JP3133212B2 - 回路基板上の導体部の表面処理方法および回路基板 - Google Patents

回路基板上の導体部の表面処理方法および回路基板

Info

Publication number
JP3133212B2
JP3133212B2 JP8211994A JP8211994A JP3133212B2 JP 3133212 B2 JP3133212 B2 JP 3133212B2 JP 8211994 A JP8211994 A JP 8211994A JP 8211994 A JP8211994 A JP 8211994A JP 3133212 B2 JP3133212 B2 JP 3133212B2
Authority
JP
Japan
Prior art keywords
circuit board
energy beam
conductor
surface treatment
conductor portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8211994A
Other languages
English (en)
Other versions
JPH07122525A (ja
Inventor
信行 朝日
淳 立田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP8211994A priority Critical patent/JP3133212B2/ja
Publication of JPH07122525A publication Critical patent/JPH07122525A/ja
Application granted granted Critical
Publication of JP3133212B2 publication Critical patent/JP3133212B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85009Pre-treatment of the connector or the bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85053Bonding environment
    • H01L2224/85054Composition of the atmosphere
    • H01L2224/85075Composition of the atmosphere being inert
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01075Rhenium [Re]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01088Radium [Ra]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01327Intermediate phases, i.e. intermetallics compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】この発明は、回路基板上の導体部
の表面処理方法および回路基板に関し、詳しくは、半導
体パッケージのように、回路基板の上に金属材料からな
る導体部を形成しておき、この導体部を利用して半導体
チップと外部接続端子などとの電気的な接続を果たすよ
うにする回路基板において、導体部の特性向上のために
行われる表面処理方法と、このような表面処理方法を行
うのに適した回路基板の構造に関するものである。
【0002】
【従来の技術】従来、PGA(Pin Grid Array)、QF
P(Quard Flat Pakage )、COB(Chip On Board )
等と呼ばれる各種の半導体パッケージ製品においては、
合成樹脂などからなる回路基板に、銅や金などの金属材
料層からなる導体部を形成しておき、この導体部に半導
体チップなどの各種電子部品を電気的に接合して、電子
部品同士あるいは電子部品と外部回路との接続を果して
いた。このような半導体パッケージ用の回路基板に形成
される導体部は、半導体チップなどに合わせて極めて微
細な加工が必要であるとともに、微弱な電流や高い周波
数の電流が流されるため、その電気的特性には極めて高
い性能が要求される。
【0003】ところが、回路基板を製造する雰囲気の影
響や、その他の製造工程上の種々の影響のために、回路
基板上の導体部表面が汚染されたり、導体部表面が金属
的に不活性になってしまったりして、導体部表面の絶縁
抵抗値が増大したり、電気的接合の信頼性が低下したり
する。このような導体部表面の信頼性低下は、回路基板
全体の特性に致命的なダメージを与えることになる。
【0004】そこで、回路基板を洗浄したり、導体部の
表面改質等を行ったりして、導体部表面の信頼性を向上
させる方法が種々提案されている。従来における導体部
の洗浄方法としては、一般的には、フロン等の化学薬品
を用いた湿式化学的方法が多く採用されていた。しか
し、近年、地球環境問題等により、フロンを使用する洗
浄方法が問題とされ、フロンを使用しない方法が求めら
れている。そこで、フロンによる洗浄の代わりに、純水
を用いて洗浄する方法や、表面活性剤を用いる洗浄方法
が提案されている。
【0005】しかし、これらの洗浄方法では、導体表面
に存在する汚染物質を完全に除去することができない。
また、洗浄剤が導体部表面に残留して、却って導体部の
特性を損なったりする問題がある。さらに、これらの方
法は、導体部表面に汚染物質が付着した程度であれば対
応できるが、導体部表面が金属的に不活性になってしま
ったものに対しては、前記のような洗浄方法では、電気
的接合の信頼性を回復させることができない。
【0006】そこで、上記のような湿式洗浄方法に代わ
る乾式表面処理方法として、近年、レーザ光線などのエ
ネルギービームを導体部表面に照射して、汚染物質を除
去したり、導体部表面の金属的活性を回復させたりする
方法が提案されている。また、複数の金属材料層からな
る導体部にレーザ光線を照射して、表面のハンダ濡れ性
などが良い合金層を形成させる方法が、特開平2−2
6249号公報に開示されている。
【0007】
【発明が解決しようとする課題】ところが、上記のよう
な従来におけるエネルギービームを用いた乾式表面処理
方法では、導体部表面の電気的接合信頼性が十分に向上
しないという問題があった。具体的には、例えば、導体
部周辺の樹脂などにエネルギービームが照射されると、
樹脂から飛散物が発生し、この飛散物が導体部表面に付
着して汚染するという問題がある。また、前記した、導
体部表面にレーザ光線を照射してハンダ濡れ性などの良
い合金層を形成させる方法では、金属材料層の間で金属
間化合物が形成されてしまって、導体部全体の抵抗値が
増大することになり、結果として導体部の電気的接合性
が低下するという問題があった。しかも、合金層を形成
させるに十分な大きなレーザ入熱量は、回路基板の導体
部以外の部分に熱影響を及ぼして非導体部分の特性を変
えてしまう結果、導体部間の絶縁抵抗値が悪くなり、回
路全体の電気的信頼性が低下するという問題も生じる。
【0008】そこで、この発明の課題は、従来のエネル
ギービームを用いた乾式表面処理方法の問題点を解消し
て、回路基板上の導体部に対して、表面の電気的接合信
頼性を格段に向上させることができるとともに、導体部
の他の特性を損なったり、導体部以外の部分に悪影響を
与えたりすることのない回路基板上の導体部の表面処理
方法を提供することにある。また、このような表面処理
方法に適した回路基板を提供することにある。
