーポレーション Improved operation method in the filtration process
US8840783B2 (en) 2007-05-29 2014-09-23 Evoqua Water Technologies Llc Water treatment membrane cleaning with pulsed airlift pump
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US9023206B2 (en) 2008-07-24 2015-05-05 Evoqua Water Technologies Llc Frame system for membrane filtration modules
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
WO2016152336A1 (en) * 2015-03-24 2016-09-29 住友電気工業株式会社 Filtration unit
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004050221A1 (en) * 2002-12-05 2004-06-17 U.S. Filter Wastewater Group, Inc. Mixing chamber
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
US8894858B1 (en) 2005-08-22 2014-11-25 Evoqua Water Technologies Llc Method and assembly for water filtration using a tube manifold to minimize backwash
JP2009523062A (en) * 2006-01-12 2009-06-18 シーメンス・ウォーター・テクノロジーズ・コーポレーション Improved operation method in the filtration process
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US8840783B2 (en) 2007-05-29 2014-09-23 Evoqua Water Technologies Llc Water treatment membrane cleaning with pulsed airlift pump
US9573824B2 (en) 2007-05-29 2017-02-21 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US9206057B2 (en) 2007-05-29 2015-12-08 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US9023206B2 (en) 2008-07-24 2015-05-05 Evoqua Water Technologies Llc Frame system for membrane filtration modules
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9630147B2 (en) 2010-09-24 2017-04-25 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
WO2016152336A1 (en) * 2015-03-24 2016-09-29 住友電気工業株式会社 Filtration unit

Also Published As

Publication number Publication date Type
JP3137568B2 (en) 2001-02-26 grant

Similar Documents

Publication Publication Date Title
US4756875A (en) Apparatus for filtering water containing radioactive substances in nuclear power plants
US4980066A (en) Multiple membrane separation systems
US5454959A (en) Moving bed filters
US6511602B1 (en) Apparatus and method for treating water
US4540490A (en) Apparatus for filtration of a suspension
US20070007205A1 (en) Backwash
US6638422B1 (en) Liquid filtration apparatus and method embodying filtration particles having specific gravity less than liquid being filtered
US20020070157A1 (en) Filter device
US7018533B2 (en) High solids module
US3428177A (en) Fluid control means for filter backwashing and air scouring
US3280978A (en) Filtering process
JP2004230287A (en) Method for backwashing filtering device
US20080053923A1 (en) Methods And Apparatus For Removing Solids From A Membrane Module
US5151191A (en) Filtration process using hollow fiber membrane module
JP2004536710A (en) Membrane module cleaning method
US5209852A (en) Process for scrubbing porous hollow fiber membranes in hollow fiber membrane module
JP2004008981A (en) Membrane separation apparatus
JPH07185268A (en) Hollow fiber filter membrane element and module
JPH11156166A (en) Cleaning method for hollow fiber membrane module
US3896005A (en) Filtering and debris removing apparatus for cleaning a sea water stream
WO2001000307A2 (en) Self cleaning filter
JPH05285349A (en) Membrane separator
JPH1024222A (en) Gas-liquid separator
CN1244814A (en) Scouring method
JP2000189958A (en) Immersion type membrane filter device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20071208

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081208

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081208

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20091208

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20091208

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20131208

LAPS Cancellation because of no payment of annual fees