【0009】
【課題を解決するための手段】上記課題を解決する、こ
の発明にかかる回路基板上の導体部の表面処理方法は、
有機材料からなる基板上に、複数の金属材料層を積層し
た導体部が形成されてなる回路基板に対して、導体部表
面にエネルギービームを照射して導体部の表面処理を行
う方法において、導体部表面の金属材料層の厚み、熱伝
導率およびエネルギービームに対する閾値を含む材料特
性に合わせて、エネルギービームの波長、エネルギー密
度、ショット数、照射時間、パルス幅、ピークパワーお
よび照射時間を含むエネルギービームの照射条件のうち
少なくともひとつの照射条件を、導体部表面の金属材料
層の表面側に溶融層、裏面側に非溶融層が形成されるよ
うに設定して、導体部表面にエネルギービームを照射す
る。
【0010】この発明を適用する回路基板の材料や構造
は、基本的には、従来の各種半導体パッケージなどに利
用されている通常の回路基板と同様でよい。例えば、半
導体パッケージでは、合成樹脂からなる基板に、半導体
チップを収容するキャビティーが凹入形成され、その周
囲の樹脂基板表面に、いわゆるインナーリードと呼ばれ
る導体部が設けられたものがある。このようなインナー
リードの他、各種の電子部品において、樹脂などの有機
材料からなる基板と、この基板の上に形成される導体部
とを備えた回路基板であれば、任意の形状および構造を
採用することができる。
【0011】基板材料としては、例えば半導体パッケー
ジであれば、変性ポリイミド樹脂など通常の半導体パッ
ケージ用樹脂材料が使用でき、その他にも一般的な基板
用合成樹脂など、いわゆる有機材料からなる基板が用い
られる。基板材料としては、エネルギービーム照射時
に、出来るだけ飛散物が発生し難いものが好ましい。セ
ラミックなどの無機材料からなる基板は、前記したエネ
ルギービームの照射による飛散物の発生のような問題点
は生じ難いが、製造加工性やコストなどの点で、有機材
料からなる基板が用いられる。
【0012】導体部の材料としては、銅、ニッケル、
金、銀、アルミニウムその他、従来の各種回路基板で導
体部を構成する金属材料層として使用されていた導電性
金属が使用できる。この発明では、これらの金属材料か
らなる層を、複数積層して導体部を構成する。金属材料
層の組み合わせは、従来の回路基板に形成される導体部
と同様に、回路基板の用途、基板材料、導体部に接続す
る配線の材料など、種々の条件を考慮して選択すればよ
い。
【0013】エネルギービームとは、光、放射線、プラ
ズマその他、導体部表面に対して、何らかの表面処理作
用を行うことのできるエネルギー線を照射できるもので
あれば、従来、半導体製造技術などで利用されているよ
うな、各種のエネルギービームが使用できる。導体部表
面に対する汚染物除去あるいは改質作用に優れ、取扱い
易いエネルギービームとして、レーザビームがあり、特
に、エキシマレーザが望ましい。エキシマレーザ以外
に、YAGレーザやCO2 レーザなども使用でき、これ
らのレーザの高調波を利用してもよい。エキシマレーザ
を用いる場合、照射エネルギー密度は0.5〜3.0 J
/cm2程度で、1〜10ショット程度を照射するのが望ま
しい。
【0014】エネルギービームは、回路基板の表面のう
ち、出来るだけ、導体部表面のみに照射されるようにす
るのが好ましいが、この発明では、導体部周辺の基板表
面の一部などに、エネルギービームが照射されても構わ
ない。但し、導体部表面以外の部分に照射されたエネル
ギービームは無駄になるので、ビームを走査したり、マ
スクを介在させたりして、導体部表面およびその周辺の
みにエネルギービームが効率的に照射されるようにする
ことが望ましい。
【0015】エネルギービームを、導体部表面の金属材
料層が別の金属材料層との間で合金を形成することなく
導体部に表面処理が施される条件に設定して照射する。
すなわち、金属材料層同士が合金を形成するのに必要な
エネルギーは、この発明の目的とする導体部表面の汚染
物除去や表面改質に必要なエネルギーよりも大きいの
で、この発明の目的を達成するのに十分ではあるが、前
記合金が形成されない程度のエネルギーに設定しておく
のである。エネルギービームの設定条件は、回路基板お
よび導体部の構成材料および構造と、達成しようとする
表面処理効果によって変わってくる。例えば、表面処理
効果として、導体部表面の汚染物除去だけを目的とする
のであれば、比較的小さなエネルギーでも十分な場合も
ある。基板材料からの飛散物が少なければ、エネルギー
ビームも少なくて済む。
【0016】さらに具体的には、エネルギービームの照
射条件として、導体部表面の金属材料層の厚み、熱伝導
率およびエネルギービームに対する閾値を含む材料特性
に合わせて、エネルギービームの波長、エネルギー密
度、ショット数、照射時間、パルス幅、ピークパワーお
よび照射時間を含む少なくともひとつの照射条件を調整
しておくのが好ましい。これらの照射条件は、エネルギ
ービームの照射装置で変更調整することができる。ま
た、材料特性と照射条件との関係は、実験的に、あるい
は一部理論的に解析することにより、知ることができ
る。
【0017】つぎに、エネルギービームの照射条件を予
め決めておくのでなく、回路基板にエネルギービームを
照射したときの、導体部および/またはその周辺の表面
状態の観測結果から、エネルギービームの照射条件を制
御する方法も採用できる。すなわち、導体部表面の汚染
物が除去されているか否か、あるいは、導体部表面の微
細な凹凸などが解消されているか否か、さらには、導体
部周辺の基板表面から飛散物が発生しているか否かなど
は、エネルギービームを照射しながら、導体部やその周
辺の表面状態を観察することによって、知ることができ
る。したがって、導体部などの表面状態を観察しなが
ら、目的とする表面状態が得られるように、エネルギー
ビームの照射条件を制御すればよいのである。エネルギ
ービームを照射中に、導体部などの表面状態を観察する
には、CCDカメラなどの観察手段を設置しておけばよ
い。このような観察手段とエネルギービームの照射装置
を、コンピュータなどの制御装置でつないで、観察され
た表面状態を解析し、その解析結果に基づいて、自動的
にエネルギービームの照射条件を変更調整すれば、適切
な表面処理が行える。一般的には、導体部の表面に凹凸
があったり汚染物が付着している状態から、導体部の表
面のみが溶融して平滑な表面を構成するようになった状
態が、汚染物除去や表面改質が十分に達成された状態を
表しているので、前記したCCDカメラで、導体部表面
の反射率などを検出すれば、適切なエネルギービーム照
射条件を容易に知ることができる。
【0018】CCDカメラのような視覚的な観測手段す
なわち観察手段の他にも、導体部などの表面状態を検知
できる各種測定手段を用いれば、前記同様に、エネルギ
ービーム照射条件を適切に制御することができる。具体
的には、例えば、導体部およびその周辺に発生した飛散
物を、化学的あるいは物理的な検出器で検出し、導体部
からの汚染物の飛散あるいは基板表面からの樹脂などの
飛散が適切な量になるように、エネルギービーム照射条
件を制御すればよい。飛散物の成分分析を行って、導体
部の表面状態を推測し、導体部の表面状態が適切になる
ように、エネルギービームの照射条件を制御することも
できる。勿論、飛散物の検出器のような物理的化学的情
報の測定手段とCCDカメラのような観察手段を組み合
わせて、エネルギービームの照射条件を制御することも
可能である。
【0019】エネルギービームの照射を、減圧雰囲気下
で行うことができる。具体的には、回路基板に対して表
面処理を行う処理室に真空吸引装置などを設置しておい
て、処理室内を減圧雰囲気に維持できるようにしておけ
ばよい。処理室や真空吸引装置の構造は、通常の表面処
理装置の場合と同様でよい。減圧雰囲気の圧力として
は、表面処理に伴って発生する飛散物の導体部への再付
着が防止できる程度に設定しておけばよい。具体的に
は、10-1〜10-3Torr程度が好ましい。
【0020】エネルギービームの照射装置は、処理室内
に設けておいてもよいし、処理室外に設けられた照射装
置から処理室内にエネルギービームを照射するようにし
てもよい。処理室外から処理室内にエネルギービームを
照射する場合、処理室の壁面の一部には、エネルギービ
ームを透過する透過窓を設けておく。透過窓の材料や構
造は、使用するエネルギービームの種類に合わせて、そ
のエネルギービームを良好に透過し、かつ、処理室内を
所定の減圧雰囲気に維持できるようになっていればよ
い。
【0021】エネルギービームによる回路基板の表面処
理を行いながら、透過窓の汚染状態を監視することがで
きる。具体的には、透過窓を通過したエネルギービーム
のエネルギー量を検出器で測定すればよい。表面処理に
用いられるエネルギービームとは別のエネルギービーム
を透過窓に照射して、通過エネルギー量を測定するよう
にしてもよい。別のエネルギービームは、表面処理用の
エネルギービームと同じように、処理中は連続的に照射
するようにしておいてもよいし、一定時間毎に断続的に
照射するようにしてもよい。
【0022】透過窓の汚染状態を監視した結果にもとづ
いて、前記した表面処理用のエネルギービームの強度そ
の他の照射条件を調整したり、透過窓の洗浄や交換を指
令することができる。減圧雰囲気中の不純物混入状態を
監視することができる。減圧雰囲気中に不純物が混入す
ると、透過窓の汚染も進むことになるので、前記した透
過窓の汚染状態の監視を行うことで、間接的に、減圧雰
囲気中の不純物混入状態を監視してもよい。
【0023】不純物混入状態の監視情報にもとづいて、
前記した表面処理用のエネルギービームの照射条件を調
整したり、処理室内の雰囲気の洗浄処理や交換処理を行
うことができる。減圧雰囲気のガス組成を測定して、減
圧雰囲気中の不純物混入状態を監視することができる。
ガス組成の測定装置は、各種処理装置などに組み込まれ
ている通常のガス分析装置や元素分析装置などが用いら
れる。ガス組成の測定は、雰囲気中の全てのガスや元素
の組成について測定する必要はなく、不純物混入量の変
化を適切に反映するような特定のガスや元素について、
その存在量を測定すればよい。
【0024】減圧雰囲気中の不純物混入状態を、減圧雰
囲気のレーザ光透過率を測定することで監視することが
できる。レーザ光透過率の測定には、前記した透過窓の
汚染状態を監視する際に使用されるようなレーザ照射装
置およびエネルギー量の検出器を用いることができる。
表面処理によって発生するプラズマの発光量を測定し
て、減圧雰囲気中の不純物混入状態を監視することがで
きる。プラズマの発光量を測定するには、CCDカメラ
などの撮影手段と、撮影手段で撮影された映像情報から
プラズマ発光量の情報を取得するコンピュータなどの解
析処理手段とを備えておけばよい。
【0025】減圧雰囲気の圧力変化を検出して、減圧雰
囲気中の不純物混入状態を監視することができる。減圧
雰囲気の圧力変化を検出するには、通常の圧力測定装置
を用いることができる。以上に説明した不純物混入状態
を監視する手段は、それぞれを単独で用いてもよいし、
複数の監視手段を組み合わせることもできる。透過窓の
汚染状況の監視と雰囲気中の不純物混入状態の監視とを
併用することもできる。
【0026】前記したような表面処理が行われた回路基
板に対して、導体部の表面特性を検査して処理結果を評
価することができる。検査する表面特性としては、レー
ザビームの反射率、表面粗さ、X線回析結果など、目的
とする表面処理が良好に行われた場合と処理不良の場合
で、何らかの変化が生じる特性であれば採用することが
できる。但し、表面特性を検査したときに、導体部の表
面に何らかの悪影響を与えるような検査手段は好ましく
ない。
【0027】つぎに、上記したようなエネルギービーム
の照射による導体部の表面処理を行う場合に、回路基板
として、以下に説明するようなものを用いると、好まし
い結果が得られる。導体部の形成個所を含む、エネルギ
ービームが照射される範囲の基板表面を構成する有機材
料として、その他の部分の基板を構成する有機材料より
も、エネルギービームに対する閾値の大きな材料を用い
る。エネルギービームに対する閾値は、樹脂の構成成分
など有機材料の種類によって異なるので、予め、回路基
板に用いる各種有機材料のエネルギービームに対する閾
値を求めておいて、これらの有機材料の中から、前記条
件に合うものを選択して使用する。回路基板の全体は、
回路基板としての要求性能を満足させ得るような通常の
基板材料を用い、エネルギービームが照射される可能性
のある導体部とその周囲の一定範囲の基板部分のみを、
他の基板部分とは別の、前記閾値の大きな材料を用いれ
ばよい。この発明で用いられる閾値の大きな材料として
は、エキシマレーザに対する閾値の高いテフロン(商品
名:デュポン社製、ポリテトラフロオロエチレン)など
が挙げられる。
【0028】閾値の大きな有機材料からなる部分は、回
路基板の所定範囲の表面を覆い、エネルギービームが照
射されたときに、その下方の基板材料に悪影響を与えな
い程度の厚みを有していればよい。通常、閾値の大きな
有機材料は、他の部分を構成する通常の基板材料よりも
コストが高くついたり成形性が劣ったりする場合がある
ので、閾値の大きな有機材料からなる部分は、必要最小
限の範囲に限定しておくのが好ましい。回路基板に、閾
値の大きな有機材料からなる部分と、これよりも閾値の
小さな有機材料からなる部分を形成するには、予め両方
の部分を成形してから、接着、熱融合などの手段で一体
接合してもよいし、いわゆる同時成形によって、成形と
同時に一体化させたり、閾値の大きな有機材料液を、予
め成形された基板の表面に塗布硬化させたりすることも
できる。
【0029】
【作用】回路基板上の導体部表面にエネルギービームを
照射すると、エネルギービームの強さや線量などの照射
条件によって、回路基板に与える作用が異なる。この発
明では、エネルギービームの照射により、以下の作用が
達成されるように、照射条件を決める。
【0030】導体部の表面のみを瞬間的に溶融させ、そ
の表面に存在する有機物などからなる汚染物を蒸発させ
て除去する。また、導体部の表面に吸着されているガス
などを解放して表面から除去する。導体部をメッキ形成
した場合に表面に生じる微細な穴を、表面の溶融によっ
て埋め、表面を平滑化する。このような作用を生じさせ
るには、通常、エネルギービームが強いほど良い。
【0031】これに対し、エネルギービームが強すぎる
と、導体部表面の金属材料層と、その下の他の金属材料
層との間で合金が形成される。この合金の形成は、導体
部全体の電気抵抗値を低下させるので、この発明では、
このような合金の形成が起こらない程度に、エネルギー
ビームの強さを抑える。また、導体部表面へのエネルギ
ービーム照射の際に、同時にエネルギービームの一部が
照射されることになる基板材料の表面では、基板材料の
構成物質が飛散して導体部表面に付着する可能性がある
ので、このような基板材料の飛散が抑制される程度に、
エネルギービームの強さを加減する。すなわち、基板材
料のエネルギービームに対する閾値を超えないように、
エネルギービームの強さを抑える。
【0032】この発明では、上記のような作用が確実に
達成できるような照射条件でエネルギービームを照射す
るので、導体部の表面処理が良好に行われると同時に、
合金の形成による導体部の特性低下が生じず、電気的接
合信頼性を含む導体部の品質性能に優れた回路基板が得
られることになる。具体的なエネルギービームの照射条
件としては、導体部表面の金属材料層の厚み、熱伝導率
およびエネルギービームに対する閾値を含む材料特性に
合わせて、エネルギービームの波長、エネルギー密度、
ショット数、照射時間、パルス幅、ピークパワーおよび
照射時間を含む少なくともひとつの照射条件を設定して
おくことができる。これらの条件を適宜に組み合わせて
調整すれば、前記した、この発明の目的とする作用を達
成するのに必要なエネルギービームの照射条件を、簡単
かつ確実に適切な範囲に設定することができる。
【0033】つぎに、上記のような適切なエネルギービ
ームの照射条件は、予め理論的な考察あるいは実験の結
果から導き出すこともできるが、回路基板の材質構造や
要求性能によって、適切な条件を予め知ることが難しい
場合がある。このような場合、回路基板にエネルギービ
ームを照射したときの、導体部および/またはその周辺
の表面状態の観測結果から、エネルギービームの照射条
件を制御すれば、実際に表面処理されている導体部表面
などの状態に合わせて、最適な照射条件を設定すること
が可能になり、信頼性の高い表面処理が行える。
【0034】エネルギービームの照射を、減圧雰囲気下
で行えば、飛散物の導体部への再付着を少なくできる。
すなわち、減圧雰囲気下では、飛散物と衝突する可能性
のある雰囲気中分子の量が少なくなり、飛散物が大気中
分子と衝突する回数が減るので、導体部への再付着が減
少するのである。エネルギービームによる回路基板の表
面処理を行いながら、エネルギービームが透過する処理
室における透過窓の汚染状態を監視しておけば、透過窓
の汚染や劣化による、処理性能の低下を防ぐことができ
る。透過窓は、回路基板からの飛散物が付着することで
エネルギービームの透過率が低下する。透過窓の汚染程
度に合わせて、エネルギービームの照射条件を調整すれ
ば、回路基板に対して、表面処理に必要なエネルギー量
を確実に照射することができる。透過窓の汚染がひどく
なれば、透過窓を洗浄したり、透過窓を新しいものに変
えればよい。
【0035】減圧雰囲気中の不純物混入状態を監視して
おけば、不純物混入による処理性能の低下を防ぐことが
できる。回路基板に対して表面処理を行えば、前記した
飛散物の発生によって、雰囲気中の不純物混入量が増え
てくる。不純物は、導体部に再付着する可能性があると
ともに、新たに発生する飛散物と衝突して導体部に再付
着させる原因になる。そこで、不純物の混入量が増えた
ときに、雰囲気中の不純物を除去する雰囲気洗浄処理や
雰囲気交換処理を行えば、処理性能の低下が防げるので
ある。また、不純物の混入量が増えると導体部の表面に
照射されるエネルギー量が少なくなるので、不純物の混
入量に合わせてエネルギービームの照射条件を調整する
ことで、処理性能の低下を防ぐことができる。
【0036】減圧雰囲気中の不純物混入状態を監視する
手段として、減圧雰囲気のガス組成を測定する方法、減
圧雰囲気のレーザ光透過率を測定する方法、表面処理に
よって発生するプラズマの発光量を測定する方法、減圧
雰囲気の圧力変化を検出する方法が採用できる。これら
の方法は、エネルギービームによる表面処理に悪影響を
与えることが少なく、不純物混入状態を確実に監視する
ことができる。
【0037】表面処理が行われた回路基板に対して、導
体部の表面特性を検査して処理結果を評価すれば、表面
処理された導体部の表面に悪影響を与えることなく、処
理結果を評価することができる。前記した、導体部の周
辺の基板材料にエネルギービームが照射されて、基板材
料が飛散し導体部表面に付着するという問題を解決する
には、回路基板として、有機材料からなる基板上に、複
数の金属材料層を積層した導体部が形成されてなる回路
基板であって、導体部の形成個所を含む、エネルギービ
ームが照射される範囲の基板表面を構成する有機材料
が、その他の部分の基板を構成する有機材料よりも、エ
ネルギービームに対する閾値の大きな材料で形成されて
いるものを用いることが有効である。
【0038】エネルギービームに対する閾値の大きな材
料からなる部分の基板表面にエネルギービームが照射さ
れたとしても、材料の飛散は生じない。閾値の大きな材
料で、回路基板の全体を製造すると、回路基板としての
他の性能や特性に劣るものとなったり、コストが高くつ
いたりする心配があるが、エネルギービームが照射され
る範囲の基板表面を構成する材料のみに、閾値の大きな
材料を用いるのであれば、回路基板全体の性能を損なう
心配はなく、材料コストが高くつく心配もない。
【0039】
【実施例】ついで、この発明の実施例について、図面を
参照しながら以下に説明する。 〔基本的な実施例〕図2(a) (b) は、回路基板の具体例
として、PGA基板を表している。変性ポリイミド樹脂
からなる矩形板状の回路基板10には、上面中央に小さ
な矩形状に凹入されたキャビィティ12が形成されてい
る。このキャビィティ12に、半導体チップ(図示せ
ず)が収容される。回路基板10の下面には、多数の端
子ピン14が全面にわたって植えられており、この端子
ピン14を、外部の基板などに設けられた端子孔に突き
刺して、電気的な接続を果たす。端子ピン14は、回路
基板10の内部あるいは表面に形成された導体回路に接
続されている。キャビィティ12の四方周辺には、小さ
な短冊状をなすインナーリード20が多数並んで形成さ
れている。このインナーリード20は、端子ピン14に
接続された導体回路につながっている。また、キャビィ
ティ12に収容された半導体チップの各端子がインナー
リード20に接続される。このインナーリード20が、
導体金属からなる導体部となっている。
【0040】図1(a) には、インナーリードすなわち導
体部20の周辺部分の拡大断面を表している。導体部2
0は、基板10の上に銅箔26を張り、その上に、ニッ
ケル層24および金層22を、それぞれメッキで形成し
ている。したがって、導体部20の表面を構成する金属
材料層は金層22である。金層22の厚みは、数μm程
度に形成されている。
【0041】図1(b) に示すように、回路基板10の導
体部20表面に対して、エネルギービームとしてKrF
エキシマレーザ(波長:λ=248nm)Rを照射した。
レーザビームRは、図2において、多数の導体部20が
並んだ領域を含む概略長方形状の範囲を走査するように
照射した。したがって、導体部20の周辺および間の基
板10表面にも、ある程度はレーザビームRが照射され
ることになる。レーザのエネルギー密度は、0.5〜
3.0 J/cm2程度の範囲で調整し、ショット数は1〜1
0ショットの範囲で調整した。エネルギー密度やショッ
ト数を変えて、繰り返し実験を行い、最も良好な表面処
理効果が得られる照射条件を見い出した。
【0042】その結果、図1(b) に示すような断面構造
が得られた場合に、良好な効果が達成されることが判っ
た。すなわち、導体部20の金層22として、表面の一
部厚み部分23が、レーザ照射によって一旦は溶融した
後、冷却硬化した状態になっている。金層22が、溶融
層23と非溶融層22の2層に分かれているのである。
また、レーザ照射は、金層22の下のニッケル層24ま
では到達しておらず、非溶融層22が存在しているの
で、溶融層23とニッケル層24との間で合金が形成さ
れることもない状態である。
【0043】処理前および処理後の導体部20表面を観
察したところ、処理前には微細な凹凸が明確に確認でき
たが、処理後には凹凸がなく平滑な表面になっているこ
とが確認できた。 〔表面の観測を行う実施例:CCDカメラ〕つぎに、図
3には、回路基板10の表面を観測しながらエネルギー
ビームRの照射を行う方法を表している。
【0044】前記実施例と同じ回路基板10を用い、エ
ネルギービームRも同様であった。レーザ照射装置30
から照射されたレーザビームRは、ミラー32で反射し
た後、回路基板10の導体部20表面に照射される。導
体部20表面からは、汚染物Xなどが蒸発除去される。
このような導体部20の表面状態を、CCDカメラ40
で撮影する。CCDカメラ40で撮影された映像は、電
子情報として、コンピュータからなる制御装置50に入
力される。制御装置50では、映像情報を解析し、その
結果にもとづいて、レーザ照射装置30の発振回路など
をフィードバック制御する。具体的には、導体部20の
表面が溶融して、表面光沢が変化する状態を捉えて、レ
ーザ照射装置30におけるレーザビームRの照射エネル
ギー密度やショット数が過大にならないように、変更調
整する。なお、表面光沢の変化を観察することは、言い
換えると、表面の反射率を測定していることになる。し
たがって、CCDカメラの代わりに、反射率計を設けて
おいても、同様の機能を果たすことができる。また、表
面の色の変化から、表面の溶融状態などを知ることもで
きる。この場合には、色度計などを用いることができ
る。CCDカメラ40で、映像とともに反射率や色など
を総合的に観察すれば、より正確な制御が可能になる。 〔表面の観測を行う実施例:飛散物検知器〕図4には、
導体部20の表面状態を観測する方法の別の実施例を表
している。
【0045】この実施例では、CCDカメラ40の代わ
りに、飛散物検知器42を用いている。飛散物検知器4
2は、導体部20の表面から雰囲気中に飛散するガスや
金属蒸気などの物質Xを取り込んで、そこに含まれる成
分を検知分析する装置である。飛散物検知器42で得ら
れた成分分析結果に、導体部20表面の合金化を示すよ
うな情報が含まれるようになると、制御装置50でレー
ザ照射装置30を制御して、レーザビームRのエネルギ
ー密度を小さくしたり、ショット数を少なくしたりす
る。また、飛散物検知器42で、金の蒸発を検知した状
態を、レーザビームRの照射の限度とすればよい。 〔回路基板の構造が異なる実施例〕つぎに、図5には、
この発明の表面処理方法に適した回路基板10の構造を
表している。図5は、前記図1などとは直交する方向の
断面を示している。
【0046】複数本の導体部20が一定間隔毎に並んで
設けられている。これら複数の導体部20に対して、連
続してレーザビームRの照射を行う。したがって、レー
ザビームRは、導体部20の表面から、導体部20同士
の間の基板表面にわたって照射されることになる。回路
基板10は、全体的には前記した変性ポリイミド樹脂で
形成されているが、導体部10の形成個所とその間の表
面部分16のみが、エキシマレーザに対する閾値の大き
なテフロンで形成されている。すなわち、このテフロン
部分16に、所定の閾値以下のレーザビームRを照射し
ても、表面から樹脂成分が飛散することはない。したが
って、前記した各実施例では、変性ポリイミド樹脂から
なる回路基板10からの樹脂の飛散が生じないように、
レーザビームRの照射条件を抑える必要があったのに対
し、この実施例では、それよりもはるかに強いレーザビ
ームRの照射条件が採用できることになる。その結果、
導体部20の表面に対する表面処理効果を高めたり、処
理時間を短くしたりすることが可能になる。 〔減圧雰囲気下で処理を行う実施例〕図6に示すよう
に、気密構造を備えた減圧処理室60に、回路基板10
が収容される。減圧処理室60には、真空ポンプ64が
接続されていて、減圧処理室60内の空気を排気して減
圧雰囲気に維持できるようになっている。減圧処理室6
0のうち、レーザビームRの照射経路となる個所には、
レーザビームRを透過させる合成石英からなる透過窓6
2が設けられている。 〔透過窓の汚染状態を監視する実施例〕図7に示すよう
に、減圧処理室60内で回路基板10と並ぶ位置にエネ
ルギー量の検出器65を設けている。検出器65で得ら
れた測定情報は、コンピュータを備えた制御装置50に
入力される。ミラー32などの光学系を制御すること
で、レーザビームRを、回路基板10および検出器65
の何れかに選択的に照射することができる。回路基板1
0および検出器65の何れかを選択的に移動させて、レ
ーザビームRの当たる位置に配置するようにしてもよ
い。
【0047】照射されるレーザビームRのエネルギー量
が同じであれば、検出器65で検出されるエネルギー量
が減るほど、透過窓62の汚染が進行していることにな
る。透過窓62の汚染が一定限度を超えれば、制御装置
50から、透過窓62を交換したり、透過窓62を洗浄
するように指令を出すことになる。したがって、透過窓
62が交換可能に取り付けられているか、透過窓62の
洗浄手段を備えておくことが好ましい。
【0048】検出器65へのレーザビームRの照射は、
一定時間毎に定期的に行う。予め、回路基板10へのレ
ーザ処理個数と透過窓62の汚染進行との関係を求めて
おけば、ある程度の時間をあけて検出器65へのレーザ
ビームRの照射による汚染状態の測定を行うだけで、透
過窓62の交換時期を予測したり、透過窓62の汚染状
態に見合うレーザビームRの照射条件の調整量を知るこ
とができる。
【0049】図8に示すフローチャートにしたがって、
制御装置50における処理制御を行うことができる。ス
テップで処理を開始する。ステップで検出器65か
らの出力を読み込み、ステップで透過窓62の透過率
が90%以下になったと判定されれば、ステップで透
過窓62の洗浄操作を指示し、ステップの洗浄処理が
終われば、再びステップに戻って検出器65からの出
力読み込みを行う。ステップで透過率が90%以上あ
る場合には、ステップで処理終了であるか否かを判断
し、ステップで終了するか、再びステップに戻って
検出器65からの出力読み込みを行う。 〔透過窓の汚染状態を監視する別の実施例〕図9に示す
ように、検出器65による透過率の測定を行うレーザビ
ームRmを、回路基板10への表面処理を行うレーザビ
ームRとは別にしている。透過率測定用のレーザビーム
Rmには、YAGレーザもしくは半導体レーザが用いら
れ、レーザ照射装置30mから照射される。
【0050】この実施例では、レーザビームRによる表
面処理とは別個に、レーザビームRmによる透過率の測
定が行えるので、レーザビームRを回路基板10と検出
器65に交互に当てる必要がない。制御装置50におけ
る処理制御のフローチャートは、前記実施例と同じよう
に行える。 〔不純物混入状態を監視する実施例:ガス組成測定〕図
10に示すように、減圧処理室60に、元素分析装置6
6を備えている。元素分析装置66は、雰囲気内に混入
しているガスをイオン化し、電圧と高周波により質量数
を推定して元素分析を行う四重極質量分析器を用いてい
る。元素分析装置66で検出する元素として、飛散物の
混入度合いを最も良く示す炭素を分析する。目的とする
元素の検出量は、他の元素の検出量との相対比較によっ
て行う。
【0051】レーザビームRを回路基板10に照射して
表面処理を行っていると、回路基板10の樹脂部分から
飛散物が発生して減圧処理室60の雰囲気を汚染する。
飛散物のうちの炭素が元素分析装置66で検出される。
元素検出のピーク値に変化が生じると、その情報が制御
装置50に入力され、制御装置50からは、減圧処理室
60の雰囲気内洗浄を行うように指令が出される。雰囲
気内洗浄の具体的手段としては、アルコールを用いた超
音波洗浄が採用される。 〔不純物混入状態を監視する実施例:レーザ透過率測
定〕図11に示すように、表面処理用のレーザビームR
を照射するレーザ照射装置30とは別に、レーザ照射装
置30aを備えている。レーザ照射装置30aから照射
されたレーザビームRaは、減圧処理室60に設けられ
た透過窓62aを経て減圧処理室60内の雰囲気を通過
した後、減圧処理室60の壁面に設けられた検出器65
aで検出される。すなわち、雰囲気中のレーザビームR
aの透過率を測定することになる。雰囲気内の不純物混
入量が多くなるほど、検出器65aで検出されるエネル
ギー量は少なくなる。レーザビームRaとしては、YA
Gレーザや半導体レーザを用いる。レーザビームRaの
出力を一定にしておき、検出器65aにおける出力値
が、発振出力の90%以下になると、制御装置50か
ら、減圧処理室60の雰囲気内洗浄を行うように指令が
出される。 〔不純物混入状態を監視する実施例:プラズマ発光量測
定〕図12に示すように、減圧処理室60に設けられた
透過窓62cを通じて回路基板10の表面処理部分をC
CDカメラ40で観測する。レーザビームRによる表面
処理が行われると、回路基板10の近くの空間にプラズ
マPが発生して発光する。雰囲気中への不純物の混入が
増えると、プラズマPの発光量が増える。このプラズマ
Pの発光状況をCCDカメラ40で観測するのである。
CCDカメラ40で撮影された映像を、電子情報として
制御装置50に入力する。制御装置50では、映像情報
を解析し、その結果から雰囲気中への不純物の混入状態
を知ることができる。具体的には、プラズマPの発光量
が、ピーク発光量の90%以下になったときに、制御装
置50から、減圧処理室60の雰囲気内洗浄を行うよう
に指令が出される。 〔不純物混入状態を監視する実施例:圧力変化測定〕図
13に示すように、減圧処理室60に、雰囲気内の圧力
を検出する圧力測定器70を設けておく。圧力測定器7
0の検出情報は、制御装置50に入力される。雰囲気中
への不純物の混入が増えれば、雰囲気内の圧力が高くな
る。この圧力が、予め設定された一定限度を超えると、
制御装置50から、減圧処理室60の雰囲気内洗浄を行
うように指令が出される。通常、回路基板10に表面処
理を施す際には、減圧処理室60の圧力は1×10-2
5×10-2Torrに設定されるので、圧力測定器70で測
定される圧力が、この設定圧力範囲を超えたときに、前
記洗浄指令を出すようにすればよい。 〔処理結果の評価方法の実施例:レーザビームの反射特
性〕図14に示すように、前記した各実施例に記載され
た方法で表面処理が施された回路基板10に対して、評
価用のレーザ照射装置80からレーザビームReを照射
し、回路基板10の表面で反射したレーザビームReを
検出器82で検出する。このレーザビームReは、回路
基板10の表面に変化を起こさないような微弱なエネル
ギー量に設定しておく。また、処理済の回路基板10の
表面を変化させないことから、可視光を用いるのが好ま
しい。
【0052】回路基板10の表面の凹凸状態によって、
レーザビームReの反射量すなわち検出器82で検出さ
れるエネルギー量が変化する。具体的には、適切な表面
処理が施された回路基板10の表面は平滑であるが、処
理前あるいは処理が不十分な回路基板10の表面には微
細な凹凸が存在している。したがって、良好な表面処理
が行われた回路基板10の表面は、処理が不十分な表面
よりも検出エネルギー量が大きくなる。
【0053】予め、適切な表面処理が行われた回路基板
10の表面における検出器82の出力値や、処理前ある
いは処理が不十分な表面における検出器82の出力値を
調べておけば、表面処理を終えた回路基板10に、上記
レーザビームReの照射を行うだけで、処理品質を評価
することができる。例えば、レーザビームReの照射エ
ネルギー出力に対して、検出器82におけるエネルギー
検出量が、半分以下であった場合に、処理不良であると
判定する。
【0054】回路基板10の表面に対するレーザ照射装
置80と検出器82の配置、言い換えると、レーザビー
ムReの入射および反射角度によって、回路基板10の
表面の凹凸状態による反射量の変化が影響を受ける。し
たがって、表面処理の良品と不良品とで反射量に明確な
違いが生じるように、レーザビームReの入射反射角度
を設定しておくのが好ましい。 〔処理結果の評価方法の実施例:表面粗さ〕図15に示
すように、処理後の回路基板10に対して、レーザ粗さ
計84を用いて、表面粗さを測定する。レーザ粗さ計8
4は、照射部85から回路基板10の表面に向かってレ
ーザビームRrを照射し、その反射光をディテクタ部8
6で捉えることで、表面粗さが測定できる。前記したと
おり、表面粗さが小さなほど、十分な表面処理が行われ
ていることになる。例えば、表面のバラツキが、最大1
〜2μm以上ある場合に、処理不良であると判定する。 〔処理結果の評価方法の実施例:X線の回析〕図16
(a) に示すように、処理後の回路基板10に対して、X
線発振器87からX線Rxを照射し、回路基板10の表
面で反射したX線RxをX線ディテクタ88で検出す
る。回路基板10の表面の材質あるいは組織構造の違い
によって、X線ディテクタ88における出力情報が変わ
る。具体的には、回路基板10の導体部20を構成する
金層22の表面が、表面処理によって図16(a) に示す
ような溶融層23になっている場合と、図16(b) に示
すような合金層27になっている場合とで、X線ディテ
クタ88の出力情報が違ってくる。出力情報から、合金
層27の形成が認められた場合には、処理不良であると
判定する。
【0055】
【発明の効果】以上に述べた、この発明にかかる回路基
板上の導体部の表面処理方法によれば、導体部に照射す
るエネルギービームの照射条件を適切に設定することに
より、導体部の表面に良好な表面処理を施し、導体部の
総合的な品質性能を低下させずに、電気的接合信頼性を
向上させることができる。
【0056】その結果、従来のエネルギービームを用い
る乾式表面処理方法の問題点を解消して、導体部に対す
る表面処理を良好に行うことが可能になり、このような
導体部の表面処理が必要とされる半導体製造技術分野な
どの生産性あるいは品質向上に大きく貢献することがで
きる。
【図面の簡単な説明】
【図1】 この発明の実施例を表す回路基板の、表面処
理前(a)および表面処理時(b)における断面図
【図2】 回路基板の全体構造を表す、一部拡大図を含
む斜視図(a)および導体部周辺の拡大平面図(b)
【図3】 別の実施例を表す処理装置の全体構成図
【図4】 別の実施例を表す処理装置の全体構成図
【図5】 別の実施例を表す回路基板の断面図
【図6】 減圧処理室を備えた処理装置の全体構成図
【図7】 透過窓の汚染監視手段を備えた実施例を表す
処理装置の全体構成図
【図8】 処理制御の流れ図
【図9】 別の実施例を表す処理装置の全体構成図
【図10】 不純物混入状態の監視手段を備えた実施例
を表す処理装置の全体構成図
【図11】 別の実施例を表す処理装置の全体構成図
【図12】 別の実施例を表す処理装置の全体構成図
【図13】 別の実施例を表す処理装置の全体構成図
【図14】 処理結果の評価方法の実施例を表す概略説
明図
【図15】 別の実施例を表す概略説明図
【図16】 別の実施例を表す概略説明図
【符号の説明】
10 回路基板 20 導体部 22 金層 23 溶融層 30 レーザー照射装置 40 CCDカメラ 42 飛散物検知器 50 制御装置 60 減圧処理室 62 透過窓 R レーザビーム
フロントページの続き (56)参考文献 特開 平7−94440(JP,A) 特開 平6−69271(JP,A) 特開 平4−167441(JP,A) 特開 平4−157790(JP,A) 特開 昭64−87680(JP,A) 特開 平5−185252(JP,A) 特開 平2−256249(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/60 H01L 23/12 H05K 1/00 H05K 3/00 H01L 21/268

Claims (10)

    (57)【特許請求の範囲】
  1. 【請求項1】 有機材料からなる基板上に、複数の金属
    材料層を積層した導体部が形成されてなる回路基板に対
    して、導体部表面にエネルギービームを照射して導体部
    の表面処理を行う方法において、導体部表面の金属材料
    層の厚み、熱伝導率およびエネルギービームに対する閾
    値を含む材料特性に合わせて、エネルギービームの波
    長、エネルギー密度、ショット数、照射時間、パルス
    幅、ピークパワーおよび照射時間を含むエネルギービー
    ムの照射条件のうち少なくともひとつの照射条件を、導
    体部表面の金属材料層の表面側に溶融層、裏面側に非溶
    融層が形成されるように設定して、導体部表面にエネル
    ギービームを照射することを特徴とする回路基板上の導
    体部の表面処理方法。
  2. 【請求項2】 請求項1の方法において、回路基板にエ
    ネルギービームを照射したときの、導体部および/また
    はその周辺の表面状態の観測結果から、エネルギービー
    ムの照射条件を制御する回路基板上の導体部の表面処理
    方法。
  3. 【請求項3】 請求項1〜の何れかの方法において、
    エネルギービームの照射を減圧雰囲気下で行う回路基板
    上の導体部の表面処理方法。
  4. 【請求項4】 請求項の方法において、減圧雰囲気下
    の処理室に収容された回路基板に、処理室に設けられた
    透過窓を通してエネルギービームを照射し、エネルギー
    ビームによる回路基板の表面処理を行いながら、透過窓
    の汚染状態を監視する回路基板上の導体部の表面処理方
    法。
  5. 【請求項5】 請求項またはの方法において、エネ
    ルギービームによる回路基板の表面処理を行いながら、
    減圧雰囲気のガス組成を測定して、減圧雰囲気中の不純
    物混入状態を監視する回路基板上の導体部の表面処理方
    法。
  6. 【請求項6】 請求項の何れかの方法において、
    エネルギービームによる回路基板の表面処理を行いなが
    ら、減圧雰囲気のレーザ光透過率を測定して、減圧雰囲
    気中の不純物混入状態を監視する回路基板上の導体部の
    表面処理方法。
  7. 【請求項7】 請求項の何れかの方法において、
    エネルギービームによる回路基板の表面処理を行いなが
    ら、回路基板にエネルギービームを照射した際に発生す
    るプラズマの発光量を測定して、減圧雰囲気中の不純物
    混入状態を監視する回路基板上の導体部の表面処理方
    法。
  8. 【請求項8】 請求項の何れかの方法において、
    エネルギービームによる回路基板の表面処理を行いなが
    ら、減圧雰囲気の圧力変化を検出して、減圧雰囲気中の
    不純物混入状態を監視する回路基板上の導体部の表面処
    理方法。
  9. 【請求項9】 請求項1〜の何れかの方法において、
    表面処理が行われた回路基板に対して、導体部の表面特
    性を検査して処理結果を評価する回路基板上の導体部の
    表面処理方法。
  10. 【請求項10】 請求項1〜の何れかの表面処理方法
    に用いる回路基板であり、有機材料からなる基板上に、
    複数の金属材料層を積層した導体部が形成されてなる回
    路基板であって、導体部の形成個所を含む、エネルギー
    ビームが照射される範囲の基板表面を構成する有機材料
    が、その他の部分の基板を構成する有機材料よりも、エ
    ネルギービームに対する閾値の大きな材料で形成されて
    いることを特徴とする回路基板。
JP8211994A 1993-07-27 1994-04-20 回路基板上の導体部の表面処理方法および回路基板 Expired - Lifetime JP3133212B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8211994A JP3133212B2 (ja) 1993-07-27 1994-04-20 回路基板上の導体部の表面処理方法および回路基板

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP18469193 1993-07-27
JP5-184691 1993-07-27
JP8211994A JP3133212B2 (ja) 1993-07-27 1994-04-20 回路基板上の導体部の表面処理方法および回路基板

Publications (2)

Publication Number Publication Date
JPH07122525A JPH07122525A (ja) 1995-05-12
JP3133212B2 true JP3133212B2 (ja) 2001-02-05

Family

ID=26423136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8211994A Expired - Lifetime JP3133212B2 (ja) 1993-07-27 1994-04-20 回路基板上の導体部の表面処理方法および回路基板

Country Status (1)

Country Link
JP (1) JP3133212B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009088122A (ja) * 2007-09-28 2009-04-23 Dainippon Printing Co Ltd 導電性基板
JP6619625B2 (ja) * 2015-11-18 2019-12-11 浜松ホトニクス株式会社 電極のクリーニング方法および集積回路装置の製造方法
CN106001005B (zh) * 2016-06-06 2018-09-18 中国科学院力学研究所 一种铜铬合金触头的激光清洗方法
US20230304973A1 (en) * 2022-03-25 2023-09-28 Saudi Arabian Oil Company Sample cylinder content identification system and method thereof

Also Published As

Publication number Publication date
JPH07122525A (ja) 1995-05-12

Similar Documents

Publication Publication Date Title
US5423931A (en) Method and apparatus for removing an electronic component from a board
US6917011B2 (en) Method and apparatus for decapping integrated circuit packages
KR101161886B1 (ko) 파손 분석 방법 및 시스템
JP2003506216A (ja) 回路シンギュレーションシステム及び方法
WO2018212087A1 (ja) 欠陥検査装置および欠陥検査方法
KR20100041854A (ko) Pcb 기판 제조 공정에서의 마이크로비아 형성 평가
US20220023975A1 (en) Unsealing method of semiconductor device package and unsealing device of semiconductor device package
JP3133212B2 (ja) 回路基板上の導体部の表面処理方法および回路基板
US20010006722A1 (en) Substrate having repaired metallic pattern and method and device for repairing metallic pattern on substrate
JP2000340599A (ja) ワイヤボンディング装置及び該ワイヤボンディング装置によるワイヤボンディング方法
JPH10177844A (ja) 平面ディスプレイパネルの製造方法およびプラズマディスプレイパネルの製造方法
Reddy et al. Evaluation of the quality of BGA solder balls in FCBGA packages subjected to thermal cycling reliability test using laser ultrasonic inspection technique
US20080233755A1 (en) Method of Removing Metallic, Inorganic and Organic Contaminants from Chip Passivation Layer Surfaces
JP2006086453A (ja) 表面処理方法、および電子部品の製造方法
Dreher et al. Non-destructive imaging of defects in Ag-sinter die attach layers–A comparative study including X-ray, scanning acoustic microscopy and thermography
JPH08213740A (ja) 回路基板の表面処理方法
JP2001345360A (ja) 検査・解析方法および試料作製装置
CN114986011A (zh) 一种ltcc基板可焊性的快速无损检测装置和测试方法
KR20230109170A (ko) 솔더 범프 복구
JP3083120B2 (ja) はんだ濡れ性評価方法とその装置
Adams X-ray laminography analysis of ultra-fine-pitch solder connections on ultrathin boards
JP2006329816A (ja) プローブ検査装置
Hirman et al. Solder joints on thick printed copper substrates
JP2004132699A (ja) 接続装置、半導体チップ検査装置及び接続装置の製造方法
JP7462363B2 (ja) 接合層の評価方法及び接合層評価装置

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081124

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081124

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 13

EXPY Cancellation because of completion of term